用户名: 密码: 验证码:
考虑环境约束的不确定性城市能源系统优化模型
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着城市社会经济的快速发展和人民生活水平的提高,能源消费量持续增长,能源供需矛盾日益紧张。而以煤炭为主的能源结构导致大量环境污染物和温室气体的排放,城市环境污染问题日益严重。我国城市能源管理面临着经济发展与环境保护的双重压力,且存在着较大的不确定性。因此,综合考虑能源、环境和经济,建立不确定性城市能源系统优化模型,将为我国的城市能源管理及决策提供科学的和实用的技术手段,促进社会经济、能源与环境的协调可持续发展。
     在城市能源系统分析的基础上,研究我国城市目前存在的主要能源问题,以及与能源利用相关的环境问题。针对这些主要问题,考虑我国城市能源结构和能流特征,以及能源系统优化模型的变量和参数存在的诸多不确定性,以区间规划为基本框架,综合机会约束规划、模糊规划和混合整数规划等方法来处理能源与环境系统的不确定性和复杂性,陆续开发了不确定性的城市能源系统综合优化模型,不确定性机会约束混合整数城市能源系统优化模型,不确定性模糊机会约束混合整数城市能源系统优化模型。
     为验证不确定性城市能源系统优化模型的可靠性和实用性,将其应用到北京市能源系统的实例研究中。这三种不确定性能源模型的结果均表明,北京市城市能源结构将从以原煤为主的污染型能源结构逐步转变为以天然气、电力等优质能源为主的清洁型能源结构。电力生产仍以燃煤发电为主,但燃气热电联产技术得到大力发展,成为发电量与燃煤发电不相上下的第二大电源,水电、风电等可再生能源发电技术在总装机容量中的比例将提高到5~8%。北京市热力生产主要发展了燃气供热技术,热泵和地热技术等新兴供热技术在规划期内也有容量增加。
     在城市能源模型中,电力生产是非常重要的组成部分。应用区间规划和机会约束规划方法建立不确定的电厂优化配煤模型,这些模型可以在煤质参数发生一定程度的波动时,仍能保证配煤质量满足电力生产要求。初步探讨了配煤特性与机组负荷之间的关联,建立电厂负荷优化分配与配煤优化模型,在满足机组实时负荷变化下的生产要求的同时,避免不必要的燃料浪费和减少污染物的排放。
Rapid socio-economic development and improvement in people's living standards result in increased energy consumption. Contradiction between energy supply and demand is becoming increasingly acute. Furthermore, the coal-dominance energy structure has caused that large quantities of pollutants and greenhouse gases (GHGs) were emitted and environmental pollution became more seriously. So, China's municipal energy management is confronted with dual pressures from economic development and environmental protection. Therefore, with considering energy, environment and economy, a series of inexact energy system optimization models were developed, which would provide scientific and practical techniques for China's municipal energy management and decision-making. They would promote coordinated and sustainable development of the energy, environment and economy.
     On the basis of energy system analysis, some major energy problems and related environmental problems in China's urban energy system at present were discussed. In response to these concerns, considering the energy structure and energy flow characteristics of our country, chance-constrained programming (CCP), fuzzy linear programming (FLP) and mixed integer linear programming (MILP) was separately or jointly integrated within the basic framework of interval linear programming (ILP) to deal with uncertainties that exist in the variables and parameters of energy system optimization models. In order to reflect uncertainty and complexity of energy and environmental system, a series of energy models under uncertainties were developed, which were the inexact urban energy system optimization model, the inexact chance-constrained mixed-integer programming approach for urban energy system optimization model, and the inexact fuzzy chance-constrained mixed-integer programming approach for urban energy system optimization model.
     In order to verify reliability and practicality of these above-mentioned inexact urban energy system optimization models, they were applied to Beijing's energy system as case studies. The results would help shift Beijing from coal-dominance energy structure to cleaner high-quality energy structure that had more shares of clean energy types such as natural gas and electricity. Coal-fired power plants are still the main force of electricity production. In the periods of planning, natural gas-fired heat and power co-generation technology would be developed rapidly, and it would become the second-largest power supply, a little less than coal-fired electricity generating. Hydropower, wind power and other renewable energy power generation technologies would also be developed, around to 5-8 percent of the total capacity. The heat generating would mainly supplied by natural gas. Heat pump, geothermal technology and other new technologies, have some capacities expansion during the planning period.
     Electricity system is a very important component of urban energy system optimization model. Interval linear programming and chance-constrained programming was applied to establish some nonlinear programming methods for coal blending in power plants. The results showed that the quality of blended coal would meet production requirements of coal-fired power plants though the price and some quality parameters of coal fluctuated to some extent. The relationship between unit load and coal quality was discussed, on the basis, an optimization model for load distribution and coal blending in power plant was developed. The results of a case study showed that the optimization model for load dispatch and coal blending would satisfy the requirement of electricity-generating with real-time unit load changing, and avoid unnecessary fuel consumption, and reduce the emissions of contaminants.
引文
[1]王大中.21世纪中国能源科技发展展望.北京:清华大学出版社2007.1-20
    [2]国家统计局.中国统计年鉴.北京:中国统计出版社,2000~2007
    [3]付融冰,张慧明.中国能源的现状.能源环境保护,2005,19(1):8~12
    [4]人民日报.电力缺口近7000万千瓦13省级电网拉闸限电,北京:人民网,2008-01-22, http://finance.people.com.cn/GB/6808767.html
    [5]郑博福,邓红兵,严岩,赵景柱.我国未来能源消费及其对环境的影响分析.环境科学,2005,26(3):1~6
    [6]王庆一.中国的能源与环境:问题及对策.能源与环境,2005,(3):4~11
    [7]周大地.2020中国可持续能源情景.北京:中国环境科学出版社,2003.15~36
    [8]周凤起.中国经济发展中的能源资源和环境制约.国际金融研究,2006,(1):34~38
    [9]郑洪,倪维斗,李政.中国城市能源利用现状和政策分析.2003,(4):13~17
    [10]徐太炎,仝德良,刘波.北京市能源结构现状及今后调整方向.北京节能,2000,(2):2~5
    [11]吉训仁,姜彦福,郑易生译.MARKAL能源供应模型导论与指南,北京:清华大学出版社,1998.15~30
    [12]Fishbone L.G. MARKAL:A multi-period linear programming model for energy system analysis. BNL Version, New York,1979.25~53
    [13]De Musgrove AR. A linear programming analysis of liquid-furl production and use options for Australia. Energy,1984, (9):281~302
    [14]Grohnheit, P.E. Economic interpretation of the EFOM model. Energy Economics,1991,13(2):143~152
    [15]Cormio C, Dicorato M, Minoia A, Trovato M. A regional energy planning methodology including renewable energy sources and environmental constraints. Renew Sustain Energy Rev 2003,7(2):99~130
    [16]Bala BK. Computer modeling of the rural energy system and of CO2 emissions for Bangladesh. Energy,1997,22(10):999~1003
    [17]Messner Sabine. MESSAGE-MACRO:linking an energy supply model with a macroeconomic module and solving it iteratively. Energy,2000,25(3): 267-282
    [18]张晓萱.黄国和.席北斗.徐鸿.牛彦涛.北京市能源系统存在的主要问题及其对策研究.节能与环保,2008,(5):15~17
    [19]魏一鸣,吴刚,刘兰翠,范英.能源-经济-环境复杂系统建模与应用进展.管理学报,2005,2(2):159~170
    [20]S. Jebaraj, S. Iniyan. A review of energy models. Renewable and Sustainable Energy Reviews,2006,10(4):281~311
    [21]李爱军.我国能源-环境-经济系统的区域间建模.数学的实践与认识,2007,37(6):11~17
    [22]Timur Gul, Socrates Kypreos, Hal Turton, Leonardo Barreto.An energy-economic scenario analysis of alternative fuels for personal transport using the Global Multi-regional MARKAL model (GMM). Energy,2009, 34(10):1423-1437
    [23]Anwar Farid Agaybi Khella. Energy Planning Policies with environmental considerations. Energy Policy,1997,25(1):105~115
    [24]Poul Erik Grohnheit. The EFOM-CHP optimization model,2005.9 http://www.risoe.dk/sys//sys/esy/models/efom_chp.html,
    [25]Matthews RW. Modelling of energy and carbon budgets of wood fuel coppice systems. Biomass Bioenergy,2001,21(1):1~19
    [26]Joost Siteur. The Long range Energy Alternatives Planning model(LEAP)and Wood Energy Planning.2004.9, http://www.rwedp.org/p-leap.html
    [27]Tsuneyuki,Moria. Thematic Guide to Integrated Assessment Modeling: The Asian-Pacific Integrated Model,http:/isedac.Ciesin.columbia.edu/mva/ iamcc.tg/TGsec4-2-8.html,2004.9
    [28]H.Yang. Manual for AIM-Local Model (GAMS version).5th AIM international workshop, Japan.2001
    [29]Manne A. S. Richels R.G. Global CO2 emission reductions-the impacts of rising energy costs. the Energy Journal,1991,12(1):87~107
    [30]Bergman. L. General equilibrium effects of environmental policy:A CGE Modeling Approach. Environmental and Resource Economics,1991, 1(1):43~61
    [31]Diesendorf M. Energy scenarios in global economic models of greenhouse gas reduction. Global Energy Issues,2000,13(1):70~85
    [32]许瑞林,黄福荃.江苏省能源模型研究.能源研究与利用,1992,(3):3~10
    [33]曾鸣,盛绪美.北京大气环境与能源综合规划决策模型及其应用.系统工程理论与实践,1991,(5):67~72
    [34]国家发改委能源研究所.中国能源科技发展战略研究报告.2004,4
    [35]吕应运,佟庆,徐滨,仝德良.北京远期能源需求与大气环境目标及近期对策探讨.清华大学学报(哲学社会科学版),2002,17(6):86~92
    [36]佟庆,白泉,刘滨,吕应运.MARKAL模型在北京中远期能源发展研究中的应用.中国能源,2004,26(6):36~40
    [37]费忠华,徐辉,李博.优化电力能源结构的数学模型.数学的实践与认识.2005,135(13):14~19
    [38]傅瑛,田立新.江苏省能源消费的Logistic模型统计检验估计法及预测.江苏理工大学学报(社科版),2001,(1):17~19
    [39]田立新,傅瑛,于景华.非线性分析下西部—江苏能源联动决策支持系统的研究—能源消费与生产混沌动力学模型的建立.江苏大学学报(自然科学版),2003,5(1):105~109
    [40]傅瑛,田立新,丁丹平,许刚.混沌动力学模型在我国能源生产预测中的应用.江苏大学学报(自然科学版),2003,24(1):26~29
    [41]郭斌,马一太,庞健琦,等.GIS系统在城市大气污染控制与能源结构优化中的应用.城市环境与城市生态,2003,16(2):62~64
    [42]姜克隽,胡秀莲等.中国能源问题研究-中国与全球温室气体排放情景分析模型,北京:中国环境科学出版社,2002.12~30
    [43]朱跃中,戴彦德.中国可持续能源发展情景及其碳排放分析.中国能源,2002,(11):36~42
    [44]高虎,梁志鹏,庄幸.LEAP模型在可再生能源规划中的应用.中国能源,2004,26(10):34~37
    [45]黄东风.利用MESSAGE模型优化浙江电源结构初探.能源工程,2006,(4):6-9
    [46]陈长虹,Collin Green,吴昌华.MARKAL模型在上海市能源结构调整与大气污染物排放中的应用.上海环境科学,2002,21(9):515~519
    [47]Zhang Zhongxiang. Macroeconomic Effects of CO2 Emissions Lim its:A computable General Equilibrium Analysis for China. Journal of policy modeling,1998,20(2):213-250
    [48]Zhang Zhongxiang. Can China Afford to Commit Itself an Emissions Cap An Economic and Political Analysis. Energy economics,2000,22 (6):587-614
    [49]Wei Yi-Ming, Liang Qiao-Mei, Ying Fan, Norio Okada, Hsien-Tang Tsai. A scenario analysis of energy requirements and energy intensity for China's rapidly developing society in the year 2020.Technological Forecasting and Social Change,2006,73(4):405~421
    [50]陈文颖,高鹏飞,何建坤.用MARKAL-MACRO模型研究碳减排对中国能源系统的影响.清华大学学报,2004,44(3):342~346
    [51]胡秀莲,姜克隽等.中国温室气体减排技术选择及对策评价.北京:中国环境科学出版社,2001
    [52]杨宏伟.应用AIM/Local中国模型定量分析减排技术协同效应对气候变化政策的影响.能源环境保护,2004,18(2):1~4
    [53]郑淮.3E模型及其对减排CO2的技术经济分析[硕士学位论文],北京:清华大学,2003
    [54]徐钢.减排CO2的能源动力系统综合评价与多目标优化:[博士学位论文].北京:中国科学院工程热物理研究所,2007
    [55]Frei CW, Haldi P-A, Sarlos G. Dynamic formulation of a top-down and bottom-up merging energy-policy model. Energy Policy,2003, 31(10):1017~1031
    [56]Chedid R, Mezher T, Jarrouche C. A fuzzy programming approach to energy resource allocation. Energy,1999,40 (5):335
    [57]Mehdi Sadeghi, Hossein Mirshojaeian Hosseini. Energy supply planning in Iran by using fuzzy linear programming approach. Energy Policy,2006,34 (9):993~1003
    [58]Ana Rosa Borges, Carlos Henggeler Antunes. A fuzzy multiple objective decision support model for energy-economy planning. European Journal of Operational Research,2003,145(2):304~316
    [59]B.J. Zhang, B. Hua. Effective MILP model for oil refinery-wide production planning and better energy utilization. Journal of Cleaner Production,2007,15(5):439~448
    [60]Agrawal RK, Singh SP. Energy allocations for cooking in UP households (India):a fuzzy multi-objective analysis. Energy Conversion Manage,2001, 42(18):2139~2154
    [61]Rozakis S, Sourie J, Vanderpooten D. Integrated micro-economic modeling and multi-criteria methodology to support public decision-making: the case of liquid bio-fuels in France. Biomass Bioenergy,2001, 20(5):385~398
    [62]Mackay RM, Probert SD. Forecasting the United Kingdom's supplies and demands for fluid fossil-fuels. Energy,2001,69(3):161~189
    [63]Jai Persaud A, Kumar U. An eclectic approach in energy forecasting:a case of natural resources Canada's (NRCan's) oil and gas outlook. Energy Policy,2001,29(4):303~313
    [64]Robert Lowe. A theoretical analysis of price elasticity of energy demand in multi-stage energy conversion systems. Energy Policy,2003,31 (5) 1699~1704
    [65]Saab S, Badr E, Nasr G. Univariate modeling and forecasting of energy consumption:the case of electricity in Lebanon. Energy,2001,26(1):1~14
    [66]Kalogirou SA. Applications of artificial neural networks for energy systems. Applied Energy,2000,67(1-2):17-35
    [67]S. Iniyan, K. Sumathy. An optimal renewable energy model for various end-uses. Energy,2000,25(6):563~575
    [68]S. Iniyan, L. Suganthi, Anand A.Samuel. Energy models for commercial energy prediction and substitution of renewable energy sources. Energy Policy,2006,34(17):2640~2653
    [69]Islam SMN. Sustainable economic developments in the Australian energy sector:findings of the Australian energy planning system optimization model (AEPSOM). Renew Sustain Energy Rev,1997,1(3):229-238
    [70]C. Cormio, M. Dicorato, A. Minoia, M. Trovato. A regional energy planning methodology including renewable energy sources and environmental constraints. Renewable and Sustainable Energy Reviews,2003,7(2):99~130
    [71]BjOrn Rolfsman. Optimal supply and demand investments in municipal energy systems.Energy Conversion and Management,2004,45(4):595~611
    [72]Tsuji K, Chiba N. Multi-objective evaluation of appropriate energy systems for urban areas. Global Energy Issues,1998,11(1):1~4
    [73]X.Q. Kong, R.Z. Wang, X.H. Huang. Energy optimization model for a CCHP system. Applied Thermal Engineering,2005,25(2-3):377~391
    [74]Drozdz M. An optimization model of geothermal-energy conversion. Application Energy,2003,74(1-2):75~84
    [75]Y.P.Cai, G.H. Huang, Q.G. Lin, X.H. Nie, Q. Tan. A dynamic inexact energy systems planning model for supporting greenhouse-gas emission management and sustainable renewable energy development under uncertainty-A case study for the City of Waterloo, Canada. Renewable and Sustainable Energy Reviews,2009,13 (8):1836~1853
    [76]Tule Sirikitputtisak, Hamidreza Mirzaesmaeeli, Peter L. Douglas,et al. A multi-period optimization model for energy planning with CO2 emission considerations, Energy Procedia,2009,1(1):4339-4346
    [77]Kypreos. S., Barreto. L., Capros. P., Messner, S.,2000. ERIS:a model prototype with endogenous technological change. International Journal of Global Energy Issues,2000,14(5):374~397
    [78]Barreto. L., Kypreos. S.. A post-Kyoto analysis with the ERIS model prototype. International Journal of Global Energy Issues,2000,14(2): 262~280
    [79]Barreto L, Klaassen G. Emissions trading and the role of learning-by-doing spillovers in the "Bottom-up" energy-systems ERIS model. International Journal of Energy Technology and Policy,2004,2(1):70~95
    [80]Toshihiko Nakata, Analysis of the impacts of carbon taxes on energy systems in Japan. Energy Policy,2001,29(2):159~166
    [81]Yamamoto H, Yamaji K, Fujino J. Scenario analysis of bioenergy resources and CO2 emissions with a global land use and energy model. Appllied Energy.2000,66(4):325~337
    [82]Toshihiko Nakata. Energy-economic models and the environment. Progress in Energy and Combustion Science,2004,30(4):417~475
    [83]Wenying Chen. The costs of mitigating carbon emissions in China: findings from China MARKAL-MACRO modeling. Energy Policy,2005, 33(7):885~896
    [84]Q.G. Lin, G.H. Huang. A dynamic inexact energy systems planning model for supporting greenhouse-gas emission management and sustainable renewable energy development under uncertainty-A case study for the City of Waterloo,Canada Renewable and Sustainable Energy Reviews, 2009,13(8):1836~1853
    [85]Zadeh, L.A Fuzzy sets as a basis for a theory of possibility, Fuzzy Sets and Systems,1978,1(1):3-28
    [86]Heinrich Rommelfanger. Fuzzy linear programming and applications. European Journal of Operational Research,1996,92(3):512~527
    [87]Csaba Meszaros. The augmented system variant of IPMs in two stage stochastic linear programming computation. European Journal of Operational Research,1997,101(2):317~327
    [88]Morten Riis, Kim Allan Andersen. Applying the minimax criterion in stochastic recourse programs. European Journal of Operational Research, 2005,165(3):569~584
    [89]Moncef Abbas a, Fatima Bellahcene. Cutting plane method for multiple objective stochastic integer linear programming. European Journal of Operational Research,2006,168(3):967~984
    [90]Nicole Growe. Estimated Stochastic programs with chance constraints. European Journal of Operational Research,1997,101(2):285~305
    [91]Huang,G.,R.DAN. Moore,. Grey linear programming, its solving approach, and its application. International Journal of Systems Science,1993, 24(1):159~172
    [92]Huang,G.H, Baetz, B.W., Patry,G.G.. Grey integer programming:An application to waste management planning under uncertainty.European Journal of Operational Research,1995,83(2):594~620
    [93]Huang G.H.. IPWM:An Interval Parameter Water Quality Management Model.Engineering Optimization,1996,26(1):79~103
    [94]Huang G.H., Baetz B.W., Patry G. G.. A grey fuzzy linear programming approach for municipal solid waste management planning under uncertainty. Civil Engineering Systems,1993,10(1):123~146
    [95]Huang G.H, Baetz B.W., Patry G.G.. Capacity planning for municipal solid waste management systems under uncertainty-A grey fuzzy dynamic programming (GFDP) approach. Journal of Urban Planning and Development, 1994,120(1):132~156
    [96]Y. F. Huang, B. W. Baetz, G. H. Huang, L. Liu.Violation analysis for solid waste management systems:an interval fuzzy programming approach. Journal of Environmental Management,2002,65(4):431~446
    [97]B. Luo, J.B. Li, G.H. Huang, H.L. Li. A simulation-based interval two-stage stochastic modelfor agricultural nonpoint source pollution control through land retirement. Science of the Total Environment,2006,361(1): 38~56
    [98]Cai Y.P., Huang G.H., Nie X.H., Li Y.P., Tan Q..Municipal solid waste management under uncertainty:a mixed interval parameter fuzzy-stochastic robust programming approach, Environmental Engineering Science,2007, 24(3):338-352
    [99]L.Liu, G.H.Huang, G.A. Fuller, A. Chakma, H.C. Guo. A dynamic optimization approach for non-renewable energy resources management in a regional system under uncertainty, Journal of Petroleum Science and Engineering,2000,26(2):301~310
    [100]Pongsak Krukanont, Tetsuo Tezuka. Implications of capacity expansion under uncertainty and value of information:The near-term energy planning of Japan.Energy,2007,32(10):1809~1824
    [101]G. Heinricha, M. Howellsb, L. Bassona, J. Petrie. Electricity supply industry modelling for multiple objectives under demand growth uncertainty. Energy,2007,32(11):2210~2229
    [102]V. Mazur. Fuzzy thermoeconomic optimization of energy-transforming systems.Applied Energy,2007,84(7-8):749~762
    [103]Y.P. Cai, G.H. Huang, Z.F. Yang, Q.G. Lin, Q. Tana. Community-scale renewable energy systems planning under uncertainty-An interval chance-constrained programming approach. Renewable and Sustainable Energy Reviews,2008,13(4):721-735
    [104]Q.G. Lin, G.H.Huang, B.Bass, X.S.Qin. IFTEM:An interval-fuzzy two-stage stochastic optimization model for regional energy systems planning under uncertainty, Energy Policy,2009,37(3):868~878
    [105]邱大雄.能源规划与系统分析.北京:清华大学出版社,1995.19~50
    [106]沈清基.中国城市能源可持续发展研究:一种城市规划的视角.城市规划学刊,2005,(6):41-46
    [107]何斯征.可持续发展能源指标体系及应用实例.能源工程,2007,(5):16~20
    [108]荆克晶.能源规划环境影响评价指标体系建立的研究:[硕士学位论文].长春:东北师范大学,2004
    [109]张鹤丹,王惺,付峰,白泉,李政.中国城市能源指标体系初探.中国能源,2006,28(5):42~45
    [110]杨振华.北京市能源紧缺热点问题的多维思考.北京联合大学学报(人文社会科学版),2006,4(2):9~14
    [111]马卫华,胡彦霞.北京能源发展研究的战略思考.华北电力大学学报(社会科学版).2007,(1):43~47
    [112]高敏.火电厂环境成本定量分析研究:[硕士学位论文].北京:华北电力大学,2005
    [113]北京市统计局.北京市统计年鉴.北京:中国统计出版社.1996~2008
    [114]李林,郝吉明,胡京南.北京市能源利用对空气质量的影响分析和预测.中国环境科学,2005,25(6):746~750
    [115]北京市环保局.北京市环境状况公报1996-2007年.北京.2004-2008http://www.bjepb.gov.cn/bjhb/tabid/375/Default.aspx
    [116]北京市发改委.实用价格查询.http://www.bjpc.gov.cn/syjg/.
    [117]北京市发展和改革委员会.《北京市“十一五”时期电力发展规划》2006,http://www.bjpc.gov.cn/fzgh/guihua/11_5_zx/11_5_yb/200612/t148053. htm
    [118]王仲颖.中国可再生能源产业发展报告(2007).化学工业出版社,北京,2008
    [119]国家发改委能源研究所.中国天然气发电政策研究.北京,2006-10-26http://www.efchina.org/CSEPCN/FReports.do?act=detail&id=185
    [120]程飞.热电联产项目经济评价研究:[硕士学位论文].哈尔滨:哈尔滨工程大学,2002
    [121]马宪国.燃气联合循环电厂发电成本预测,上海理工大学学报,2003,25(1):24~27
    [122]江天生.天然气发电项目的经济性分析:[硕士学位论文].北京:清华大学,2004
    [123]甘朋利.降低燃油锅炉运行成本的探讨.铁道运输与经济,2002,24(1):40~42
    [124]中国环境规划院.化石燃料电厂发电环保折价政策研究报告.2003,3.
    [125]北京世经未来投资咨询有限公司.2006年中国电力行业风险分析报告.北京,2006
    [126]杜日春.热电厂运行经济性分析研究:[硕士学位论文].大连:大连理工大学,2003
    [127]北京市发展和改革委员会.《北京市“十一五”时期供热发展规划》2007,http://www.bjpc.gov.cn/fzgh/guihua/11_5_zx/11_5_yb/200702/t151793. htm
    [128]刘炬.集中供热企业成本分析与价格定位研究:[硕士学位论文].北京:对外经贸大学,2005
    [129]温瑶,张有峰.北京城镇居民采暖能源分析与评价.价格理论与实践,2006,(11):20~21
    [130]李锐,续元庆,康小鹏.对北京地区电采暖和有关认识问题的分析.技术交流,2004,(4):22~27
    [131]尹富庚.低温地热能梯级利用供暖系统研究:[硕士学位论文].北京:北京工业大学,2003
    [132]孟哲.城市采暖供热方式优化方法研究:[硕士学位论文].天津:天津大学,2004
    [133]北京市发展和改革委员会.《北京市“十一五”时期燃气发展规划》http://www.bjpc.gov.cn/fzgh/guihua/11_5_zx/11_5_yb/200708/t188560.htm
    [134]北京市发展和改革委员会.《北京市“十一五”时期能源发展及节能规划》.2006,http://www.bjpc.gov.cn/fzgh/guihua/11_5_zx/11_5_zd/200612/t14 8050.htm
    [135]Charnes A, Cooper W.W..Chance-constrained programming. Management Science,1959,6(1):73~79
    [136]狄向华,聂祚仁,左铁镛.中国火力发电燃料消耗的生命周期排放清单.中国环境科学,2005,25(5):632~635
    [137]袁宝荣,聂祚仁,狄向华,左铁铺.中国化石能源生产的生命周期清单(Ⅰ)—能源消耗与直接排放.现代化工,2006,(3):59~64
    [138]袁宝荣,聂祚仁,狄向华,左铁镛.中国化石能源生产的生命周期清单(Ⅱ)—能源消耗与直接排放.现代化工,2006,(4):59~64
    [139]邝俊侠,龙涛,黄清凤,简鉴阳.燃料燃烧排放系数的确定和估算方法.环境监测管理与技术,2001,(4):24~26
    [140]傅立新,郝吉明,何东全,贺克斌.北京市机动车污染物排放特征.环境科学,2000,21(3):68~70
    [141]申威,张阿玲.用排放情景分析系统研究北京市机动车污染问题.城市环境与城市生态,2001,14(4):31~34
    [142]杨丽.燃煤电厂环境损害估计及环境工程经济分析:[硕士学位论文].北京:华北电力大学,2003
    [143]杨丽,李晓芸,罗庆华.考虑SO2环境损害的燃煤电厂脱硫经济性评价,电力环境保护,2003,19(1):51~53
    [144]王志轩,潘荔,彭俊.电力行业二氧化硫排放控制现状、费用及对策分析.环境科学研究,2005,18(4):11~20
    [145]武亚军.宣晓伟.环境税经济理论及对中国的应用分析.北京:经济科学出版社,2002
    [146]高洪阁,李白英.动力配煤的新模型及其求解.中国矿业大学学报,2001,30(6):627~629
    [147]侯静,赵益坤.动力配煤的数学模型及优化解.太原理工大学学报,2006,37(4):486~488
    [148]周俊虎,沈彬彬,陈寅彪,等.基于遗传算法的动力配煤方案的Boltzmann优化模型的研究.动力工程,2003,23(4):2598~2602
    [149]周俊虎,平传娟,刘建忠,等.基于遗传算法的动力配煤模型.煤炭学报,2003,28(5):548~551
    [150]桂祥友,马云东.非线性优化理论在动力配煤中的应用.中国矿业,2005,14(6):49~51
    [151]李智,王东.基于改进模拟退火算法的电厂配煤优化.煤炭工程,2004(9):76~79
    [152]廖艳芬,马晓茜.基于模糊神经网络的混沌优化算法在动力配煤中的应用.华南理工大学学报(自然科学版),2006,34(6):117~121
    [153]曾琴琴.火电厂配煤优化方法研究:[硕士学位论文].哈尔滨:哈尔滨工业大学,2006
    [150]阮伟,张伟宁,周俊虎等.电厂优化配煤多目标机会约束数学模型的建立.动力程,2001,21(1):1090~1092
    [154]M. Chakraborty, M.K. Chandra. Multicriteria decision making for optimal blending for beneficiation of coal:a fuzzy programming approach. The international Journal of Management Science,2005,33(5):413~418
    [155]Jhih Shyang Shih, H.Christopher Frey. Coal blending optimization under uncertainty. European Journal of Operational Research,1995,83(2): 452~465
    [156]Chakraborty M, Chandra M K. Multi-criteria decision making for optimal blending for beneficiation of coal:a fuzzy programming approach. The international Journal of Management Science,2005,33(5):413~418.
    [157]B.K. Panigrahi, Salik R. Yadav, Shubham Agrawal. A clonal algorithm to solve economic load dispatch. Electric Power Systems Research,2007,77 (10):1381~1389.
    [158]Edson C. Bortoni, Guilherme S. Bastos, Luiz E. Souza. Optimal load distribution between units in a power plant.ISA Transactions, 2007,46(4):533~539.
    [159]Khaled Zehar, Samir Sayah. Optimal power flow with environmental constraint using a fast successive linear programming algorithm:Application to the algerian power system. Energy Conversion and Management,2008, 49(11):3362~3366.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700