用户名: 密码: 验证码:
预应力混凝土箱梁结构抗火性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,随着交通量的迅猛增加以及运输工具的多样性,桥梁火灾事故频频发生,运输易燃易爆物品的车辆日渐增多,交通事故和人为原因引起的桥梁火灾成为交通基础设施新的威胁。火灾作为桥梁的偶然荷载,对结构造成不可估量的破坏,轻者势必影响交通质量,造成人身伤亡和经济损失,重者可造成桥梁永久破坏与坍塌。目前关于桥梁火灾的研究主要集中在火灾下预应力混凝土(以下简称“PSC”)结构及钢筋混凝土(以下简称“RC”)结构整体及局部抗火性能,涉及火灾后RC整体及局部抗火性能较少,对于火灾后PSC结构的抗火性能研究更少。
     本文以国家自然科学基金“火灾下混凝土桥梁有效预应力衰变机理与承载能力分析方法研究(51308056)”;交通运输部交通建设科技项目“火灾下桥梁结构灾变机理及安全性评价与加固技术研究(2011318812970)”为依托,针对预应力混凝土箱型梁桥整体抗火性能,以模型试验结合数值模拟进行了系统研究。主要研究工作有:
     基于各规范、学者的调研,对高温作用后预应力混凝土材料的强度、弹性模量及本构关系进行计算模型的整理与分析,并对使用率高的计算模型进行分阶段选取、分布拟合的方法获得高温作用后预应力混凝土材料各力学性能指标(强度、弹性模量及本构关系)的拟合计算模型。
     对3片试验梁(对比梁PSB-1、无防火涂层试验梁PSB-2、有防火涂层试验梁PSB-3)进行火灾下及火灾后的模型试验研究。基于火灾下试验梁的温度场、位移时程及预应力损失等数据分析,揭示了防护涂层对PSC结构抗火性能的影响程度。基于火灾后试验梁的位移、应变及刚度、频率等数据分析,给出了PSC结构火灾后的剩余承载能力及动力特性状况。
     通过测定混凝土试块高温后的抗压强度,并对比未受高温的试块,研究了膨胀型防火涂料不同厚度对混凝土结构的防火保护作用,给出了强度折减的经验公式。通过对受火梁按由底至顶及烧损深度的方法来测定混凝土强度,计算混凝土强度值,揭示了受火后混凝土强度沿梁高及烧损深度的变化规律。
     研究分析了EUROCODE、ASTM-E119、JISA1304及ISO834等多种火灾升温计算模型,明确了火灾分析采用的升温模型和理论计算方法,通过对比火灾过程中结构温度场的试验数据,揭示了结构温度场由外至内的热传导规律,并运用大型通用软件建立有限元模型,进行温度场的非线性分析,通过与实测值对比,验证了模型的正确性。
     运用大型通用有限元分析软件对3片试验梁进行模拟,通过设定材料不同的本构关系,并依照试验的边界条件建立有限元模型,模拟试验梁在荷载作用下的挠曲变形、混凝土应变以及试验梁的极限承载力、固有频率等,通过与实测值的对比,验证了模型的有效性。
In recent years, with the rapid increase in traffic as well as diversity, bridges' fire occursfrequently with increasing number of vehicles in transporting flammable substances. Trafficaccidents and man-made causes fire accidents on bridge become a new threat to thetransportation infrastructure. Accidental fire as a bridge load causes incalculable damage tothe structure, the light is bound to affect the quality of traffic, causing personal injury andeconomic loss, the severe can cause permanent damage to the bridge and its collapse. Currentresearch of bridge fire mainly focuses on overall and local structural fire resistance ofstructural under fire of the prestressed concrete (hereinafter referred to as "PSC") structureand reinforced concrete (hereinafter referred to as "RC"), research less involves overall andlocal structural fire resistance of structural after fire and the PSC structure in fire resistanceresearch is less than the former.
     This paper takes the National Natural Science Foundation"Research analysis ofprestressed concrete bridge decay mechanism and effective carrying capacity under fire(51308056)"; Ministry of Transport and Communications Construction Technology Project"under the bridge structure fire disaster mechanism and safety evaluation and reinforcementtechnology research (2011318812970) as the basis for the overall fire resistance ofprestressed concrete box girder bridge, studied on the model test and numerical simulation.The main research work are:
     Based on survey data on criterion and abroad, to collate prestressed concrete materials,elastic modulus and constitutive relation after the high temperature strength and analyzecomputational models, and the use of high computational model selected by the line instages, distribution fitting each mechanical properties of concrete materials (strength, elasticmodulus and constitutive relation) model fitting method to obtain high temperature afterprestressing.
     Three beam (contrast beam PSB-1, no fire protection coating beam PSB-2, fireproofcoating beam PSB-3) are tested research model under fire and after fire. Based on the testbeam temperature field under fire, when the displacement process and prestressing losses ofdata analysis, the protective coating to reveal the extent of the impact on the fire resistance ofstructural PSC. Test beam displacement, strain and stiffness, frequency-based data analysisafter the fire, given the remaining carrying capacity and dynamic characteristics of thesituation after the PSC structure fire.
     By measuring the compressive strength of concrete block after high temperature,comparing concrete blocks without high temperature and study on different thicknessintumescent fire protective coatings of concrete structures and give the empirical formula ofstrength reduction. Through the fire from the bottom to the top of the beam and by burningmethod to determine the depth of the concrete strength, concrete strength values calculated toreveal the changes in the law after the concrete strength by the fire burning along the beamheight and depth of the subject.
     Study and analyse the EUROCODE, ASTM-E119, JIS A1304and ISO834computational fire model, a clear warming on models and theoretical calculation methodsused in the analysis of fire, fire process by comparing the temperature field trial datastructures, revealing the structure of temperature field from the outside to the inside of theheat conduction law, and the use of large general-purpose finite element software model fornonlinear analysis of temperature field, by comparison with the measured values to verify thecorrectness of the model.
     The use of large-scale finite element analysis software for three test beams to simulatethe material by setting different constitutive relations and finite element model of the test inaccordance with the boundary conditions, the simulation test beam deflection under load,the concrete strain and ultimate bearing capacity of the test beams, natural frequency, etc.,by comparing the measured values, and the validity of the model.
引文
[1]火灾风险与保险.孙金华,褚冠全,刘小勇[M].北京:科学出版社,2008
    [2]2012年全国火灾情况分析.公安部消防局,2012
    [3] Battelle. Comparative risks of hazardous materials and non-hazardous materials truck shipmentaccidents/incidents. Washington D.C.(USA):Federal Motor Carrier Safety Administration;2004.
    [4] New York State Department of Transportation. Bridge fire incidents in New York State (Privateorrespondence with Prof. M. Garlock). USA: New York State Department of Transportation;2008.
    [5] Bulwa D, Fimrite P. Tanker fire destroys part of MacArthur maze.www.sfgate.com,2007[Accessed29.4.2007.
    [6] Astaneh-Asl A, Noble CR, Son J, Wemhoff AP, Thomas MP, McMichael LD. Fire protection of steelbridges and the case of the MacArthur maze fire collapse.In: Proceedings of the ASCE TCLEE lifelineearthquake engineering in a multihazard environment conference, Oakland (CA),2009. p.1–12.
    [7] Chung P, Wolfe RW, Ostrom T, Hida S, editors. Accelerated bridge construction applications inCalifornia–a lessons learned report. USA: California Department of Transportation (CALTRANS);2008.
    [8]熊学玉,蔡跃,李春祥.预应力混凝土结构火灾研究现状及展望[J].自然灾害学报,2004,13(3):152-156.
    [9] ASTM Designation E119-97, Standard Test Methods for Fire Tests of Building Construction andMaterials, ASTM Committee E-5,1998.
    [10]Terro MJ. Numerical modelling of the behaviour of concrete structures in fie[J].ACI Structural Journal1998;95(3/4):183–93.
    [11]Hertz K D. Additional Documentation for simplified design of fire exposedconcrete columns. In:Procof Inc Conf on Building and energy. Lyngby,1998,85-95.
    [12]宋晓勇.钢筋混凝土柱抗火性能分析与研究[D].长沙:湖南大学,2004
    [13]Franssen J M,Kodur V K R,Mason J.USER’S MANUAL FOR SAFIR2001free,A computer programfor analysis of structures submitted to the fire.Brussels:University of Liége Publish,2000,1-120.
    [14]Dotreppe J C, Franssen J M, Vanderzeypen Y. Calculation method for design of reinforced concretecolumns under fire conditions[J].ACI Structural Journal,1999,96(2):9-18.
    [15]Lin TD,Ellingwood B,Piet O. Flexural and shear behavior of reinforced concrete beamsduring fire test. Portland Cement Associations research and development bulletin, report noNBSGCR-87-536, Center for Fire Research, National Bureau of Standards, Washington,1998.
    [16]Gawin D, Majorana C, Pesavanto F, et al. A fully coupling multiphase model ofhigro-thermo-mechanical behavior of concreteat high temperature. In: Computationalmechanics,new trends and applications. Barcelona,Spain:CIMNE,1998.1–19.
    [17]Hong Huang, Ryozo Ooka, Naian Liu,et al.Experimental study of fire growth in a reduced-scalecompartment under different approaching external wind conditions[J].Fire Safety Journal,2009,44(3):311-321.
    [18]Jing-Feng Wang, Lin-Hai Han, Brian Uy.Behaviour of flush end plate joints to concrete-filled steeltubular columns[J].Journal of Constructional Steel Research,2009,65(4):925-939.
    [19]Zhen-Hai Qian, Kang-Hai Tan.Deflection behaviour of plate girders loaded in shear at elevatedtemperatures[J].Journal of Constructional Steel Research,2009,65(4):991-1000.
    [20]Mari A. Numerical simulation of the segmental constructions of three-dimensional concreteframes[J].Engineering Structure,2000,22(6):585–596.
    [21]Albert N. Noumowe, Rafat Siddique, G. Debicki.Permeability of high-performance concrete subjectedto elevated temperature (600℃)[J].Construction and Building Materials,2009,23(5):1855-1861.
    [22]Kai Kang.Assessment of a model development for window glass breakage due to fire exposure in afield model[J].Fire Safety Journal,2009,44(3):415-424.
    [23]肖建庄,王平,朱伯龙.我国钢筋混凝土材料抗火性能研究回顾与分析.建筑材料学报,2003;6(2):182-189
    [24]张智梅,叶志明,刘涛.钢筋混凝土结构抗火研究进展[J].自然灾害学报,2007,16(1):127-135
    [25]肖建庄,王平,朱伯龙.我国钢筋混凝土材料抗火性能研究回顾与分析.建筑材料学报:184~189[56]
    [26]范进,吕志涛.高温后预应力钢丝性能的试验研究.工业建筑,2002,32(9):30~31,68
    [27]范进.高温后预应力钢绞线性能的试验研究.南京理工大学学报.2004,28(2):186~189
    [28]余志武,王中强,史召锋.高温后新III级钢筋力学性能的试验研究.建筑结构学报,2005,26(2):112~116
    [29]丁发兴,余志武,温海林高温后Q235钢材力学性能试验研究.建筑材料学报,2006,9(2):245~249
    [30]郑文忠,胡琼,张昊宇.高温下及高温后1770级ΦP5低松弛预应力钢丝力学性能试验研究.建筑结构学报,2006,27(2):120~128
    [31]贾福萍,吕恒林,崔艳莉,渠艳艳,王永春.不同冷却方式对高温后混凝土性能退化研究.中国矿业大学学报,2009,38(1):25~29
    [32]吴波,梁悦欢.高温后混凝土和钢筋强度的统计分析.华南理工大学学报(自然科学版),2008,36(12):13~20
    [33]Colin G. Bailey, Ehab Ellobody. Fire Tests on bonded Post-Tensioned ConcreteSlabs. EngineeringStructures.2009,31:686~696
    [34]高立堂,董毓利,袁爱民.无粘结预应力混凝土连续板边跨受火试验研究.建筑结构学报,2004,25(2):118~123
    [35]袁爱民,孙宝俊,董毓利,李延和,高立堂.无粘结预应力混凝土简支板火灾试验研究.工业建筑,2005,35(4):38~42
    [36]袁爱民,董毓利,戴航,李延和,高立堂.无粘结预应力混凝土三跨连续板火灾试验研究.建筑结构学报,2006,27(6):60~66
    [37]袁光林,黄方意,吕志涛.高温后无粘结预应力混凝土梁抗弯承载能力.中国矿业大学学报,2006,35(4)
    [38]郑文忠,许名鑫,石东升,胡琼.火灾下预应力板混凝土爆裂规律试验研究.土木工程学报,2006,39(10):48~53
    [39]郑文忠,许名鑫,杨杰,胡琼,侯晓萌,石东升.预应力混凝土简支板抗火性能试验与分析.建筑结构学报,2006,27(6):48~59
    [40]郑文忠,侯晓萌,许名鑫.两跨无粘结预应力混凝土连续板抗火性能试验与分析.建筑结构学报,2007,28(5):1~13
    [41]侯晓萌,郑文忠.两跨预应力混凝土连续梁抗火性能试验与分析.哈尔滨工业大学学报,2009,41(4):12~17
    [42]郑文忠,陈伟宏,侯晓萌.火灾后配筋混凝土梁受力性能试验与分析.哈尔滨工业大学学报,2008,40(12):1861~1867
    [43]刘永军,李宏男.建筑结构抗火性能研究回顾与展望.防灾减灾工程学报,2004,24(2):219~226
    [44]过镇海,时旭东.钢筋混凝土的高温性能及其计算.清华大学出版社.2003:19,73~77,203~223,22~24,42,53~62
    [45] Z. Huang, I. W. Burgess, and R. J. Plank. Three-Dimensional Modeling of Two Full-Scale Fire Testson a Composite Building. Proc. Inistn Civ. Rngrs Structs&Bldgs, Aug.1999:243-255
    [46]时旭东,过镇海.钢筋混凝土结构的温度场.工程力学,1996,13(1):35~43
    [47]姚亚雄,朱伯龙.钢筋混凝土框架结构火灾反应分析.同济大学学报1997,25(3):255~261
    [48]张大长,吕志涛.火灾过程中混凝土构件内的温度分布.南京建筑工程学院学报,1997,40(1):31~37
    [49]M. J. Terro. Numerical Modeling of the Behavior of Concrete Structures in Fire.ACI Structural Journal,1998,95(2):183~193
    [50]董毓利.混凝土结构的火安全设计.北京:科学出版社,2001:154~186
    [51] P. S. Wong, F. J. Vecchio. VecTor2&FormWorks User’s Manual.2002:1~232
    [52] L. Lim, A. Buchanan, P. Moss, J. M. Franssen. Numerical Modeling of Two-Way Reinforced Slabs inFire. Engineering Structures.2004,26:1081~1091
    [53] J. M. Franssen. User’s Manual for SAFIR2007.2007:1~68
    [54]刘永军.钢筋混凝土结构火灾反应数值模拟及软件开发.大连理工大学博士学位论文,2002:1~2,22~135
    [55]王中强.无粘结预应力混凝土扁梁抗火性能的试验研究和理论分析.中南大学博士学位论文,2006:2,85~120
    [56]丁发兴,余志武,欧进萍.火灾下钢筋混凝土柱非线性有限元分析.中南大学学报(自然科学版),2008,39(3):608~614
    [57]E. Ellobody, C. G. Bailey. Modelling of Unbonded Post-tensioned Concrete Slabs under FireConditions. Fire Safety Journal.2009,44:159~167
    [58]李守雷,徐志胜,常玉锋等.火灾后RC简支梁的动力性能试验研究.武汉化工学院学报,2005,27(4):27~29
    [59] Hou Wei, He Shanghai, Zhang Gang.Analysis of Deformation for PC Thin-wall Box Girders Exposedto Fire[C]//ICTAS2011,p930-933.
    [60]侯炜,贺拴海,张岗.防火涂层对高温后混凝土抗压强度的影响[J].西安建筑科技大学学报(自然科学版),2014,46(2)
    [61]王翠娟.火灾模式下多梁式混凝土T型梁桥结构性能研究[D].西安:长安大学,2013.
    [62]张岗,贺拴海,王翠娟.焰流效应的混凝土高墩火温时变分布[J].交通运输工程学报,2014,14(1):77-84.
    [63]张岗.PC宽异薄壁箱梁火灾高温场形变分析[J].解放军理工大学学报:自然科学版,2011,12(2):131-136.
    [64]张岗,贺拴海.混凝土箱梁热-力耦合模型与剪力滞时变效应[J].解放军理工大学学报:自然科学版,2010,11(2):131-136.
    [65]张岗,贺拴海,宋一凡.钢筋混凝土梁桥火灾高温安全评价[J].安全与环境学报,2008,7(3):153-157.
    [66]张岗,贺拴海,宋一凡.火灾高温下钢筋混凝土梁桥非线性计算方法[J].西安建筑科技大学学报:自然科学版,2008,40(3):317-322.
    [67]张岗,贺拴海.火灾后混凝土桥梁高温场优权评判方法与安全评价[J].安全与环境学报,2011,10(5):151-156.
    [68]张岗,贺拴海.火灾下钢筋混凝土梁桥高温形变分析[J].长安大学学报:自然科学版,2009,29(1):54-58.
    [69]张岗,贺拴海,宋一凡.混凝土薄壁箱梁高温冲击模式及时变效应研究[J].西南科技大学学报:自然科学版,2008,23(2):23-27.
    [70]ZHANG GANG,HE SHUAN-HAI, WANG LIN-BO. Nonlinear analysis of time-dependent effect for reinforced concrete thin-wall box girders exposed to fire[C]//ICCTP2009.
    [71]张岗,贺拴海,宋一凡.混凝土箱梁水化热温度损伤修正耦合方法[J].交通运输工程学报,2008,8(1):54-60.
    [72]张岗,贺拴海,任伟.火灾高温下RC简支梁极限弯矩计算模型研究[J].武汉理工大学学报:交通科学与工程版,2010,34(1):134-136.
    [73]张岗,贺拴海,王翠娟.整跨火荷载下PC薄壁多室变宽箱梁桥的变形[J].长安大学学报:自然科学版,2011,31(1):42-46.
    [74]张岗,王亚堃,王翠娟.过火混凝土桥梁评价方法及耐久性损伤评估模型[J].公路交通科技:学术版,2010,27(9):88-92.
    [75]张岗,王翠娟.火荷载下混凝土箱梁温度场分布与变形分析[J].铁道建筑,2011,(7):32-35.
    [76]张岗,王翠娟,贺拴海,等.桥面火灾下多梁式混凝土T型梁桥抗火性能[J].长安大学学报:自然科学版,2013,33(5):52-56.
    [77]张岗,贺拴海,宋一凡,许世展.混凝土箱梁水化热温度场时效模式与时变应力场[J].长安大学学报:自然科学版,2008,28(4):51-56.
    [78]张岗,谢功元,周勇军,等.混凝土箱梁模型桥极限承载力试验研究[J].武汉理工大学学报:交通科学与工程版,2008,32(5):830-833.
    [79]张岗,贺拴海,郭琦.横向大悬臂连续箱梁模型桥非线性分析[J].西安建筑科技大学学报:自然科学版,2010,30(1):21-27.
    [80]王翠娟,贺拴海,张岗.桥面火灾全过程的多梁式混凝土T梁桥整体变形[J].武汉理工大学学报,2012,34(9):100-103.
    [81]李世安.预应力混凝土梁桥高温力学性能分析及灾后评价方法[D].西安:长安大学,2012
    [82]吴波,马忠诚,欧进萍.高温后混凝土变形特性及本构关系的试验研究.建筑结构学报.1999,20(5):42~49
    [83]中华人民共和国国家标准.工程结构可靠性设计统一标(GB50153-92)[S].北京:中国建筑工业出版社,1992
    [84]吴波,袁杰,王光远.高温后高强混凝土力学性能的试验研究[J].土木工程学报,2000,33(2):8-12
    [85]杨彦克,郑盛娥,李固华.火灾后钢筋混凝土柱轴压极限承载力及其应力—应变关系[J].西南交通大学学报,1992,87(5):84-90
    [86]陆洲导.钢筋混凝土梁对火灾反应的研究[D].同济大学博士论文,1989
    [87]吕彤光.高温下钢筋的强度和变形试验研究[D].上海:清华大学土木工程系,1996
    [88]经建生,侯晓萌,郑文忠.高温后预应力钢筋和非预应力钢筋的力学性能[J].吉林大学学报(工学版),2010,40(2):441-446
    [89]郑文忠,许名鑫,王英.钢筋混凝土及预应力混凝土材料抗火性能[J].哈尔滨建筑大学学报,2002,35(4):6-10
    [90]丁发兴,余志武,温海林.高温后Q235钢材力学性能试验研究[J].建筑材料学报,2006,9(2):245-249.
    [91]张昊宇,郑文忠等.1860级低松弛钢绞线高温下力学性能[J].哈尔滨工业大学学报.2007.6(9)
    [92]范进,吕志涛.高温后预应力钢丝性能的试验研究[J].工业建筑,2002,32(9):30-31,68
    [93]杨彦克,郑盛娥.混凝土结构火灾损伤评估[J].四川建筑科学研究,1991,9(4):22-26.
    [94]混凝土结构设计规范GB50010-2010,中华人民共和国住房和城乡建设部
    [95]王贤明,王华进.环保型防火涂料发展现状.涂料工业,2002,12:48-51
    [96]贾锋.受高温后混凝土抗压强度的试验研究[J].青岛建筑工程学院学报,1997,18(1):10-14.
    [97]吕天启,赵国藩,林志伸.高温后静置混凝土力学性能试验研究[J].建筑结构学报,2004,25(1):63-70.
    [98]M.B. Dwaikat, V.K.R. Kodur Hydrothermal model for predicting fire-induced spalling in concretestructural systems[J].Fire Safety Journal,2009,44(3):425-434.
    [99]Hongxia Yu, I.W. Burgess, J.B. Davison, et al.Tying capacity of web cleat connections in fire, Part1:Test and finite element simulation[J].Engineering Structures,2009,31(3):651-663.
    [100]Colin G. Bailey, Ehab Ellobody.Fire tests on bonded post-tensioned concrete slabs[J].EngineeringStructures,,2009,31(3):686-696.
    [101]Chin-Tsung Liu, Jong-Shin Huang. Fire performance of highly flowable reactive powderconcrete[J]. Construction and Building Materials,2009,23(5):2072-2079.
    [102]Zdenek P. Bazant,Gianluca Cusatis et al. Temperature Effect on Concrete Creep Modeledby Microprestress-Solidification Theory[J]. Journal of Engineering Mechanics,2004,130(6):691-699.
    [103]A.M.Hasofer,I. Thomas. Analysis of fatalities and injuries in building fire statistics[J].FireSafety Journal,2006,41(1):2–14.
    [104]Lin Y S. Estimations of the probability of fire occurrences in buildings[J].Fire SafetyJournal,2005,40(8):728–735.
    [105]M. Arockiasamy,P.E.,M. Sivakumar. Time-Dependent Behavior of Continuous CompositeIntegral Abutment Bridges[J]. Practice Periodical on Structural Design and Construction,2005,10(3):161-170.
    [106]洪涛,陆洲导,许立新.无粘结预应力混凝土框架的火灾试验.火灾科学,2002,11(1):57~62
    [107]邓京京.再生混凝土简支梁抗火性能实验研究[D].北京:北京建筑工程学院,2012
    [108]陆洲导,廖杰洪,余江滔.火灾后混凝土结构损伤检测方法研究与探讨[J].防灾减灾工程学报,2012,32(增刊):36-39
    [109]黄素芬.混凝土结构在火灾中的可靠度分析[D].昆明:昆明理工大学,2012
    [110]王全凤,邱毅,徐玉野,等.HRBF500级钢筋混凝土梁受火后力学性能试验研究[J].建筑结构学报,2012,33(2):50-55
    [111]鞠竹,王振清,李晓霁,等.高温下GFRP筋和混凝土粘结性能的实验研究[J].哈尔滨工程大学学报,2012,33(11):1351-1357
    [112]李荣涛.混凝土结构火灾爆裂危险性评估研究[J].自然灾害学报,2012,21(1):204-210
    [113]王国辉,项凯,李慧,等.火灾后钢筋混凝土梁抗剪承载力[J].消防理论研究,2012,31(6):558-561
    [114]王文达,郭智峰,张鹏鹏.火灾后钢筋混凝土柱外包钢管加固性能数值模拟[J].自然灾害学报,2012,21(3):204-210
    [115]王子毅,韩阳,王威.火灾后混凝土损伤综合评价的分形-插值模型[J].混凝土,2012,(2):44-47
    [116]蔡跃,黄鼎业,熊学玉.预应力混凝土结构材料高温下的力学性能及模型[J].四川建筑,2003,29(4):82-84.
    [117]熊学玉,蔡跃,黄鼎业.火灾下预应力混凝土结构极限承载力计算方法[J].自然灾害学报,2005,14(2):147-154.
    [118]陈礼刚,袁建东,李晓东,等.高温下预应力钢丝的应力应变关系[J].重庆建筑大学学报,2006,
    [119]袁广林,李庆涛,吕志涛,等.高温下无粘结预应力混凝土中钢绞线预应力的损失[J].河海大学学报:自然科学版,2006,34(1):88-91.
    [120]袁广林,黄方意,吕志涛.高温(火灾)对无粘结部分预应力混凝土梁抗弯性能的影响[J].建筑结构,2007,37(1):105-108.
    [121]袁广林,黄方意,吕志涛.高温后无粘结预应力混凝土梁抗弯承载能力[J].中国矿业大学学报,2006,35(7):441-446.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700