用户名: 密码: 验证码:
钢板磁悬浮系统控制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
钢板磁悬浮系统可实现钢板的无接触传输,有望取代传统的接触滚轴支撑,具有广阔的应用前景。由于电磁型磁浮系统是结构不稳定的,使得该系统的悬浮控制技术成为整个磁浮系统的关键和核心之一,得到了国内外的广泛关注与研究。本文研究工作基于四电磁铁支撑钢板磁浮试验平台开展,主要研究内容为:
     (1)加速度反馈改善系统悬浮品质的研究。
     本文利用实测加速度信号实现加速度反馈控制,以提高钢板磁浮系统抑制时变扰动的能力。将应用于刚性悬浮体的加速度反馈控制策略拓展,开展考虑悬浮体谐振效应时,相应加速度控制策略的理论分析和实验研究。
     首先,针对实际应用中钢板谐振效应对实施加速度反馈的制约,建立考虑钢板谐振效应的悬浮系统模型,分析谐振效应对悬浮系统闭环稳定性的影响,提出采用加速度陷波器以抑制谐振的控制策略。其次,为快速准确测量钢板谐振频率,简化陷波器实现,采用自适应陷波器实现钢板谐振频率的在线辨识及陷波功能。最后,给出悬浮系统性能指标的选取方法及控制参数的一种设计方法,在一台钢板磁浮装置上验证加速度反馈控制的有效性。
     (2)多电磁铁悬浮系统气隙交叉耦合控制。
     本文将交叉耦合控制拓展应用到多电磁铁支撑磁浮系统,开展磁浮系统气隙同步协调控制的理论、实验研究,以消除各单电磁铁系统增益参数,动态参数不匹配以及悬浮过程中不确定性扰动对各气隙的影响,改善气隙动态同步性能。
     ①以双电磁铁支撑悬浮系统(钢板简化为刚性杆)作为研究出发点,探索适合于磁浮系统应用的交叉耦合控制策略,为四电磁铁悬浮系统气隙交叉耦合控制的研究提供理论基础。分析指出了应用传统交叉耦合控制于双电磁铁支撑钢板磁浮系统的缺陷,提出一种改进的交叉耦合控制策略,引入气隙、速度双重交叉耦合,实现气隙同步协调控制。
     ②传统的交叉耦合控制主要面向双轴系统,同步误差只需选取为双轴输出之差。对于多轴系统,同步误差存在多种选取方式,不同的选取方式对各轴协调性能有不同的影响。因此,寻求合适的同步误差选取方式是应用交叉耦合控制的先决条件。对几种可行的方法进行比较,选择一种适合磁浮系统应用的同步误差构成方法。
     ③在获取交叉耦合控制律、同步误差选取方式后,需确定系统同步协调控制的实施范围。为实现多电磁铁系统间的优化协调,分别进行局部同步协调和全局同步协调策略的理论研究。最后,在一台钢板磁浮装置上的实验结果验证了本文所提出的气隙动态同步协调控制的有效性。
Steel plate magnetic levitation systems provide such a way of supporting steel plate without any contact that make contactless conveyance possible, which will open up various sphere of application. Much attention have been paid to the magnetic suspension control technology which is considered as one of the key part in the entire magnetic levitation system, due to the fact that magnetic levitation system is inherently unstable. The research work of this dissertation is carried out on the basis of a 4-magnet supported steel plate magnetic suspension system prototype, and the main research aspects are listed as follows:
     (1) Research on acceleration feedback control to improve suspension quality of magnetic levitation system.
     In order to improve the anti-disturbance ability of steel plate magnetic levitation system, measured acceleration signal is used to realize acceleration feedback control. The traditional acceleration feedback control strategy used for rigid object is extended to the case considering resonance effect, and related theoretical analysis and experimental research on acceleration control is carried out.
     Firstly, to overcome the constraint in implementation of acceleration control due to resonant effect, a model of suspension system considering resonant effect is derived and its influence on closed loop stability is analyzed. A control strategy that employs an acceleration notch filter to attenuate vibration is proposed. Secondly, in order to fast and accurately measure the resonance frequency, and simplify the implementation of the notch filter, an adaptive notch filter is adopted to identify the resonant frequency and realize the function of the notch filter. Finally, the method for performance index selection and the way to optimize controller parameters is discussed. Experiments are carried out to verify the validity of acceleration feedback control based on the prototype.
     (2) Research on cross-coupled control for gap synchronization of multi-magnet supported magnetic levitation system.
     Conventional cross-coupled control is extended to multi-magnet supported magnetic levitation system. Corresponding theoretical and experimental research are developed to implement gap synchronization control of magnetic levitation system in order to eliminate effects on gap due to gain parameter, dynamic parameter mismatch between each single magnet suspension system and uncertain disturbances while steel plate is levitated, to improve gap dynamic synchronization performance.
     Firstly, research starts on the basis of one 2-magnet supported magnetic levitation system to seek appropriate cross-coupled control strategy suitable for magnetic suspension system so as to provide theoretical basis for 4-magnet supported magnetic levitation system. Drawbacks of applying traditional cross-coupled control to 2-magnet supported magnetic levitation system is pointed out and then one improved cross-coupled control strategy is proposed by introducing both gap and velocity cross-coupled terms to realize gap synchronization control.
     Secondly, conventional cross-coupled control is oriented for double-axis system so that synchronization error can be simply chosen as the output difference between those two axes. However, for multi-axis system, there are many ways to select synchronization error and different selection ways have different influence on the coordinated performance of each axis. So, it is vital to seek appropriate way to construct synchronization error to implement cross-coupled control. Several applicable methods are compared and one of the most suitable ways is determined to utilize in the magnetic levitation system.
     Thirdly, while the cross-coupled control law and synchronization error selection is derived, the scope of implementation synchronization coordinated control should be determined. Theoretical research concerning local and global synchronized coordinated control strategy is carried out respectively to obtain optimized coordination of multi-magnet systems. Experiments are carried out on the prototype of steel plate magnetic levitation system and experimental results show the effectiveness of the proposed control method.
引文
[1]孟庆龙,颜威利.电器数值分析[M].北京:机械工业出版社,1993.
    [2]Earnshaw S. On the nature of the molecular forces which regulate the constitution of the lumiferous ether[J]. Trans. Camb. Phil. Soc.,1842, (7):97-112.
    [3]Braunbek W. Frei schwebende Korper im elektrischen und magnetischen Feld[J]. Z. Phys.,1939, (112):753-763.
    [4]Kemper H. Schwebebahn mit raederlosen Fahrzeugen, die an eisernen Fahrschienen mittels magnetischer Felder schwebend entlang gefuehrt werden[P]. Germany:643316,1937.
    [5]Kemper H. Schwebebahn mit raederlosen Fahrzeugen, die mittels magnetischer Felder an eisernen Fahrschienen schwebend entlang gefuhrt werden[P]. Germany:644302,1937.
    [6]汤蕴璆.电机内的电磁场[M].北京:科学出版社,1998.
    [7]封伟.钢板磁悬浮系统控制的研究[D].杭州:浙江大学,1998.
    [8]Glatzel K, Khurdok G, Rogg D. The Development of the Magnetically Suspended Transportation System in the Federal Republic of Germany [J]. IEEE Trans. on Vehicular Technology,1980,29(1): 3-17.
    [9]Gottzein E, Meismger R, Miller L. The "Magnetic Wheel" in the Suspension of High-speed Ground Transportation Vehicles. IEEE Trans. on Vehicular Technology,1980,29(1):17-23.
    [10]PETER A. A. KOERV. Control Systems for Operating the Long Stator Maglev Vehicle TR 05[J]. IEEE Trans. on Vehicular Technology,1980,29(1):23-34.
    [11]林国斌.德国磁浮铁路Transrapid驶向未来[J].学术动态报道,1997,(3):14-16.
    [12]吴祥明.磁浮列车[M].上海:上海科学技术出版社,2003.
    [13]Hikasa Y, Takeuchi Y. Detail and Experimental Results of Ferromagnetic Levitation System of Japan Air Lines HSST-01/-02 Vehicles [J]. IEEE Trans. on Vehicular Technology,1980,29(1):35-41.
    [14]S. Suzuki, M. Kawashima, Y. Hosoda and T. Tanida. HSST-03 SYSTEM [J]. IEEE Trans. on Magnetics,1984,20(5):1675-167.
    [15]B. V. Jayawant, P. K. Sinha, A. R. Wheeler, and R. J. Whorlow. Development of 1-ton magnetically suspended vehicle using controlled dc electromagnets. in Proc. Inst. Elec. Eng.,1976,23(9):941-948.
    [16]Jayawant B V, Sinha P K, Aylwin D G. Feedback control systems for d. c. electromagnets in passenger-carrying vehicles[J]. Int. J. Control,1976,24(5):627-639.
    [17]张锟.磁浮列车悬浮系统的数字控制技术研究[D].长沙:国防科技大学,2004.
    [18]赵春发.磁悬浮车辆系统动力学研究[D].成都:西南交通大学,2002.
    [19]李奇南,陈敏,李钧,徐德鸿.1.6吨磁浮试验样车分布式悬浮控制系统[C].中国电工技术学会电力电子学会第十一届学术年会,2008.
    [20]Schweitzer G, Traxler A, Bleuler H虞烈,袁崇军译.主动磁轴承基础:基础、性能及应用[M].北京:新时代出版社,1997.
    [21]胡业发,周祖德,江征风.磁力轴承的基础理论与应用[M].北京:机械工业出版社,2006.
    [22]Schweitzer G. Magnetic bearings:theory, design, and application to rotating machinary[M]. New York:Springer,2009.
    [23]P. Bichsel. Beitrage zum lagerlosen elcktromotor [D]. Zurich:ETH,1990.
    [24]N. Barletta. Der Lagerlose Scheibenmotor [D]. Zurich:ETH,1998.
    [25]Levitronix Pumps:http://www. levitronix. com.
    [26]R. Schob, N. Barletta, J. Hahn. The Bearingless Centrifugal Pump-A Perfect Example of a Mechatronics System [C].1st IFAC-Conference on Mechatronic Systems, Darmstadt, Germany, Sep.18-20,2000.
    [27]P. Boesch. Lagerlose Scheibenlaufermotoren hoherer Leistung [D]. Zurich:ETH,2004.
    [28]QinanLi, Pascal Boesch, Mario Haefliger, Johann W. Kolar, Dehong Xu. Basic characteristics of a 4kW permanent-magnet type bearingless slice motor for centrifugal pump system[C]. Proceedings of the 11th International Conference on Electrical Machines and Systems, ICEMS 2008, Wuhan, China, 3037-3042.
    [29]Ebihara D, Kawaguchi H, Muraguchi Y et al. Transportation technique for magnetically levitated thin iron plates[J]. IEEE Trans. on Magnetics,1993,29(6):2974-2976.
    [30]Keisuke Fujisaki, Takatsugu Ueyama, Kiyoshi Wajima. Electromagnets applied to thin steel plate[J]. IEEE Trans. on Magnetics,1996,32(5):5058-5060.
    [31]Hayashiya H, Araki N, Paddision J, et al. Magnetic levitation of a flexible steel plate with a vibration suppressing magnet[J]. IEEE Trans. on Magnetics,1996,32(5):5052-5054.
    [32]Nakagawa T, Hama M, Furukawa T. Study of magnetic levitation technique applied to steel plate production line[J]. IEEE Trans. on Magnetics,2000,36(5):3686-3689.
    [33]Cheng-Tsung Liu, Yung-Yi Yang, Sheng-Yang Lin. Development of an Automatic Online Gap-Detection Scheme for Levitated Industrial Steel-Plate Conveyance System[J]. IEEE Trans. on Industry Applications,2008,44(2):517-524.
    [34]郭庆鼎,刘德君,赵希梅.基于输入解耦的6DOF磁悬浮平台悬浮高度的H∞控制fJ].电工技术学报,2005,20(11):70-74.
    [35]Sinha P K. Electromagnetic suspension:Dynamics and control[J]. IEE control engineering series, 1986, V.30.
    [36]李云钢,常文森.磁浮列车悬浮系统的串级控制[J].自动化学报,1999,25(2):247-251.
    [37]李云钢.EMS型磁浮列车悬浮控制技术研究[D].长沙:国防科技大学,1997.
    [38]Paddison J E, Macleod C, Goodall R M. State variable constraints on the performance of optimal Maglev suspension controllers[J]. Proceedings of the Third IEEE Conference on Control Applications, Glasgow, UK,1994,599-604.
    [39]MacLeod C, Goodall R M. Frequency-shaping LQ control of Maglev suspension systems for optimal performance with deterministic and stochastic inputs[J]. Control Theory and Applications, IEE Proceedings,1996,143(1):25-30.
    [40]刘峰,龙志强,尹力明.磁悬浮列车系统的鲁棒控制分析[J1.机车电传动,1996,(05):23-26
    [41]徐德鸿,吴长春,封伟,陈敏.基于H∞理论的薄钢板磁浮控制研究[J].电工技术学报,2000,15(4): 71-75.
    [42]SungJun Joo, JiJoon Byun, Hyungbo Shim, JinHeon Seo. Design and Analysis of the Nonlinear Feedback Linearizing Controller for an EMS System[C]. Proceedings of the IEEE Conference on Control Applications, Glasgow, UK,1994,593-598.
    [43]David L. Trumper, Sean M. Olson, Pradeep K. Subrahmanyan. Linearizing Control of Magnetic Suspension Systems [J]. IEEE Trans. on Conrol Systems Technology,1997,5(4):427-438.
    [44]DongshengZou, Longhua She, Zhizhou Zhang, Wensen Chang. Maglev System Controller Design Based on the Feedback Linearization Methods[C]. Proceedings of the 2008 IEEE International Conference on Information and Automation, Zhangjiajie, China, June 20-23,2008.
    [45]Tomohiko Mizutanil, Hitoshi Katayama, Akira Ichikawa. Tracking Control of a Magnetic Levitation System by Feedback Linearization[C]. SICE Annual Conference in Sapporo, August 46, 2004. Hokkaido Institute of Tecnology, Japan, pp.121-126
    [46]曹建荣,虞烈,谢友柏.磁悬浮电动机的状态反馈线性化控制[J].中国电机工程学报,2001,21(9):22-26.
    [47]Sinha P K, Pechev A N. Model reference adaptive control of a maglev system with stable maximum descent criterion[J]. Automatica,1999,35(8):1457-1465.
    [48]刘恒坤,常文森.磁悬浮系统的简单自适应控制[J].电光与控制,2005,12(2):68-70.
    [49]D. Cho, Y. Kato, D. Spilman. Sliding mode and classical contorl magnetic levitations systems. Proc. IEEE Contr. Syst. Mag.,1993, (13):42-48.
    [50]Young Chol Kim. Gain Scheduled Control of Magnetic Suspension System[C]. Proceedings of the American Control Conference,1994, June, pp.3127-3131.
    [51]韩京清.从PID技术到“自抗扰控制”技术[J].控制工程,2002,9(3):13-18.
    [52]何凌云,佘龙华,赵春霞.磁浮列车悬浮系统的双环自抗扰控制[J].兵工自动化,2006,25(11):59-61.
    [53]韩建达,谈大龙,蒋新松.直接驱动机器人关节加速度反馈解耦控制[J].自动化学报,2000,26(3):289-295.
    [54]谢云德,常文森.电磁型(EMS)磁悬浮列车系统铅垂方向的建模与仿真[J].铁道学报,1996,18(8):47-54.
    [55]孙秋明,李杰.磁通反馈在磁悬浮列车悬浮控制中的应用[J].机车电传动,2006,1:39-42.
    [56]B. V. Jayawant, B. E. Dawson, R. J. Whorlow, J. C. Peyton Jones. Digitally controlled transducerless magnetic suspension system[J]. IEE Proc-Sei. Meas. Technol.,143(1), January 1996.
    [57]Jayawant, B. V., Whorlow, R. J., and DAWSON, B. E.:'New transducerless magnetic suspension system', Proc. IEE Sci. Meas. L Technol., May 1995,142, pp.255-261.
    [58]M. Krishnamurthy, N. Chaddha, B. Fahimi. Sensorless Estimation of Airgap in a Magnetically Levitated (MagLev) System[C]. IEEE ISIE 2006, July 9-12,2006, Montreal, Quebec, Canada, pp.2566-2570.
    [59]徐绍辉,徐正国,金能强,史黎明.混合悬浮系统的无加速度传感器控制[J].哈尔滨工业大学学报,2008,40(5):823-826.
    [60]Gottzein E, Brock K H, et al. Control aspects of a tracked magnetic levitation high speed test vehicle[J]. Automatica,1977,13(3):205-223.
    [61]杨泉林.磁悬浮实验列车模型的解耦控制系统[J].自动化学报,1989,15(1):23-29.
    [62]Liu Desheng, Li Jie, Zhang Kun. Design of nonlinear decoupling controller for double-electromagnet suspension system[J]. Acta Automatica Sinica,2006,32(3):321-328.
    [63]曹少中.非线性协调控制理论研究及应用[M].北京:科学出版社,2009.
    [64]Koren, Y. Cross-coupled biaxial computer control for manufacturing systems[J]. Journal of Dynamic Systems, Measurement and Control, Transactions of ASME,1980,102(4):265-272.
    [65]赵希梅,郭庆鼎.数控机床多轴联动伺服电机的零相位自适应鲁棒交叉耦合控制[J].中国电机工程学报,2008,28(12):129-133.
    [66]郭庆鼎,蓝益鹏.双位置驱动直线伺服电机三重动态同步控制[J].电工技术学报,2003,18(1):39-42.
    [67]杨亚辉,苏玉鑫,张立科,陈孝栋.机器人系统同步协调自适应控制[J].系统仿真学报,2008,20(1):117-123.
    [68]丁新平.磁悬浮列车悬浮控制系统研究[D].沈阳:沈阳工业大学,2004
    [69]冯慈璋.电磁场(第二版)[M].北京:高等教育出版社,1983.
    [70]汤蕴璆,史乃.电机学(第二版)[M].北京:机械工业出版社,2005.
    [71]卢伯英,于海勋,(美)Katsuhiko Ogata著.现代控制工程[M].北京:电子工业出版社,2003.
    [72]Gottzein E, Lange B. Magnetic suspension control system for the MBB high speed train[J]. Automatica,1975, (11):271-284.
    [73]郑大钟.线性系统理论[M].北京:清华大学出版社,2002.
    [74]JOHN A. HENLEY. Design and implementation of a feedback linearization controller and Kalman filter for a magnetic levitation system[D]. The University of Texas at Arlington,2007.
    [75]Ting-En Lee, Juhng-Perng Su, Ker-Wei Yu. Implementation of the state feedback control scheme for a magnetic levitation system[C]. Second IEEE Conference on Industrial Electronics and Applications, Harbin, China,2007,548-553.
    [76]张鼎.基于扩张状态观测器和非线性PID的数字式悬浮控制系统研究[D].长沙:国防科技大学,2005.
    [77]刘习军,贾启芬.工程振动理论与测试技术.北京:高等教育出版社,2004.
    [78]刘国强,赵凌志,蒋继娅Ansoft工程电磁场有限元分析.北京:电子工业出版社,2005.
    [79]J. Boehm, R. Gerber, N. R. C. Kiley. Sensors for magnetic bearings[J]. IEEE Trans. on Magnetics, 1993,29(6):2962-2964.
    [80]刘君华.传感器技术及应用实例[M].北京:电子工业出版社,2008.
    [81]樊树江,李璐,吴峻,常文森.新型电涡流传感器的动态响应分析[J].传感器技术,2004,23(3):21-24.
    [82]Willis J, Jimerson B D. A piezoelectric accelerometer[J]. Proceedings of the IEEE,1964,52(7): 871-872.
    [83]张雄伟,邹霞,贾冲.DSP芯片原理与应用[M].北京:机械工业出版社,2005.
    [84]苏奎峰TMS320F2812原理与开发[M].北京:电子工业出版社,2005.
    [85]苏奎峰TMS320X281X DSP应用系统设计[M].北京:北京航空航天大学出版社,2008.
    [86]何克忠,李伟.计算机控制系统.北京:清华大学出版社,1998.
    [87]Shujiang Fan, Jun Wu, Wensen Chang. Research on Digital Filtering of the Gap Sensor[C]. Proceedings of the 5th World Congress on Intelligent Control and Automation, Hangzhou, China,2004:3768-3771.
    [88]童诗白.模拟电子技术基础.北京:高等教育出版社,1988.
    [89]阎石.数字电子技术基础.北京:高等教育出版社,1998.
    [90]邱关源.电路(第四版).北京:高等教育出版社,1999.
    [91]ARYE NEHORAI. A minimal parameter adaptive notch filter with constrained poles and zeros[J]. IEEE Trans. on acoustics, speech, and signal processing,1985,33(4):983-996.
    [92]张世平,赵永平,张绍卿,李德胜.一种基于自适应陷波器的电网频率测量新方法[J].中国电机工程学报,2003,23(7):81-83.
    [93]何振亚.自适应信号处理[M].北京:科学出版社,2002.
    [94]汪安民.DSP应用开发实用子程序[M].北京:人民邮电出版社,2005.
    [95]Manfredi Maggiore, Rafael Becerril. Modeling and control design for a magnetic levitation system[J]. International Journal of Control,2004,77(10):964-977.
    [96]陈慧星,李云钢,常文森.电磁-永磁混合磁悬浮系统的悬浮刚度研究[J].中国电机工程学报,2008,28(27):148-152.
    [97]史震,姚绪梁,于秀萍.运动体控制系统.北京:清华大学出版社,2008.
    [98]尔桂花,窦曰轩.运动控制系统.北京:清华大学出版社,2002.
    [99]丛爽,李泽湘.实用运动控制技术.北京:电子工业出版社,2006.
    [100]薛定宇,陈阳泉.基于MATLAB/Simulink的系统仿真技术与应用.北京:清华大学出版社,2002.
    [101]刘金琨.先进PID控制MATLAB仿真(第二版).北京:电子工业出版社,2004.
    [103]山村昌,大西公平,正田英介.吸引力形常電導磁気浮上台車の制御系理諭[J].電気学会論文誌B,1979,99(11):752-759.
    [104]张承慧,石庆升,程金.一种基于相邻耦合误差的多电机同步控制策略[J].中国电机工程学报,2007,27(15):59-63.
    [105]王宣银,程佳.基于相关耦合的并联四轴电动伺服平台鲁棒控制[J].中国电机工程学报,2009,29(6):117-121.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700