用户名: 密码: 验证码:
基于数据手套的灵巧手抓取操作及阻抗控制的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
灵巧手的研究已经成为当前机器人技术研究的热点之一,是我国正在发展中的智能太空机器人关键技术之一,而灵巧手及其操作对于空间机器人的工作能力具有重要意义。本文结合国家科技部“863”计划的研究项目“新一代五指仿人灵巧手及其协调控制的研究”(课题编号:2006AA04Z255),以HIT/DLR II五指灵巧手为平台,建立人手与灵巧手的运动映射关系,利用改进的E-ANFIS模型进行抓取模型的位姿重建,接着提出一种具有非线性补偿的阻抗控制算法,并分别进行实验验证。
     本文针对人手及HIT/DLR II五指灵巧手的结构特点,分别建立了人手和灵巧手的运动学模型,分析了人手模型和灵巧手模型的结构差异及其造成的映射困难。并利用一种改进的基于指尖位置的运动映射方法,提高了人手和HIT/DLR II五指灵巧手的指尖映射能力。并对映射算法进行了实验验证,结果表明基于数据手套的人手指尖运动能够很好的映射到灵巧手指尖位置,进而保证了灵巧手抓取物体的准确性。
     上述的映射尽管能够保证灵巧手能够拟合人手的运动,但是由于数据手套的传感器误差过大,致使当人手抓取物体时,灵巧手通过上述的映射方法仅能得到物体的“粗位置”。为了保证灵巧手抓取物体的稳定性,利用改进的E-ANFIS模型对抓取物体的形状和位姿进行重构。利用人手抓取物体时指尖映射到灵巧手的指尖笛卡尔坐标值作为混合智能模型的输入,进而快速准确地重构出被抓取物体的数学模型,得到抓握物体的“精位置”实现灵巧手的稳定抓取。
     针对HIT/DLR II五指灵巧手的抓取特点,在基于位置的阻抗控制算法基础上,提出了一种具有手指的重力补偿、摩擦补偿的阻抗控制算法,为了克服灵巧手手指同硬质物体接触而出现的动态不确定因素,采用扩展卡尔曼滤波器来实现动态结构参数的自适应估计。
     最后利用HIT臂/手系统及数据手套为实验系统平台,给出反应数据手套和灵巧手抓握映射能力的抓取实验。基于提出的阻抗控制算法,对手指进行了关节和笛卡尔阻抗控制实验,并对其控制性能进行了分析,最终验证了该控制方法的有效性。
The study of Dexterous hands is one of hotspots in current robots technology research and one of key technologies of intelligent space robots. The operation of dexterous hands is very important for the space robot. Based on national high technology research and development program (863)“Research on new generation five-fingered anthropopathic dexterous robot hand and its cooperative control”(code: 2006AA04Z255 ), With HIT/DLR II dexterous hand for the platform, this dissertation improves the motion mapping based on data glove, improves the E-ANFIS model and using the Model to build the grasped model, and then proposes a flexible impedance control algorithm, finally, achieves the grasping control of the dexterous hands using the control system with data love.
     Based on human hand and HIT/DLR II dexterous hand, this dissertation establishes kinematics models of human hand and the dexterous hand, and analyses structural differences between the models. Then an improved fingertip position-based motion mapping is used to improve the mapping ability between the human hand and the dexterous hand, and experiment is made to prove that mapping algorithm is right or not. The results show that the position of the human hand is mapped to the dexterous hand very well. And it make sure that the veracity of grasping object.
     Although the mapping mentioned can prove that the dexterous hand can move with the human hand, because of the error of the sensors in the data glove, when the human hand is grasping the object, the dexterous hand can only get the rough station information by the mapping method. Considering the grasping task of dexterous hand with unknown objects, the model of grasped object is constructed by hyperelliptic equation. The improved E-ANFIS model can export shape and posture information of the grasped object. So that the veracity of the grasped object is assured. Information of the dexterous hand is used in the model. The newly grasped model is more accurate for the realization of multi-fingered manipulation. When the human hand is grasping the object, the station of the finger-tip is mapped to the dexterous hand, and its coordinate is used as the input of the intelligent model. And then the model of the grasped object is remade, and the exactly information of the object is obtained to prove the steadily grasp.
     Considering HIT/DLR II dexterous hand as the study object, a joint and Cartesian impedance controller with nonlinear compensation is designed. To improve the performance of the impedance controller, system parameter estimations with extended kalman filter and gravity compensation have been investigated on the robot hand.
     Finally, using the experimental platform of dexterous robot hand teleoperation system, Firstly, training data of the intelligent E-ANFIS model is gathered using the data glove, the match training to it is carried on. The capture experiment is made to prove the relationship between data glove and the grasped model. A lot of experiments are made to prove the effectiveness of the the control method. The results prove that the algorithm of the controller is correct.
引文
1 H. Liu, P. Meusel, Seitz, et al. The Modular Multisensory DLR-HIT-Hand. Mechanism and Machine Theory. 2007, (42): 612~625
    2姜力.具有力感知功能的机器人灵巧手手指及控制的研究.哈尔滨工业大学博士论文. 2001
    3和平.基于物体阻抗的机器人灵巧手控制.哈尔滨工业大学博士论文. 2004
    4 R. Tomovic, G. M. Boni. An Adaptive Artificial Hand. IRE Transactions on Automatic Control. 1962, 7(3): 3-10
    5 T. Okada. Computer control of multijointed finger system for precise object-handing. IEEE Transactions on Systems, Man and Cybernetics. 1982, 12(3): 289-299
    6 M. T. Mason, J. K. Salisbury. Robot Hands and the Mechanics of Manipulation. MIT Press, Cambridge, USA, 1985: 3~93
    7 S. C. Jacobsen, J. E. Wood, D. F. Knutti, and K. B. Biggers. The UTAH/MIT Dexterous Hand: Work in Progress. The International Journal of Robotics Research. 1984, 3(4): 21~50
    8 C. S. Lovchik, M. A. Difler. The Robonaut Hand: A Dextrous Robotic Hand for Space. Proceedings of the IEEE International Conference on Robotics and Automation. Detroit, Michigan. 1999: 907~912
    9 Y. Nakano, M. Fujie, Y. Hosada. Hitachi’s Robot Hand. Robotics Age. Vol.6, No.7, Jul.1984: 18-20
    10 H. Kawasaki, T. Mouri, S. Ito. Toward Next Stage of Kinetic Humanoid Hand. CD-ROM of World Automation Congress 10th Int. Symposium on Robotics with Applications, 2004
    11 T. Mouri, H. Kawasaki, K. Yoshikawa, J. Takai, S. Ito. Anthropomorphic Robot Hand: Gifu Hand III. ICCAS, 2002, 10: 1288~1293
    12 A. Caffaz, G. Cannata. The Design and Development of the DIST-Hand Dextrous Gripper. Proceedings of the IEEE International Conference on Robotics and Automation. Leuven, Belgium. 1998: 2075-2080
    13 C. Melchiorri, G. Vassura. Implementation of Whole-Hand Manipulation Capability in the UB Hand System Design. Advanced Robotics. 1995,9(5):547-560
    14 Shadow Robot Company. Developments in Dextrous Hands for Advanced Applications. Proceedings of the IEEE World Automation Congress. 2004:123~128
    15 G. Hirzinger, M. Fischer, B. Brunner, et. al. Advances in Robotics: The DLR Experience. The International Journal of Robotics Research.1999, 18(1): 1064~1087
    16 H. Liu, J. Butterfass, S. Knoch, P. Meusel, G. Hirzinger. A New Control Strategy for DLR’s Multisensory Articulated Hand. IEEE Control Systems. 1999, 19(2): 47~54
    17刘宏, G. Hirzinger.智能机器人灵巧手的研究—DLR Dextrous Robot Hand I and II.西安交通大学学报. 2003, 37(4): 331~337
    18 J. Butterfass, G. Hirzinger, S. Knoch, H. Liu. DLR’s Multisensory Articulated Hand, Part I: Hard-and Software Architecture. Proceedings of the IEEE International Conference on Robotics and Automation. Leuven, Belgium. 1998: 2081~2086
    19 S. Haidacher, J. Butterfass, M. Fischer, et al. DLR Hand II: Hard- and Software Architecture for Information Processing, Proceedings of the 2003 International Conference on Robotics and Automation. 2003:684~689
    20 J. Butterfass, M. Grebenstein, H. Liu and G. Hirzinger. DLR-Hand II: Next Generation of a Dextrous Robot Hand. Proceedings of the 2001 IEEE International Conference on Robotics and Automation. 2001, Seoul: 21-26
    21王国庆,李大寨,钱锡康.新型三指灵巧机械手的研究.机械工程学报. 1997, 33(3): 71-75
    22 Y. Zhang, Z. Han, H. Zhang, X. Shang, T. Wang, W. Guo. Design and Control of The BUAA Four-fingered Hand. Proceedings of the 2001 IEEE international Conference on Robotics & Automation. 2001, Seoul: 2517~2522
    23谢宗武. HIT-1机器人灵巧手柔顺控制的研究.哈尔滨工业大学博士论文. 2003
    24 X. H. Gao, M. H. Jin, L. Jiang, L. Yang. The HIT/DLR Dexterous Hand: Work in Progress. Proceeding of the 2003 IEEE International Conference on Robotics & Automation. 2003, Taipei: 3164~3168
    25 H. Liu, P. Meusel, N. Seitz. The modular multisensory DLR-HIT-Hand. ELSEVIER of Mechanism and Machine Theory. 2006, (4): 1~15
    26刘伊威,刘宏,姜力,金明河,魏然.基于机电一体化的机器人灵巧手手指的研制.哈尔滨工业大学学报. 2005, (8): 1022~102
    27吴玉光,钱晋武.多指灵巧手抓取规划方法综述.中国机械工程. 2004, 15(3): 277~281
    28 A. Morales, T. Asfour, P. Azad. Integrated Grasp Planning and Visual Object Localization for a Humanoid Robot with Five-fingered Hands. IEEE International Conference on Intelligent Robots and Systems. 2006: 5663~5669
    29 P. Thanathorn, P. Peam, N. Nattee, et al. Regrasp Planning of Four-fingered Hand for Parallel Grasp of a Polygonal Object. International Conference on Robotics and Automation. 2005: 779~784
    30 C. Jordi, S. Raul. Dual programming based approach for optimal grasping force distribution. ELSEVIER of Mechatronics. 2008, 18:348~358
    31 C. Jordi, S. Raul. Fast and Flexible Determination of Force-closure Independent Regions to Grasp Polygonal Objects. IEEE International Conference on Robotics and Automation. 2005: 766~771
    32 B. Bounab, D. Sidobre, A. Zaatri. Central axis approach for computing n-finger force-closure grasps. IEEE International Conference on Robotics and Automation. 2008, Pasadena: 1169~1174
    33 C. Jordi, S. Raul. On Computing Form-closure Grasps/Fixtures for Non-polygonal Objects. IEEE International Symposium on Assembly and Task Planning. 2005: 138~143
    34 M. Antonio, A. Tamim, A. Pedram, et al. Integrated Grasp Planning and Visual Object Localization for a Humanoid Robot with Five-fingered Hands. Proceedings of IEEE International Conference on Intelligent Robots and Systems. 2006: 5663~5668
    35李家炜,刘宏,蔡鹤皋.多指机器人手协调控制研究进展.机器人. 2000, 22(4): 623~626
    36 R. M. Marry. Control Primitive for Robot Systems. IEEE Trans. On Sys. Man. Cyb. 1992, 22(1):183~193
    37白井良明,王棣棠.机器人工程.科学出版社, 2001: 43~51
    38杨汝清等.智能控制工程.上海交通大学出版社, 2001: 181~201
    39 D. Srudilovic, Z. Cojbasic. Robust Robot Compliant Motion Control Using Intelligent Adaptive Impedance Approach. Proceedings of the IEEE International Conference on Robotics and Automation. Detroit, Michigan. 1999:2128-213
    40 T. A. Lasky, T. C. Hsia. On Force-tracking Impedance Control of Robot Manipulators. Proc. IEEE Int. Conf Robot and Automat. Sacramento, California-April, 1991:274~280.
    41 J. K. Salisbury. Active Stiffness Control of a Manipulator in Cartesian Coordinates. Proc 19th IEEE Conf Decision Contr. 1980: 95~100
    42 S. P. Chan, B. Yao, et al. Robust Impedance Control of Robot Manipulators. Int. J Robotice Automation. 1991, 6(4): 220~227.
    43 H. Seraji, R. Colbaugh. Force Tracking in Impedance Control. The International Journal of Robotics Research. 1997, 16(1):97~117
    44 J. Fax, R. M. Murray. Information Flow and Cooperative Control of Vehicle Formations. IEEE Transactions on Automatic Control. 2004, 49(9): 1465~1476
    45 R. Sepulchre, D. Paley, Leonard, et al. Stabilization of Planar Collective Motion with Limited Communication. IEEE Transactions on Automatic Control. 2008, 53(3):706~719.
    46 J. Fax, M. R. Murray. Information Flow and Cooperative Control of Vehicle Formations. IEEE Transactions on Automatic Control. 2004, 49(9):1465~1476.
    47 L. Scardovi, A. Sarlette, R. Sepulchre. Synchronization and Balancing on The N-Torus. Systems and Control Letters. 2007. 56(5):335~341
    48和平.基于物体阻抗的机器人灵巧手控制.哈尔滨工业大学工学博士论文. 2004, 9:13~14
    49 Yu Zheng, Wenhan Qian. Dynamic Force Distribution in Multifingered Grasping by Decomposition and Positive Combination. IEEE Transactions on Robotics. 2005, 21(4):718~726
    50 J. Aleotti, S. Caselli. Grasp Recognition in Virtual Reality for Robot Pregrasp Planning by Demonstration. Proceedings of the 2006 IEEE International Conference on Robotics and Automation. Orlando, Florida,2006:2801~2806
    51 Byoung-Ho Kim, Nak Young Chong, Sang-Rok Oh, et. al. Intelligent Compliance Control for Robot Manipulators Using Adaptive Stiffness Characteristics. Proceedings of the IEEE International Conference on Robotics and Automation. Detroit, Michigan. 1999:2134-2139
    52 Omar M. Al-Jarrah, Yuan F. Zheng. Intelligent Compliant Motion Control. IEEE Trans. on Systems, Man and Cybernetics-Part B: Cyberneics. 1998,28(1):116-122
    53 Jau B. Dextrous telemanipulation with four fingered hand system[A]. IEEE Int. Conf. on Robotics and Automation Society, 1995(1): 338-343
    54张玉茹,李继婷,李剑锋.机器人灵巧手—建模、规划与仿真.机械工业出版社. 2007:110-111
    55 M. Fischer. Learning techniques in a dataglove based telemanipulation system for the DLR hand[C]. IEEE Int Conf Robotics and Automation[C]. Leuven, Belgium: IEEE Press, 1998.2:1603-1608
    56 M. Santello, M. Flanders, J. F. Soechting. Postural synergies for tool use. Journal of Neuroscience, 1998, 18, 10105-10115.
    57 P. Rosin.“Fitting superellipses”. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2000, 2(22): 726-732.
    58 J. P. Gazeau, S. Zeghlous, A. Fernandez. Object manipulation task with a dexterous mechanical hand including regrasp. WSWAS Transactions on Systems. 2007, 6(4)
    59樊绍巍.类人型五指灵巧手的设计及抓取规划的研究.哈尔滨工业大学博士论文. 2009, 70-76
    60张智星,孙春在,水谷英二,张平安,高春华等译.神经-模糊和软计算[M].北京:科学出版社, 2001
    61程伟良.广义专家系统.北京理工大学出版社. 2005: 14~28
    62刘业超.柔性关节机械臂控制策略的研究.哈尔滨工业大学工学博士论文. 2009, 15-17
    63 P.Tomei. A Simple PD Controller for Robots with Elastic Joints[J]. IEEE Transactions on Automatic Control, 1991, 36(10):1208~1213
    64 F.Ghorbel, J.Y.Hung, M.W.Spong. Adaptive Control of Flexible-joint Manipulators[J]. IEEE Control Systems Magazine. 1989, 4(3): 9~13.
    65 P. Tomei,“A simple PD controller for robots with elastic joints,”IEEE Transactions on Automatic Control, vol. 36, no. 10, pp. 1208–1213, 1991.
    66 C. Ott, A. Albu-Schaeffer, A. Kugi, S. Stramigioli, and G. Hirzinger,“A passivity based Cartesian impedance controller for flexible joint robots–Part I: torque feedback and gravity compensation,”in IEEE International Conference on Robotics and Automation. Citeseer, 2004, pp. 2659–65
    67 M. Vidyasagar. Nonlinear systems analysis. Society for Industrial Mathematics, 2002.
    68 A. Gelb. Applied optimal estimation. MIT press, 2002.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700