用户名: 密码: 验证码:
空间交会的仅测角相对导航与自主控制方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
自主交会对接技术是进行在轨维修、空间组装、燃料补给、空间碎片清理和深空探测等任务的支撑技术。本文对基于光学相机的自主交会相对导航、闭环控制协方差分析、多目标最优交会轨迹设计和近距离交会制导与控制等技术进行了研究。论文的主要研究成果如下:
     建立了仅测角相对导航及其可观测度模型,提出了应用潜在距离信息和主动机动提高仅测角相对导航可观测度的方法。1)根据航天器相对轨道动力学方程,建立了以光学相机为唯一相对测量设备的仅测角相对导航模型;2)采用牛顿迭代方法,推导了相对导航的可观测度模型,实现了对相对导航系统可观测性能的定量分析;3)研究了追踪器在轨道机动时的潜在距离信息及其误差模型,并应用该信息提高仅测角相对导航的可观测度;4)以可观测度为优化指标,对提高仅测角相对导航可观测性能的主动机动策略进行了设计。
     分析了基于仅测角相对导航的自主交会闭环控制的偏差演化规律。1)基于脉冲轨道机动假设,在仅测角相对导航条件下,建立了自主交会闭环控制的偏差预测、测量更新和控制修正等过程的线性偏差递推模型,获得了相对导航及相对状态控制的协方差表达式;2)根据线性协方差分析方法,对自主交会闭环控制过程的相对导航和相对状态控制的协方差特性进行了分析,并采用Monte Carlo方法验证了结果的正确性。
     以燃料消耗、相对位置鲁棒性和相对速度鲁棒性为优化指标,提出了基于闭环控制的自主交会多目标最优轨迹设计方法。1)采用线性协方差分析方法,对仅测角条件下的自主交会闭环控制偏差进行了分析,并在此基础上构建了燃料消耗、相对位置鲁棒性和相对速度鲁棒性等优化指标;2)分别采用NSGA-II和物理规划方法,对考虑上述优化指标的多目标最优交会轨迹进行了设计,并采用Monte Carlo方法对优化结果的有效性进行了验证。
     提出了近距离交会接近、绕飞和逼近段制导与控制的新方法。1)建立了视线制导控制模型,并采用该制导模型对考虑导航和控制误差情况下的接近段轨道进行了控制;2)推导了轨道面内和水平面内快速绕飞控制的速度增量计算模型,研究了快速绕飞的模糊控制;3)设计了用于逼近轨道控制的模糊控制器、PID控制器和模糊/PID混合控制器,并对三种控制器的控制稳定性和燃料消耗进行了对比分析;4)建立了适用于任意偏心率的相对运动轨道和姿态动力学模型,对追踪器逼近旋转目标的参考轨迹和参考姿态进行了分析和设计,推导了用于六自由度逼近控制的自适应滑模控制器,通过仿真验证了参考轨迹和参考姿态设计的合理性和自适应滑模控制器的稳定性。
     论文深入探讨了基于光学相机的自主交会相对导航与控制问题,发展了仅测角相对导航、闭环控制协方差分析、多目标最优交会轨迹设计和近距离交会制导与控制等技术,获得了一些关于自主交会导航和控制问题研究的新方法和有用结论,研究成果对自主交会任务设计具有较好的参考价值。
The autonomous rendezvous and docking technology is crucial for on-orbit service, space-assembly, propellant supply, space debris clearance, and deep-spaced exploration. Based on measurements of optical camera, the methods of relative navigation, closed-loop covariance analysis, optimal multi-objective rendezvous trajectory design, and guidance and control of close range rendezvous are researched. The main results achieved in this dissertation are summarized as follows.
     The angles-only relative navigation and its degree of observability (DOO) models are formulated, and the latent range information and the active maneuvering strategy are employed to enhance the DOO of angles-only relative navigation. 1) According to relative dynamics equations, angles-only relative navigation model is formulated under the condition that optical camera is the only available sensor for relative measurement. 2) DOO model of angles-only relative navigation is obtained based on the Newton iterative method, and then the observability of navigation is quantificational. 3) The latent range information of orbital maneuver is analyzed, and is employed to enhance the DOO of angles-only relative navigation. 4) According to the performance index of DOO, the optimal maneuvering strategy is designed for chaser to enhance the observability of angles-only relative navigation.
     The covariance of autonomous rendezvous under closed-loop control is analyzed on basis of angles-only relative navigation. 1) Based on the assumptions of impulsive control and angles-only relative navigation, error dispersion equations during the process of propagation, update and correction are derived, and the closed-loop control covariance of relative navigation and relative trajectory control are obtained. 2) According to the linear covariance analysis method, the closed-loop control covariance of angles-only relative navigation and trajectory control are calculated, and the effectiveness of the covariance result is validated by Monte Carlo simulations.
     According to the performance indexes of propellant consumption, relative position robustness and relative velocity robustness, the method of optimal multi-objective trajectory design based on closed-loop control is proposed. 1) According to linear covariance analysis method, the closed-loop control covariance of autonomous rendezvous with angles-only relative navigation is analyzed, and expressions of propellant consumption, relative position robustness and relative velocity robustness are formulated. 2) Considering these performance indexes, the multi-objective optimization algorithms of NSGA-II and Physical Programming are employed to solve the optimal multi-objective rendezvous problem respectively, and the effectiveness of the optimization results are testified by Monte Carlo simulations.
     New guidance and control algorithms are developed for closing, flyaround and approach during the close range rendezvous. 1) Line-of-sight guidance law is formulated, which is proposed for the closing trajectory control perturbed by measurement and control noise. 2) The propellant consumptions of the in-plane and horizontal fast flyaround are analyzed, and the fuzzy controller is proposed for the flyaround trajectory control. 3) Fuzzy, PID and Fuzzy/PID hybrid controllers are designed for final approach trajectory control respectively, and their robustness and propellant consumptions are analyzed and compared. 4) The relative position and attitude dynamics equations are formulated, which are suitable for spacecraft with arbitrary eccentricity. The reference trajectory and attitude for the chase approaching the uncontrolled rotating target are designed, and adaptive sliding mode controller is proposed for the six degree of freedom position and attitude control. The simulation results show that the reference trajectory and attitude are reasonable and the adaptive sliding mode controller is robust.
     The relative navigation and control based on optical camera for autonomous rendezvous are researched in this dissertation, and the technologies such as the angles-only relative navigation, the close-looped covariance analysis, the optimal multi-objective rendezvous trajectory design, and the guidance and control of close range rendezvous are developed. Some new approaches and significant conclusions of the relative navigation and control are obtained, which are useful for autonomous rendezvous mission design.
引文
[1]林来兴.空间交会对接技术[M].北京:国防工业出版社,1995.39.
    [2]唐国金,罗亚中,张进.空间交会对接任务规划[M].北京:科学出版社,2008.
    [3] Chamberlin J. A., Rose J. T. Gemini Rendezvous Program [J]. Journal of Spacecraft and Rockets, 1964, 1(1): 13-18.
    [4] Burton J., Hayes W. Gemini Rendezvous [J]. Journal of Spacecraft and Rockets, 1966, 3(1):145-147.
    [5] Lunney G. S. Summary of Gemini Rendezvous Experience [C]. AIAA Paper 67-272, 1967.
    [6] Parten R. P., Mayer J. P. Development of the Gemini Operational Rendezvous Plan [J]. Journal of Spacecraft and Rockets, 1968, 5(9): 1023-1028.
    [7]吴宏鑫,胡海霞,解永春,王颖.自主交会对接若干问题[J].宇航学报,2003,24(2):132-137.
    [8] Fehse W. Automated Rendezvous and Docking of Spacecraft [M]. Cambridge university press, 2003.
    [9] Woffinden D. C., Geller D. K. Navigating the Road to Autonomous Orbital Rendezvous [J]. Journal of Spacecraft and Rockets, 2007,44(4):898-909.
    [10]张淑琴.空间交会对接测量技术及工程应用[M].北京:中国宇航出版社,2005.
    [11] Young K. A., Alexander J. D. Apollo Lunar Rendezvous [J]. Journal of Spacecraft and Rockets, 1970, 7(9): 1083-1086.
    [12] Hoag D. G. The History of Apollo Onboard Guidance, Navigation, and Control [J]. Journal of Guidance, Control, and Dynamics, 1983, 6(1): 4-13.
    [13] Miller J. E., Laats A. Apollo Guidance and Control System Flight Experience [J]. Journal of Spacecraft and Rockets, 1970,7(5): 551-557.
    [14] Goodman J. L. History of Space Shuttle Rendezvous and Proximity Operations [J]. Journal of Spacecraft and Rockets, 2006, 43(5): 944-959.
    [15] Zimpfer D., Kachmar P., Tuohy S. Autonomous Rendezvous, Capture and In-Space Assembly: Past, Present and Future [C]. 2005, AIAA 2005-2523.
    [16] Boynton J. H., Kleinknecht K. S. Systems Design Experience from Three Manned Space Programs [J] Journal of Spacecraft and Rockets, 1970,7(7): 770-784.
    [17] Polites M. E. Technology of Automated Rendezvous and Capture in Space [J]. Journal of Spacecraft and Rockets, 1999, 36(2): 280-291.
    [18] Kawano I., Mokuno M., Kasai T., Suzuki T. Result of Autonomous Rendezvous Docking Experiment of Engineering Test Satellite-VII [J]. Journal of Spacecraft and Rockets, 2001, 38(1): 105-111.
    [19] Kawano I., Mokuno M., Horiguchi H., Kibe K. In-orbit Demonstration of an Unmanned Automatic Rendezvous and Docking System by the Japanese Engineering Test Satellite ETS-VII [C]. AIAA-94-3648-CP.
    [20]林平.日本工程试验卫星7的自动交会对接试验[J].中国航天,1997,(1): 29-32.
    [21] David A., Barnhart, Roger C., Hunter, Alan R., Weston, Vincent J., Chioma. XSS-10 Micro-Satellite Demonstration.American Institute of Aeronautics and Astronautics[R], USA, 1998, 339-346.
    [22]闻新,王秀丽,刘宝忠.美国试验小卫星XSS-10系统[J].中国航天,2006,(6):36-38.
    [23] Mitchell I. T., Gorton T. B., Taskov K., Drews M. E., Luckey R. D., Osborne M. L., Page L. A., Norris H. L., Shepperd S. W. GN&C Development of the XSS-11 Micro-Satellite for Autonomous Rendezvous and Proximity Operations [C]. 2006, AAS Paper 06-014.
    [24]闻新,王秀丽,刘宝忠.美国试验小卫星XSS-11系统[J].中国航天,2006,(7):22-25.
    [25] Demonstration of Autonomous Rendzevous Technology[R]. National Aeronautics and Space Administration, 2005.
    [26]徐菁.空间交会对接将迈向自主化[J].太空探索,2005,(8):32-33.
    [27] Weismuller T., Leinz M. GN&C Demonstrated by the Orbital Express Autonomous Rendezvous and Capture Sensor System [C].The 29th Annual AAS Guidance and Control Conference, AAS 06-016.
    [28] Joseph W. E., Tom A. M. Autonomous Rendezvous Guidance and Navigation for Orbital Express and Beyond [C]. 16th AAS/AIAA Space Flight Mechanics Conference, AAS 06-194.
    [29]林来兴.美国“轨道快车”计划中的空间自主交会技术[J].国际太空,2005,(2):23-27.
    [30]陈茂良,徐捷.“轨道快车”计划及其启示.国际太空[J]. 2002,(10): 1-2.
    [31]陈伟玉,李立杰.自动运输飞行器与国际空间站交会[J].飞行器测控学报,2003,22(1):91-94
    [32] Matsunoto T. Development of the Proximity Communication System (PROX) on ISS for H-II Transfer Vehicle (HTV) Rendezvous and Proximity Operation [C]. 21st International Communications Satellite Systems Conference and Exhibit, Yokohama, Japan, 2003.
    [33] Miotto P., Zimpfer D., Mamich H. Autonomous Mission Manager and GN&C Design for the Hubble Robotic Vehicle De-Orbit Module [C]. 2006, AAS Paper 06-017.
    [34] Tarabini L., Gil J., Gandia F. Ground guided CX-OLEV rendezevous with uncooperative geostationary satellite [J]. Acta Astronautica, 2007,61:312-325.
    [35]崔乃刚,王平,郭继峰,程兴.空间在轨服务技术发展综述[J].宇航学报,2007,28(4): 805-811.
    [36]陈小前,袁建平,姚雯,赵勇.航天器在轨服务技术[M].北京:中国宇航出版社,2009.
    [37]陈磊,韩蕾,白显宗,周伯昭.空间目标轨道动力学与误差分析[M].北京:国防工业出版社,2010.
    [38] Wodffinden D. C. Geller D K. Relative Angles-Only Navigation and Pose Estimation for Autonomous Orbital Rendezvous [J]. Journal of Guidance, Control, and Dynamics,2007,30(5):1455-1469.
    [39] Wodffinden D. C. Angles-only navigation for autonomous orbital rendezvous [D]. ph.D. Thesis, Utah State Univ., Logan UT, Sept. 2008.
    [40] Hablani H. B., Tapper M. L., Bashian D. D. Guidance Algorithms for Autonomous Rendezvous of Spacecraft with a Target Vehicle in Circular Orbit [J].Journal of Guidance,Control,and Dynamics,2002,25(3):553-562.
    [41] Hablani H. B. Autonomous Relative Navigation, Attitude Determination, Pointing and Tracking for Spacecraft Rendezvous [C]. AIAA Guidance, Navigation, and Control Conference and Exhibit, AIAA 2003-5355.
    [42]何英姿,谌颖,韩冬.基于交会雷达测量的相对导航滤波器[J].航天控制,2004,22(6):17-20.
    [43]刘涛,解永春.非合作目标交会相对导航方法研究[J].航天控制,2006,24(2):48-53.
    [44]赵长山,秦永元,王献忠,游金川.基于间接测量的卫星相对导航[J].宇航学报,2008,29(3): 864-867.
    [45] Clohessy W H, Wiltshire R S. Terminal Guidance System for Satellite Rendezvous [J], Journal of Aerospace Science, 1960, 27(9): 653-658.
    [46]刘勇,徐世杰.基于两步多模型估计的非合作航天器相对导航[J].宇航学报,2008,29(2): 576-580.
    [47] Chari R. J. V. Autonomous Orbital Rendezvous Using Angles-only Navigation [J]. Master Thesis, MIT, 2001.
    [48] Wodffinden D. C., Geller D. K. Observability criteria for angles-only navigation [C]. AAS/AIAA Astrodynamics Specialist Conference and Exhibit, Mackinac Island, MI, Aug 19-23, 2007, 07-402.
    [49] Wodffinden D. C., Geller D. K. Optimal Orbital Rendezvous Maneuvering for Angles-Only Navigation [C]. Journal of Guidance, Control, and Dynamics, 2009,32(4):1382-1387.
    [50] Nardone S. C., Aidala V. J. Observability criteria for bearings-only tracking [C]. IEEE Transactions on Aerospace and Electronic Systems, 1981,17(2):162-166.
    [51] Nardone S. C., Graham M. L. A Closed-Form Solution to Bearings-only Target Motion Analysis [C]. IEEE Journal of Oceanic Engineering, 1997,22(1):168-178.
    [52] Passerieux J. M., Cappel D. V. Optimal Observer Maneuver for Bearings-only Tracking [C]. IEEE Transactions on Aerospace and Electronic Systems, 1998,34(3):777-788.
    [53] Oshman Y., Davidson P. Optimization of observer trajectories for bearings-only target localization [C]. IEEE Transactions on Aerospace and Electronic Systems, 1999,35(3):892-902.
    [54]程向红,万德钧,仲巡.捷联惯导系统的可观测性和可观测度研究[J].东南大学学报,1997,27(6): 6-11.
    [55]房建成,周锐,祝世平.捷联惯导系统动基座对准的可观测性分析[J].北京航空航天大学学报,1999,25(6): 714-719.
    [56]帅平,陈定昌,江涌. GPS/SINS组合导航系统状态的可观测度分析方法[J].宇航学报,2004,25(2): 219-224.
    [57]马艳红,胡军.基于SVD理论的可观测度分析方法的几个反例[J].中国惯性技术学报,2008,16(4): 448-452.
    [58]李建文,张宗麟.基于伪距的北斗双星/SINS组合导航系统可观测度分析[J].中国惯性技术学报,2008,16(1): 73-77.
    [59]刘百奇,房建成.一种基于可观测度分析的SINS/GPS自适应反馈校正滤波新方法[J].航空学报,2008,29(2):430-436.
    [60]刘准,陈哲.条件数在系统可观测性分析中的应用研究[J].系统仿真学报,2004,16(7): 1552-1555.
    [61]孙仲康,周一宇,何黎星.单/多基地有源无源定位技术.北京:国防工业出版社,1996.
    [62]李强.单星对卫星目标的被动定轨与跟踪关键技术研究[D].国防科学技术大学博士学位论文,2007.
    [63] Suzaki M., Shoda K., Ikeuchi M. Analysis and Planning for Precise Orbital Maneuvers [C]. 43rd IAC, Washington, DC, 1992. IAF Paper 92-0044.
    [64] Merel M. H., Mullin F. J. Analytic Monte Carlo Error Analysis [J]. Journal of Spacecraft and Rockets, 1968, 5(11):1304–1308.
    [65] Rao P. P., Belt S. C. Conditional Performance Error Covariance Analysis for Commercial Titan Launch Vehicles [J]. Journal of Guidance, Control, and Dynamics, 1991, 14(2): 398–404.
    [66] Purcell E. W., Barbery T. B. Dispersions Resulting from Atmospheric Variations[J]. Journal of Guidance, Control, and Dynamics, 1968, 5(8): 1005–1007.
    [67] LaFarge R. A., Baty R. S. Functional Dependence of Trajectory Dispersions on Initial Condition Errors [J]. Journal of Spacecraft and Rockets, 1994, 31(7):806–813.
    [68] Zarchan P. Complete Statistical Analysis of Non-Linear Missile Guidance Systems-SLAM [J]. Journal of Guidance, Control, and Dynamics, 1979, 2(1):71–78.
    [69] Boone J. N. Generalized Covariance Analysis for Partially Autonomous Deep Space Missions [J]. Journal of Guidance, Control, and Dynamics, 1991, 14(5):964–972.
    [70] Mook D. J., Junkins J. J. Minimum Model Error Estimation for Poorly Modeled Dynamic Systems [J]. Journal of Guidance, Control, and Dynamics, 1988, 11(3):256–261.
    [71] Porcelli G., Vogel E. Two-Impulse Transfer Error Analysis via Covariance Matrix [J]. Journal of Spacecraft and Rockets, 1980, 17(3):248–255.
    [72] Greene A. H., Jaros W. F. Comparison of Error Transfer Matrices for Circular Orbits [J]. AIAA Journal, 1963, 1(11):2623-2625.
    [73] Shepperd S. W. Constant Covariance in Local Verical Coordinates for Near-Circular Orbits [J]. Journal of Guidance, Control and Dynamics, 1990, 14(6):1318-1322.
    [74] Mackison D. L., Morgenthaler G. W. Autonomous Rendezvous and Proximity Motion of Satellites: A Covariance Analysis [C]. AIAA Guidance, Navigaion and Control Conference, Hilton Head Island, SC, 1992, AIAA 92-4546.
    [75] Tempelman W. Properities of Conic State Transiiton Matrices and Associated Time Partials [J]. Journal of Guidance Control, and Dynamics. 1984, 7(2):135-140.
    [76] Gossner J. R., Battin R. H., Kachmar P. M., Shepperd S. W. An Anlytic Method of Propagating A Covariance Matrix To a Maneuver Condtion for Linear Covariance Analysis During Rendezvous [C]. AAS Paper 92-198.
    [77] Iida H., Bishop R. H. Analysis of the Targeting Error Induced by Hill's Guidance [C]. 1993, AIAA 93-3860.
    [78]周荻,慕春棣.交会对接中的Hill制导偏差[J].中国空间科学技术, 1999, 19(4):1-7.
    [79] Junkins J. L., Akella M. R. Alfriend K T, Non-Gaussian Error Propagation in Orbital Mechanics [J]. The Journal of the Astronautical Sciences, 1996, 44(4):541-562.
    [80]张丽艳,戚发轫,李颐黎.交会对接远距离导引精度分析[J].北京航空航天大学学报, 2006, 32(6): 667-670.
    [81] Geller D. K. Linear Covariance Techniques for Orbital Rendezvous Analysis and Autonomous Onboard Mission Planning [J]. Journal of Guidance, Control, and Dynamics, 2006, 29(6):1404-1414.
    [82] Geller D. K. Orbital Rendezvous: When is Autonomy Required? [J]. Journal of Guidance, Control, and Dynamics, 2007, 30(4):974-981.
    [83] Geller D. K., Rose M. B., Wodffinded D. C. Event Triggers in Linear Covariance Analysis with Applications to Orbital Rendezvous [J]. Journal of Guidance, Control, and Dynamics, 2009, 32(1):102-111.
    [84] Geller D. K., Christensen D. P. Linear Covariance Analysis for Powered Lunar Descent and Landing [J]. Journal of Spacecraft and Rockets, 2009, 46(6): 1231-1248.
    [85] Carter T. E. Fuel-Optimal Maneuvers of a Spacecraft Relative to a Point Circular Orbit [J]. Journal of Guidance, Control, and Dynamics, 1984, 7 (6):710-716.
    [86] Carter T. E. Humi M. Fuel-Optimal Rendezvous near a Point in General Keplerian Orbit [J]. Journal of Guidance, Control, and Dynamics, 1987, 10 (6): 567-573.
    [87] Carter T. E. Effects of Propellant Mass Loss on Fuel-Optimal Rendezvous near Keplerian Orbit [J]. Journal of Guidance, Control, and Dynamics, 1989, 12 (1): 19-26.
    [88] Carter T. E. New Form for the Optimal Rendezvous Equations Near A Keplerian Orbit [J]. Journal of Guidance, Control, and Dynamics, 1990, 13 (1):188-191.
    [89] Carter T. E., Brient J. Fuel-optimal Rendezvous for Linearized Equations of Motion [J]. Journal of Guidance, Control, and Dynamics, 1992, 15(6):1411-1416.
    [90] Humi M. Fuel-Optimal Rendezvous in a General Central Force Field [J]. Journal of Guidance, Control, and Dynamics, 1993, 16 (1): 215-217.
    [91] Lembeck C. A. Prussing J E. Optimal Impulsive Intercept with Low-thrust Rendezvous Return [J]. Journal of Guidance, Control, and Dynamics, 1993, 16(3):426-433.
    [92] Pardis C. J., Carter T. E. Optimal Power-limited Rendezvous with Thrust Saturation [J]. Journal of Guidance, Control, and Dynamics, 1995, 18(5): 1145-1150.
    [93] Carter T. E., Pardis C. J. Optimal Power-limited Rendezvous with Upper and Lower Bounds on Thrust [J]. Journal of Guidance, Control, and Dynamics, 1996, 19(5): 1124–1133.
    [94]谌颖,陈祖贵,刘良栋.常推力作用下飞行器固定时间最优交会[J].中国空间科学技术,1998,18(4): 1-7.
    [95] Guelman M., Aleshin M. Optimal Bounded Low-Thrust Rendezvous with Fixed Terminal-approach Direction [J]. Journal of Guidance Control, and Dynamics, 2001, 24(2): 378-385.
    [96]王华,唐国金.用非线性规划求解有限推力最优交会[J].国防科技大学学报, 2003, 25(5):9-13.
    [97] Jezewski D. J., Donaldson J. D. An Analytic Approach to Optimal Rendezvous Using Clohessy-Wiltshire Equations [J]. The Journal of the Astronautical Sciences, 1979, 27(3):293-310.
    [98] Jezewski D. J. Primer Vector Theory Applied to the Linear Relative-Motion Equations [J]. Optimal Control Applications and Methods, 1980, 1:387-401.
    [99]陈新海,陈文胜.航天器四冲量固定时间最优交会[J].宇航学报, 1994, 15(4):71-79.
    [100] Prussing J. E. Optimal Impulsive Linear Systems: Sufficient Conditions and Maximum Number of Impulses [J]. The Journal of the Astronautical Sciences, 1995, 43(2):195-206.
    [101] Carter T. E. State Transition Matrices for Terminal Rendezvous Studies: Brief Survey and New Example [J]. Journal of Guidance Control, and Dynamics, 1998, 21(1):148-155.
    [102]荆武兴,耿云海,杨旭,吴瑶华.空间交会的最优轨道机动[J].中国空间科学技术,1998,18(2):22-27.
    [103]向开恒,肖业伦.空间交会中脉冲变轨燃料消耗研究[J].中国空间科学技术,1999,19(3):9-15.
    [104] Carter T. E., Alvaez S. A. Quadratic-Based Computation of Four-Impulse Optimal Rendezvous near Circular Orbit [J]. Journal of Guidance Control, and Dynamics, 2000, 23(1):109-117.
    [105]齐映红,曹喜滨.三脉冲最优交会问题的解法[J].吉林工业大学学报, 2006, 36(4):608-612.
    [106]谌颖,王旭东.多冲量最优交会[J].航天控制,1992,10(1):25-32.
    [107]王华,唐国金.用遗传算法求解双冲量最优交会问题[J].中国空间科学技术, 2003, 23(1):26-30.
    [108] Luo Ya-zhong, Tang Guo-jin, Li Hai-yang. Optimization of Multi-impulse Minimum-Time Rendezvous Using a Hybrid Genetic Algorithm [J]. Aerospace Science and Technology, 2006, 10(6):4-540.
    [109]李晨光,肖业伦.多脉冲C-W交会的优化方法[J].宇航学报, 2006, 27(2): 172-176.
    [110]吴美平,吴瑞林.约束条件下水平冲量多弧段交会机动方案设计[J].航天控制, 2001, 19(4): 53-58.
    [111] Soileau K. M., Sternt S. A. Path-Constrained Rendezvous: Necessary and Sufficient Conditions [J]. Journal of Spacecraft and Rockets, 1986, 23(5):492-498.
    [112]王华,李海阳,唐国金.飞行器碰撞概率计算的一般方法[J].国防科技大学学报, 2006,28(4): 27-31.
    [113]王华,唐国金.非线性相对运动的飞行器碰撞概率研究[J].宇航学报, 2006, 27(增刊): 160-165.
    [114]王华,唐国金,李海阳.基于碰撞概率的交会对接近距离导引段的轨迹安全[J].宇航学报, 2007, 28(3): 648-652.
    [115]王华.交会对接的控制与轨迹安全[D].国防科学技术大学博士学位论文, 2007.
    [116] Akella M. R., Alfriend K. T. Probabillity of Collosion Between Space Objects [J]. Journal of Guidance, Control and Dynamics, 2000, 23(5): 769-772.
    [117] Patera R. P. General Method for Calculating Satellite Collision Probability [J]. Journal of Guidance, Control and Dynamics, 2001, 24(4): 716-722.
    [118] Patera R. P. Method for Calculating Collision Probability between a Satellite and a Space Tether [J]. Journal of Guidance, Control and Dynamics, 2002, 25(5): 940-945.
    [119] Patera R. P. Satellite Collision Probability for Nonlinear Relative Motion [J]. Journal of Guidance, Control and Dynamics, 2003, 26(5): 728-733.
    [120] Patera R. P., Peterson G. E. Space Vehicle Maneuver Method to Lower Collision Risk to an Acceptable Level [J]. Journal of Guidance, Control and Dynamics, 2003, 26(2): 233-237.
    [121] Patera R. P. Collision Probabillity for Larger Bodies Having Nonliear Relative Motion [J]. Journal of Guidance, Control and Dynamics, 2006, 29(6): 1468-1471.
    [122] Patera R. P. Collision Space Vehicle Confilict-Avoidance Analysis [J]. Journal of Guidance, Control and Dynamics, 2007, 30(2): 492-498.
    [123] Patera R. P. Collision Space Vehicle Confilict Probability for Ellipsoidal Conflict Volumes [J]. Journal of Guidance, Control and Dynamics, 2007, 30(6): 1818-1821.
    [124]罗亚中.空间最优交会路径规划策略研究[D].国防科学技术大学博士学位论文, 2007.
    [125] Tang Guo-jin, Luo Ya-zhong, Li Hai-yang. Optimal Robust Linearized Impulsive Rendezvous [J]. Aerospace Science and Technology, 2007, 11(7-8): 563-569.
    [126] Deb K., Pratap A., Agarwal S., Meyarivan T. A Fast and Elitist Multiobjective Genetic Algorithm: NSGA-II [J]. IEEE Transactions on Evolutionary Computation, 2000, 6(2): 182-197.
    [127] Messac A. Physical Programming: Effective Optimization for Design [J]. AIAA Journal, 1996, 34(1):149-158.
    [128] Messac A., Melachrinoudis E., Sukam C. P. Physical Programming: AMathematical Perspective [R]. AIAA 2000-0686, 2000.
    [129] Messac A., Sundararaj G. J. Physical Programming's Ability to Generate a Well-distributed Set of Pareto Points [R]. AIAA 2000-1666, 2000.
    [130]雍恩米.高超声速滑翔式再入飞行器轨迹优化与制导方法研究[D].国防科学技术大学博士学位论文, 2008.
    [131]朱仁璋,尹艳,汤溢.空间交会N次推力机动状态方程及控制算法[J].宇航学报,2005,26(2): 206-211.
    [132]朱仁璋,林彦,李颐黎.空间交会V-bar接近冲量机动运动分析[J].中国空间科学技术,2003,23(3): 1-6.
    [133]朱仁璋,尹艳,汤溢.空间交会最终平移段控制策略[J].中国空间科学技术,2005,25(8): 31-38.
    [134]刘鲁华.航天器自主交会制导与控制方法研究[J].国防科学技术大学博士学位论文,2007.
    [135]于绍华.自主交会直线运动模式[J].宇航学报,1992, (1):22-27.
    [136]罗建军,杨宇和,袁建平.共面快速受控绕飞轨迹设计与控制[J].宇航学报,2006,27(6):1389-1392.
    [137]兰宏炜,江涌.目标监视绕飞导引方法研究[J].系统工程与电子技术,2008,30(9):1735-1739.
    [138] Bennis R. J. Adptive Fuzzy Control for Rendezvous and Docking by Reinforcement Learning [R]. AIAA-2001-4354.
    [139] Karr C. L., Freeman L. M. Genetic Algorithm Based Fuzzy Control of Spacecraft Autonomous Rendezvous[J]. Engineering Applications of Artificial Intelligence. 1997, 10(3):293-300.
    [140] Ortega G., Giron-Sierra J. M. Geno-fuzzy Control in Autonomous Servicing of a Space Station[J]. Engineering Applications of Artificial Intelligence, 1998, (11):383-400.
    [141] Bennis R. J. M., Chuf Q. P., Mulder J. A. Adaptive Fuzzy Control for Rendezvous and Docking by Reinforcement Learning,in AIAA Guidance,Navigation,and Control Conference and Exhibit. Montreal,Canada,2001.
    [142]刘鲁华,汤国建,韩宏伟.一种用于空间交会绕飞与逼近段的模糊控制率[J].飞行力学,2007,25(1): 59-62.
    [143]陈统,徐世杰.非合作式自主交会对接的终端接近模糊控制[J].宇航学报,2006,27(3):416-421.
    [144] Terui F. Position and attitude control of a spacecraft by sliding mode control [C]. Proceedings of the American Control Conference, Philadelphia, Pennsylvania, June 1998.
    [145] Xu Y., Tatsch A., Fitz-Coy N. G. Chattering Free Sliding Mode Control for a 6 DOF Formation Flying Mission [C]. AIAA 2005-6464, AIAA Guidance, Navigation, and Control Conference and Exhibit, San Francisco, California, 15-18 Aug 2005.
    [146] Broucke R. A. Solution of the Elliptic Rendezvous Problem with the Time as Independent Variable [J]. Journal of Guidance, Control, and Dynamics, 2003, 26(4):615-621.
    [147] Singla P., Subbarao K., Junkins J. L. Adaptive Output Feedback Control for Spacecraft Rendezvous and Docking Under Measurement Uncertainty [J]. Journal of Guidance, Control, and Dynamics, 2006, 29(4):892-902.
    [148] KOJIMA H. Position and attitude adaptive tracking controller based on exact linearization [C]. AIAA 2003-5508, AIAA Guidance, Navigation, and Control Conference and Exhibit, Austin, Texas, 11-14, August, 2003.
    [149] Stansbery D. T., Cloutier J. R. Position and attitude control of a spacecraft using the state-dependent Riccati equation technique [C]. Proceedings of the American Control Conference, Chicago, USA, 2000.
    [150] Welsh S. J., Subbarao K. Adaptive Synchronization and Control of Free Flying Robots for Capture of Dynamic Free-Floating Spacecrafts [C]. AIAA/AAS Astrodynamics Specialist Conference and Exhibit, Providence, Rhode Island, 16-19 August 2004.
    [151] Matsumoto S., Dubowsky S., Jacobsen S., Yoshiaki O. Fly-by approach and guidance for uncontrolled rotating satellite capture [C]. AIAA 2003-5745, AIAA Guidance, Navigation, and Control Conference and Exhibit, Austin, Texas, 11-14, August, 2003.
    [152]郗晓宁,王威.近地航天器轨道基础[M].长沙:国防科技大学出版社,2003.
    [153]朱彦伟.航天器近距离相对运动轨迹规划与控制研究[D].国防科学技术大学博士学位论文,2009.
    [154]黄圳圭.航天器姿态动力学[M].长沙:国防科技大学出版社,1997.
    [155] Jing W. X., Xu S. J. Nonlinear Attitude Tracking Control of a Spacecraft with Thrusters Based on Error Quaternions [J].Chinese Journal of Aeronautics, 2002, 15(3):129-138.
    [156]吴宏鑫,胡军,解永春.基于特征模型的只能自适应控制[M].北京:中国科学技术出版社,2008.
    [157]蔡自兴.智能控制[M].北京:电子工业出版社,2004.
    [158]刘金琨.滑模变结构控制MATLAB仿真[M].北京:清华大学出版社,2005.
    [159]张金槐,蔡洪.飞行器试验统计学[M].长沙:国防科技大学出版社,1995.
    [160]崔逊学.多目标进化算法及其应用[M].北京:国防工业出版社,2008.
    [161] Guelman M. The Closed-Form of Solution True Proportional Navigation [J]. IEEE Transactions on Aerospace and Electronic Systems, 1976, 12(6): 472-482.
    [162] Chen L., Zhang B. Novel TPN Control Algorithm for Exoatmospheric Intercept [J]. Journal of Systems Engineering and Electronics, 2009, 20(6): 1290-1295.
    [163]杨嘉墀.航天器动力学与控制[M].北京:中国宇航出版社,2005.
    [164] Li K. B., Chen L., Bai X. Z. Differential geometric modeling of guidance problem for interceptors. Sci China Tech Sci, 2011, 54: 2283-2295.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700