用户名: 密码: 验证码:
岩石和瓦斯突出发生条件及机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,国内外煤矿矿井在深部掘进巷道时出现了岩石和瓦斯突出现象。岩石和瓦斯突出包括了岩石突出、岩石与瓦斯一起突出,它们不仅发生在采矿工程中的岩巷掘进,也发生在隧道与其他地下工程施工的相应工程地质环境中。目前,国内外学术界对岩石和瓦斯突出发生条件和机理研究还不够,尚不能准确回答岩石和瓦斯突出过程中的能量来源及能量的转化过程、爆破与岩石和瓦斯突出的关系及其作用机理、岩石和瓦斯突出的启动和停止等更深层次上的原因。
     本文基于永川煤矿的岩石和瓦斯突出现象,针对永川煤矿的地质条件、突出砂岩的物性;突出岩石受载变形的损伤、强度和破坏;煤岩和瓦斯突出过程中的瓦斯膨胀能;岩石和瓦斯突出、岩爆发生的一般规律和成因;岩石和瓦斯突出的能量、发生的临界条件及机理等问题展开研究,主要结论如下:
     永川煤矿的岩石和瓦斯突出发生在距主采煤层-大龙煤层之下43m的T_3xj~4砂岩层中,该砂岩层为三角洲平原沉积相;T_3xj~4砂岩含有的Si、Al元素较多,矿物组成以石英、云母、长石为主;T_3xj~4砂岩渗透性较差,比表面积较大,其内部孔的孔径一般大于甲烷分子直径;T_3xj~4砂岩微观裂隙和节理不发育、连通性差,呈块状、结构致密,砂岩层中的黑色包裹体是一种成分复杂的矿物质;T_3xj~4砂岩层中赋存的瓦斯气体成分以甲烷为主,其次还有少量的乙烷、丙烷、异丁烷,该砂岩层具有吸附瓦斯的能力;大龙煤层的煤质为1/3焦煤,该煤的比表面积高达280m2/g,SEM图像表明其内部裂隙发育,且互相交联。
     T_3xj~4砂岩样强度较低,屈服现象明显,其循环加卸载的疲劳破坏过程受静态全应力应变曲线的控制;T_3xj~4砂岩声发射类型与MOGI-I相似,在应力应变曲线上对应的Kaiser点、屈服点及峰值点处声发射信号明显,且该种砂岩存在Kaiser效应和Felicity效应;在围压条件下,峰后破裂T_3xj~4砂岩样的破裂比(r)与其对应的割线模量、轴向最大应变量及轴向应力应变曲线峰前段下的面积(应变能)有一定的线性关系,且破裂砂岩样是在完整砂岩样破坏的基础上进一步破坏的;破裂T_3xj~4砂岩样的蠕变规律与完整岩样的相似,均可用改进的西原正夫模型描述蠕变的各个阶段;顶板砂质页岩脆性较大,破坏时产生较大爆裂声响,其声发射类型与致密不稳定的-IV相似,应力应变全过程曲线对应的Kaiser点、峰值点处声发射信号明显。
     利用自主研制的煤岩介质中瓦斯膨胀能测试装置研究了不同条件下煤和T_3xj~4砂岩中的瓦斯膨胀做功规律,研究表明:低瓦斯压力条件下,煤中瓦斯对外做膨胀功推出活塞的长度(它反映了做功能力)与瓦斯压力呈指数关系变化,而砂岩中瓦斯对外做膨胀功推出活塞的长度与瓦斯压力呈线性关系,通过计算瓦斯膨胀的多变指数,得出煤岩中瓦斯的膨胀过程为等温过程。
     岩石和瓦斯突出、岩爆都属于矿山压力所导致的岩石动力现象,均发生在高地应力地区,且都与工程扰动有关;普遍的岩石和瓦斯突出都是由爆破作业引起的,突出发生时伴随着岩石碎片的抛出和瓦斯气体的涌出,突出的能量来源为岩体弹性变形能、重力势能和瓦斯膨胀能,突出孔洞为梨形、口袋形等向岩层内部延伸的不规则孔洞;岩爆可以自发地发生,多发生在强度高、脆性大的坚硬岩层中,岩爆发生后仅在岩体上留下较浅的爆坑;计算了永川煤矿岩巷的断裂失稳区,并与压性水平构造应力为主的地应力场下的断裂失稳区进行了对比,指出以近竖直方向为主的地应力导致的断裂失稳区在巷道两肩呈对称分布,而压性水平构造应力为主的地应力导致的断裂失稳区分布特征则不同。对比分析了岩石断裂失稳区与实际突出孔洞,认为岩石和瓦斯突出孔洞是由高地应力形成的局部破坏区演化、发展来的,爆炸应力并不能改变外载应力条件,爆破对岩石和瓦斯突出起诱导作用。
     讨论了断裂失稳区中破裂岩石的弹性变形能、瓦斯膨胀能和重力势能及其在岩石和瓦斯突出中的功能转化关系,根据功能平衡原理得出了岩石和瓦斯突出时岩石的弹性模量临界条件和抛出初速度;指出围压条件下岩石最大泊松比的取值应根据岩样峰后连续加卸载的试验方法确定;岩石和瓦斯突出开始的时间理论上可根据平面应力条件下岩石蠕变失稳的应变-时间关系来估算;得出了岩石和瓦斯突出的机理:岩石和瓦斯突出是具有一定物理力学性质的岩石体在高地应力条件下形成断裂失稳区,并在瓦斯作用下和爆破工程诱导及其他工程扰动作用下产生的一种动力现象,突出的能量来源于弹性变形能、瓦斯的膨胀能和重力势能,当岩体释放的弹性能潜能足够大时,可破坏岩体,激发突出,即岩石和瓦斯突出开始发动;若突出孔洞壁有足够大的地应力梯度和瓦斯压力梯度,岩体的破碎就会不断向周围扩展,岩石和瓦斯突出得以发展;当突出的能量消耗殆尽和突出孔道受阻碍、不能继续在突出孔洞壁建立高的地应力梯度和瓦斯压力梯度时,突出即告停止。
Recently, rock and gas outburst always happened in coal mines at home and abroad when driving into the deep roadway. The rock and gas outburst includes rock outburst and rock outburst accompanied with gas outburst, which does not occur only in rock excavation, but also in tunnels and other underground engineering construction environment. However, researches about the occurrence conditions and mechanism of rock and gas outburst were not enough to exactly understand the sources and transformation processes of energy, the relationship and interaction mechanism between the blast and the outburst, the start and stop of the outburst.
     In this paper, geological conditions of Yongchuan coal mine, physical properties of the outburst sandstones, injury, strength and damage of the outburst sandstone deformed under load, gas expansion energy in the process of rock and gas outburst, general principles and causes of the rock and gas outburst and rock burst, energy, critical conditions and mechanism of the rock and gas outburst were studied. The main results are as follows:
     Rock and gas outburst of Yongchuan coal mine happened in the T3xj4 sandstone stratum, which is 43 m below the main coal seam-Dalong coal seam, and is the sedimentary facies of the delta plain. The T3xj4 sandstone contains more Si and Al elements. Quartz, mica and feldspar are the main mineral composition of T3xj4 sandstone. The T3xj4 sandstone has low permeability and high specific surface area, and the diameter of the inside pore is bigger than that of the methane molecule. In the microstructure, not developed cracks and joints, poor connectivity, and lump and dense structure appear, and the black inclusion within the sandstone stratum is kind of complex mineral. Methane is the main composition of the gas absorbed in the T3xj4 sandstone stratum. There are also few ethane, propane and isobutene. The T3xj4 sandstone has adsorptive capacity for gas. One-third of coal in Dalong coal seam is coke, which has a high specific surface area of 280 m2/g. From SEM images, cracks has been developed and crosslinked.
     The T3xj4 sandstone had low intensity and obvious yielding, and the process of fatigue failure under cyclic loading and unloading fitted static complete stress-strain curve. The type of acoustic emission of T3xj4 sandstone was similar to that of MOGI-I. All the signals in the Kaiser point, yield point and peak point of the stress-strain curve were significant, and there were Kaiser and Felicity effects. Under the confining pressure, the fracture ratio showed a good linear relationship with the secant modulus, axial maximum strain and strain energy of the fractured rock sample, and the full sandstone sample was further destructed to fractured sandstone sample. Both fractured T_3xj~4 sandstone sample and full sandstone sample followed the same creep law. All the stages in the creeping process could be described with the modified Nishihara model. Sandy shale in the apical plate had high brittleness, loud crack, an acoustic emission similar to dense unstable-IV, and significant signals in Kaiser point and peak point.
     Gas expands doing work law in coal and T_3xj~4 sandstone under different conditions were systematically studied with the independently made device. The results showed that under low gas pressure, the protrusive length of piston, which reflected the ability of doing work, had an exponent relationship with the pressure of gas in the coal, while showed a linear relationship with the pressure of gas in the sandstone. After computing the polytropic exponent of gas expanding, the gas expansion process is considered to be an isothermal process.
     Both rock and gas outburst and rock burst belong to the rock dynamic phenomena. And both of them happen in high stress zone, and have an relationship with construction disturbance. Generally, rock and gas outburst was caused by blasting operation, accompanied with rock fragments and gas emission. The energy source of the outburst was the elastic strain energy and ravity potential energy of rock mass, and gas expansion energy. Outburst cavern was irregular, which means the pyriform and bag, and the cavern extend to interior of rock mass. Rock burst occurred spontaneously, and mostly in the rocks with high strength and hard brittle. Shallow blasting pits formed after rock burst. After computing the fracture zone in the rock lane of Yongchuan coal mine, and comparing with that under ground stress field which is mainly composed of horizontal structure stress, it was indicated that the plastic deformation zone, caused by the vertical ground stress, distributed symmetrically on the double shoulders of the roadway, while the distribution of the plastic deformation zone caused by the horizontal ground stress was different. Comparing the rock fracture zone with the actual outburst cavern, it was shown that the outburst cavern was evoluted and developed from the partial damage zone caused by high ground stress, the external loading stress could not be changed by the explosive stress, and rock and gas outburst could be induced by blasting.
     Elastic deformation energy, gas expansion energy, gravitational potential energy, and energy conversion of the three energies of fracture zone in rock and gas outburst were discussed. According to energy balance principle, critical condition of elastic modulus and initial velocity of thrown out of roc were obtained. The maximum Poisson's ratio of rock should be obtained with cyclic loading test after post peak. Theoretically, the start time for rock and gas outburst can be estimated with the strain-time curve of rock creep failure under plane stress condition. The mechanism of rock and gas outburst was also proposed. The outburst is a kind of mineral dynamic phenomenon, which is caused by the deformation zone under the combined action of gas and blasting and other factors. The deformation zone is formed in the rock with physical-mechanical properties under high ground stress. The energy for rock and gas outburst results from elastic deformation energy , gas expansion energy and gravitational potential energy. When the potential of elastic deformation energy of rock mass is sufficiently large, rock mass will be destroyed, and outburst begins. If gradient of in-situ stress and gas pressure is sufficiently large, outburst will be developed and expand. Rock and gas outburst will stop once the depletion of energy and hinder channel of outburst, and gradient of in-situ stress and gas pressure is low.
引文
[1]李术才,王汉鹏,钱七虎,等.深部巷道围岩分区破裂化现象现场监测研究[J].岩石力学与工程学报,2008,27(8):1544-1553.
    [2]张福旺,李铁.深部开采复合型煤与瓦斯动力灾害的认识[J].中州煤炭,2009,4:73-76.
    [3] Xiao-Zhao Li, An-Zeng Hua. Prediction and prevention of sandstone-gas outbursts in coal mines[J]. International Journal of Rock Mechanics & Mining Sciences,2006,43:2-18.
    [4] Stephen D Butt, Paul K Frempong, Chinmoy Mukherjee, et al. Characterization of the permeability and acoustic properties of an outburst-prone sandstone[J]. Journal of Applied Geophysics,2006,58:1-12.
    [5]王海兵,徐相柱,石占民,等.艾友矿岩石与瓦斯突出特征及防治[J].煤矿安全,2008,7:23-25.
    [6]宋景春,李跃丰,朱光宗,等.艾友矿岩石与瓦斯突出特征及防治技术[J].//2007年全国煤矿安全学术年会论文,2007,34-39.
    [7] V Frid. Electromagnetic radiation method for rock and gas outburst forecast[J]. Journal of Applied Geophysics,1997,38:97-104.
    [8]重庆市煤炭学会.重庆地区煤与瓦斯突出防治技术[M].北京:煤炭工业出版社,2005.
    [9]中国科学技术情报研究所重庆分所.煤、岩石和瓦斯突出国外资料汇编(第二集)[M].重庆:科学技术文献出版社重庆分社,1979.
    [10]齐波,王佑安.北票岩石和瓦斯突出[J].煤矿安全,1982,2:23-26.
    [11]罗恒.红砂岩泥化夹层物理力学性质的试验研究[J].公路工程,2008,33(6):5-7.
    [12]АА斯阔成斯基,ГД李金.矿井瓦斯涌出量研究[M].王英敏译.北京:煤炭工业出版社,1958.
    [13]李晓昭,华安增.含油气砂岩突出的宏微观预测[J].岩土工程学报,1998,20(5):22-26.
    [14]ВСВереда.прогнозвыбросопасногопесчаникавусловиеДонецкогобассейна[J].Известиявысшихучебныхзаведенийгеологияиразведка.1970,1:69-73.
    [15]МИбольшинский.Оединойпроблемедлясущностивнезапныхвыбросовугля,породигазавполевыхвыработкахпутемимерыдляпредотвращение[J].Уголь,1975,11:26-29.
    [16]НСПоляков.Прогнозированиеметодахпрофилактикивнезапныхвыбросовпородигазавглубокихшахтах[J].Шахтноестроительство,1975,8:10-13.
    [17] E Fjaer,R M Holt,P horsrud,et al. Petroleum Related Rock Mechanics[M].hungary Developments in petroleum science,2008.
    [18] V Schmidt,D A Mcdonald.砂岩成岩过程中的次生储集孔隙[M].陈荷立,汤锡元译.北京:石油工业出版社,1982.
    [19]АТ艾鲁尼.煤矿瓦斯动力现象的预测和防治[M].唐修义,宋德淑,王荣龙译.北京:煤炭工业出版社,1992.
    [20]СНОсипов,НЕВолошин,Обмеханзмевыбпосовпородыигазавопроходах[J].Шахтноестроительство,1972,1:16-20.
    [21]小林良二.关于岩石突出的基础研究[J].日本矿业会志,1978,6:1-5.
    [22]余贤斌,谢强,李心一,等直接拉伸、劈裂及单轴压缩试验下岩石的声发射特性[J].岩石力学与工程学报,2007,26(1):137-142.
    [23]磯部俊郎,岩石突出和瓦斯突出的预测和预防[J].炭矿技术,1974, 6:11-16.
    [24]ГМКрюков,СКМангуш,Баланссилвнезапныхвыбросовпородвглубокойштрекевшахтах[J],Уголь,1975,9:20-22.
    [25]姜永东,鲜学福,杨春和.巷道岩体蠕变断裂失稳区预测研究[J].岩土工程,2008,30(6):906-910.
    [26]鲜学福,许江,王宏图.煤与瓦斯突出潜在危险区(带)预测[J].中国工程科学,2001,3(2):39-51.
    [27]郑颖人.岩土材料屈服与破坏及边(滑)坡稳定分析方法研讨-“三峡三峡库区地质灾害专题研讨会”交流讨论综述[J].岩石力学与工程学报,2007,26(4):649-661.
    [28]高红,郑颖人,冯夏庭.岩土材料最大主剪应变破坏准则的推导[J].岩石力学与工程学报,2007,26(3):518–524.
    [29]金立平.冲击地压的发生条件及预测方法的研究[D].重庆:重庆大学,1992.
    [30]谢和平,鞠杨,黎立云.基于能量耗散与释放原理的岩石强度与整体破坏准则[J].岩石力学与工程学报,2005,24(17):3003–3 010.
    [31]谢兴华,郑颖人.岩体水力劈裂机制研究[C]//2006年三峡库区地质灾害与岩土环境学术研讨会论文集.重庆,2006:82-87.
    [32] Ito H,Sasajima S.A ten year creep experiment on small rock specimens[J]. Int.Rock.Mine. Sci.and Geomech, 1987.24(2):350-359.
    [33]鲜学福.岩石蠕变断裂失稳研究中几个问题的探讨[R],重庆大学:2006.
    [34]孙钧,凌建明.三峡船闸高边坡岩体的细观损伤及长期稳定性研究[J].岩石力学与工程学报,1997,16(1):1-7.
    [35]陈沅江,潘长良,曹平,王文星.层状岩质边坡蠕变破坏及其影响因素分析[J].勘察科学技术,2001(6):43-48.
    [36]范庆忠,王素华,高延法.岩石流变试验与本构模型研究进展[J].山东农业大学学报,2006,37(6):1236-140.
    [37]孙均.岩石流变力学及其工程应用研究的若干进展[J].岩石力学与工程学报,2007,26(6):1081-1106.
    [38] CHEN Youliang,SUN Jun. A criterion for crack initiation and propagation in intact rocks under creep condition [J].Journal of Coal Science & Engineering (China),2003,9(2):1-4.
    [39]任建喜.单轴压缩岩石蠕变损伤扩展细观机理CT实时试验[J].水力学报,2002,1:10-15.
    [40]杨春和,陈锋,曾义金.盐岩蠕变损伤关系研究[J].岩石力学与工程学报,2002,21(11):1602-1604.
    [41]朱合华,叶斌.单轴压缩岩石蠕变损伤扩展细观机理CT实时试验[J].岩石力学与工程学报,2002,21(12):1791-1796.
    [42]徐平,丁秀丽,全海,等.溪洛渡水电站坝址区岩体蠕变特性试验研究[J].岩土力学,2003,24(增1).220-226.
    [43]赵永辉,何之民,沈明荣.润扬大桥北锚碇岩石流变特性的试验研究[J].岩土力学,2003,24(4):583-586.
    [44]张向东,李永靖,张树光,等.软岩蠕变理论及其工程应用[J].岩石力学与工程学报,2004,23(10):1635-1639.
    [45]陈沅江,吴超,潘长良.一种软岩结构面流变的新力学模型[J].矿山压力与顶板管理,2005,3:43-48.
    [46]严仁俊,裴小彬,罗鑫,等.四川三叠系盐岩蠕变规律实验研究[J].西部探矿,2005,4:93-94.
    [47]荣耀,许锡宾,靖洪文,等.不同含水岩石蠕变试验电磁辐射频谱分析[J].岩石力学与工程学报,2005,24(增1):5090-5095.
    [48]王学滨.峰后脆性对非均质岩石试样破坏及全部变形的影响[J].中南大学学报,2008,39(5):1105-1111.
    [49]于不凡.煤与瓦斯突出机理[M].北京:煤炭工业出版社,1985:37-47.
    [50]蒋承林.煤壁突出孔洞的形成机理研究[J].岩石力学与工程学报,2000,19(2):225-228.
    [51]汪长明,王振,梁运培,等.煤与瓦斯突出过程中孔洞的形成机制[J].矿业安全与环保,2008,35(4):60-62.
    [51]许江,陶云奇,尹光志,等.煤与瓦斯突出模拟试验台的研制与应用[J].岩石力学与工程学报,2008,27(11):2354-2362.
    [52]程明俊.煤渗透性能及煤与瓦斯突出过程模拟实验研究[D].重庆:重庆大学,2008:57-60.
    [53]АНЗорин.Физическaяимеханическaятеориядлявыбросыпородывштреке[J],Физ.-Технп.робп.разработкиполезн.ископа.,1972, 5:34-41.
    [54]ВИНиколин.Воодушевлённаярольвзрыведлявыбросыпородыигаэы[J].Шахтноестроительство.1972, 9:14-17.
    [55]МФДрукованый.在深部矿井下用大眼放炮方法掘进巷道时岩石突出的原因[C]//煤与瓦斯突出资料汇编(第一集).重庆:煤炭工业部重庆研究所编,1987.
    [56]氏平增之.瓦斯突出危险区域的爆破[J].刘冠玉译.煤炭工程师,1989,5:46-53.
    [57]刘国泉.红卫煤矿诸突出矿井非爆破作业时煤和瓦斯突出问题的探讨[J].煤炭工程师,1993,4:36-42.
    [58]蒋承林.爆破对矿井突出的影响分析[J].岩石力学与工程学报,1998,17(5):502-507.
    [59]刘保县,鲜学福,刘新荣,等.爆破激发煤瓦斯突出的研究[J].中国矿业,2002,9:89-91.
    [60]谢勇谋,李天斌.爆破对岩爆产生作用的初步探讨[J].中国地质灾害与防治学报,2004,15(1):61-64.
    [61]徐则民,黄润秋.岩爆与爆破的关系[J].岩石力学与工程学报,2003,22(3):414-419.
    [61]王清泉,王家瑶,石光漪,等.力学与生产建设.北京:北京大学出版社,1982:128-137.
    [62]文光才.煤与瓦斯突出的能量研究[J].矿业安全与环保,2003,30(6):1-9.
    [63]徐则民,吴培关,王苏达,等.岩爆过程释放的能量分析[J].自然灾害学报,2003,12(3):104-110.
    [64]祝启虎,卢文波,孙金山.基于能量原理的岩爆机理及应力状态分析[J].武汉大学学报(工学版),2007,40(2):84-87.
    [65]王耀辉,陈莉雯,沈峰.岩爆过程能量释放的数值模拟[J].岩土力学,2008,29(3):790-794.
    [66]АЭПетросян.Обэнергиимдтакавугольныхпластах,Уголь,1976,6:35-37.
    [67]朱连山.关于煤层中的瓦斯膨胀能[J].煤炭工程师,1985,2:47-50.
    [68]刘明举,颜爱华,丁伟,等.煤与瓦斯突出热动力过程的研究[J].煤炭学报,2003,28(1):50-54.
    [69]刘彦伟,浮绍礼,浮爱青.基于突出热动力学的瓦斯膨胀能计算方法研究[J].河南理工大学学报,2008,27(1):1-5.
    [70] Mehugh S.Crack exteosion caused by jnternal gas pressure compared with extension eaused by tensile stress[J].Int.J.Fract.,1983,21(3):163-176.
    [71]王伟,李小春.不耦合装药下爆炸应力波传播规律的试验研究[J].岩土力学,2010,31(6):1723-1728.
    [72]王明洋,葛涛,戚承志,等.爆炸载荷作用下岩石的变形与破坏(I)[J].防灾减灾工程学报,2003,23(2):41-56.
    [73]王明洋,葛涛,戚承志,等.爆炸载荷作用下岩石的变形与破坏(II)[J].防灾减灾工程学报,2003,23(3):9-20.
    [74]白以龙.冲击载荷下材料的损伤和破坏[M].王礼立编.冲击动力学进展.合肥:中国科技大学出版社,1992,1,34-57.
    [75]ККСамохвалов,АГПротосеня.Управлениеподземныхвыделитьрокдвигателя[J].Шахтноестроительство,1971,6:11-12.
    [76]郭臣业,鲜学福,万亮亮,等.永川煤矿须六段砂岩力学性质与冲击倾向性实验研究[J].中国地质灾害与防治学报,2010,21(1):94-97.
    [77]卢正东.荷包场区块须家河组二段、四段储层研究[D].成都:成都理工大学,2004,6.
    [78]潘泉涌.蜀南荷包场地区须家河组成藏条件及成藏模式研究[D].成都理工大学,2008,6.
    [79]陈大力.浅析煤系地层围岩体的瓦斯赋存特征[J].煤矿安全,2006,12:48-69.
    [80]张立平,梁润所,齐贵明.阳泉矿区3#煤层瓦斯赋存特征及防治[J].煤炭技术,2003,22(3):64-66.
    [81]李晓昭.含气岩体应力应变的研究及油气砂岩突出的防治[D].徐州,中国矿业大学,1996.
    [82] Y B Zhang,Z Q Kang,F P Li. Microcosmic mechanism analysis and experimental study of rock burst fracture based on SEM [Z].Proceedings of the International Young Scholars' Symposium on Rock Mechanics,2008:873-876.
    [83]冯涛,谢学斌,潘长良,等.岩爆岩石断裂机理的电镜分析[J].中南工业大学学报,1999,30(1):14-17.
    [84] L S勃克斯.X射线光谱分析[M].高新华译.北京:化学工业出版社,1973:82-90.
    [85]张庄.蜀南地区山三叠统须家河组沉积相与储层研究[D].西南石油大学,2006.4:11-12.
    [86]李云,时志强.四川盆地中部须家河组之谜砂岩储层流体包裹体的研究[J].岩性油气藏,2008,20(1):27-32.
    [87]刘长江,桑树勋,WANG Guoxiong,等.模拟CO2埋藏不同煤级煤孔隙结构变化实验研究[J].中国矿业大学学报,2010,39(4):496-503.
    [88]何更生.油层物理[M].北京:石油工业出版社,1994.
    [89]周素红,邹涛.压汞法和气体吸附法测定固体材料孔径分布和孔隙度[A].2007年全国粉体工业技术大会论文集[M],2007.
    [90]刘高峰,张子戌,张小东,等.气肥煤与焦煤的孔隙分布规律及其吸附–解吸特征[J].岩石力学与工程学报,2009,28(8):1587-1592.
    [91] KLOUBEK J.Investigation of porous structures using mercury reintrusion and retention[J].Journal of Colloid and Interface Science,1994,163(1):10-18.
    [92]刘新社,席胜利,周焕顺.鄂尔多斯盆地东部上古生界煤层气储层特征[J].煤田地质与勘探,2007,35(1):37-40.
    [93]袁亮.低透气性煤层群无煤柱煤与瓦斯共采理论与实践[M].北京:煤炭工业出版社,2008.
    [94] William P Diamond, Steven J Schatzel. Measuring the gas content of coal: A review[J]. International Journal of Coal Geology,1998,35(1):311-331.
    [95] Rachel Walker, Miryam Glikson, Maria Mastalerz. Relations between coal petrology and gas content in the Upper Newlands Seam, central Queensland, Australia[J].International Journal of Coal Geology,2001,46(2):83-92.
    [96]闫存章,黄玉珍,葛春梅,等.页岩气是潜力巨大的非常规天然气资源[J].天然气工业,2009,29(5):1-6.
    [97] MTS. MTS Rock And Concrete Mechanics Testing Systems[m]. MTS Systems Corporation, 2003.
    [98] MTS. Teststar Materials Testing Workstation Installation Manual[M]. MTS Systems Corporation, 2003.
    [99]米勒L.岩石力学[M].李世平,冯震海译.北京:煤炭工业出版社,1981.
    [100] WAWERSIK W R,FAIRHURST C.A study of brittle rock fracture in laboratory compression experiments[J].Int Rock Mech and Min Sci&Geomech Abstr,1970,7(5):561-564.
    [101]尤明庆,华安增.岩石试样单轴压缩的破坏形式与承载能力的降低[J].岩石力学与工程学报,1998,17(3):292-296.
    [102]周维垣.高等岩石力学.北京:水利电力出版社,1989.
    [103]葛修润,卢应发.循环载荷作用下岩石疲劳破坏和不可逆变形问题的探讨[J].岩土工程学报,1992,14(3):56-60.
    [104]蔡美峰,何满潮,刘东燕.岩石力学与工程[M].北京:科学出版社,2006.
    [105] J A Hudson,J P Harrison.Engineering rock mechanics:an introduction to the principles[M]. Great Britain: Redwood Books,2000.
    [106] J C耶格,N G W库克.岩石力学基础[M].中国科学院工程力学研究所译.北京:科学出版社,1983.
    [107]尤明庆.岩样三轴压缩的破坏形式和Coulomp强度准则[J].地质力学,2002,8(2):179-185.
    [108]ЛДЕфремов.地压对形成突出的影响[C]//国外煤与瓦斯突出资料汇编(第一集).重庆:科学技术文献出版社重庆分社,1978:80-81.
    [109]钱七虎.岩石爆炸动力学的若干进展[J].岩石力学与工程学报,2009,28(10):1945-1968.
    [110]ВТЯлушко, B B Bинoградов.РазрушeниeΓорныxПородиΠрогнозированиeΠроявлeнийΓорногoДавления[M].Москванедра, 1982.
    [111]郭臣业,鲜学福,姜永东,等.破裂砂岩蠕变试验研究[J].岩石力学与工程学报,2010,29(5):990-995.
    [112]佘成学,催旋.岩石非线性蠕变模型[J].武汉大学学报(工学版),2009,42(1):25-28.
    [113]姜永东.三峡库区边坡岩土体蠕滑与控制的现代非线性科学研究[D].重庆:重庆大学,2006.
    [114]曹树刚.煤岩的蠕变损伤、瓦斯渗流和煤与瓦斯突出关系的研究[D].重庆:重庆大学,2002.
    [115] LABUZ J F, BRIDELL J M. Redcuing frictional constrain in compression testing through lubrication [J]. International Journal of Rock Mechanics and Mining Sciences and Geomechanics Abstracts, 1993(30):451-455.
    [116] A Lavrov. The kaiser effect in rocks: principles and stress estimation techniques[J]. International Journal of rock mechanics & mining sciences,2003, 40:151-171.
    [117] Villaescusa E, Seto M, Baird G. Stress measurement from oriented core[J]. International Journal of rock mechanics & mining sciences,2002,39:603–15.
    [118] Boyce G M,McCabe W M,Koerner R M.Acoustic Emission Signatures of Various Rock Typesin Unconfined Compression[C].In:Drnevich V P,Gray R E,eds.Acoustic Emissions in Geotechnical Engineering Practice.ASTM STP 750,1981,142-154.
    [119] WANG H T,XIAN X F,YING G Z.A new method of determining geostresses by the acoustic emission Kaiser effect[J]. International Journal of Rock mechanics and Mining Sciences,2004,(37):534-547.
    [120]邵兆刚,丁原晨.塔北油区岩石声发射全过程曲线类型及特征[J].地质力学学报,1998,4(1):89-96.
    [121]唐晓军.循环载荷作用下岩石损伤演化规律研究[D].重庆:重庆大学,2008.
    [122]徐速超,冯夏庭,陈炳瑞.矽卡岩单轴循环加卸载试验及声发射特性研究[J].岩石力学与工程学报,2009,30(10):2929-2934.
    [123]李庶林,尹贤刚,王泳嘉,等.单轴受压岩石破坏全过程声发射特征研究[J].岩石力学与工程学报,2004,23(15):2499-2503.
    [124] C Li,E Nordlund.Experimental verification of the Kaiser effect in rocks[J].Rock Mechanics and Rock Engineering,1993,26(4):333-351.
    [125]赵兴东,李元辉,袁瑞甫.花岗岩Kaiser效应的实验验证与分析[J].东北大学学报(自然科学版),2007,28(2):254-257.
    [126]杨明纬.声发射检测[M].北京:机械工业出版社,2005.
    [127] A D Papargyris, R G Cooke, S A Papargyri, et al. The acoustic behaviour of bricks in relation to their mechanical behaviour[J]. Construction and Building Materials,2001,15(7):361-369.
    [128]李树春.周期循环加载作用下岩石变形与损失规律及非线性特征[D].重庆:重庆大学,2008.
    [129]葛修润,任建喜,浦毅彬,等.岩石疲劳损伤扩展规律细观分析初探[J].岩土工程学报,2001,2(23):191-195.
    [130]巴晶,刘力强,马胜利.岩石力学试验中的声发射源定位技术[J].无损检测, 2004,7(26):342-348.
    [131]刘力强,马胜利,马谨,等.岩石构造对声发射体积特征的影响[J].地震地质, 1999,21(4):377-386.
    [132] WU Shiyue, GUO Yongyi, LI Yuanxing, et al. Research on the mechanism of coal and gas outburst and the screening of prediction indices[J].Procedia Earth and Planetary Science, 2009,1(1):173-179.
    [133] J G Singh. A mechanism of coal and gas outburst[J]. Miming Science and Technology, 1984,1:269-273.
    [134]蒋承林,俞启香.煤与瓦斯突出的球壳失稳机理及防治技术[M].徐州:中国矿业大学出版社,1998.
    [135] Fehmi A,Ahmet A. Effect of particle size on the spontaneous heating of on coal stockpile[J].Com-bustion and Flame,1994, 9:137-146.
    [136]蒋承林,俞启香.煤与瓦斯突出机理的球壳失稳假说[J].煤矿安全,1995,2:17-25.
    [137]蒋承林.煤与瓦斯突出阵面的推进过程及力学条件分析[J].中国矿业大学学报, 1994, 23(4): 1-9.
    [138]侯世松,蒋承林.初始释放瓦斯膨胀能测定原理与应用[J].采矿与安全工程学报,2008,25(3):322-326.
    [139]李晓伟,蒋承林,季明,等.初始释放瓦斯膨胀能与煤体破碎程度的关系研究[J].煤矿安全,2008,5:1-3.
    [140]韩颖,蒋承林.初始释放瓦斯膨胀能与煤层瓦斯压力的关系[J].中国矿业大学学报,2005,34(5):650-654.
    [141]蒋承林,陈松立,陈燕云.煤样中初始释放瓦斯膨胀能的测定[J].岩石力学与工程学报,1996,15(4):395-400.
    [142] HUANG Wei, CHEN Zhanqing, YUE Jianhua, et al. Failure modes of coal containing gas and mechanism of gas outbursts[J].Mining Science and Technology (China),2010,20(4):504-509.
    [143]景国勋,张强.煤与瓦斯突出过程中的瓦斯作用研究[J].煤炭学报,2005,30(2):169-171.
    [144] CAO Yunxing, HE Dingdong, Glick David C. Coal and gas outbursts in footwalls of reverse faults[J]. International Journal of Coal Geology,2001,48:47-63.
    [145] Jacek Jagie??oa, Mieczys?aw Lasoń, Adam Nodzeńskia. Thermodynamic description of the process of gas liberation from a coal bed[J]. Fuel,1992,71(4):431-435.
    [146]郭立稳,俞启香,秦长江.龙山煤矿煤与瓦斯温度异常现象分析[J].矿业安全与环保,2000,27(增刊):53-57.
    [147]郭立稳.含瓦斯煤破裂过程的热效应研究[D].徐州:中国矿业大学,1999.
    [148]陈建民.地应力与岩体红外辐射现象理论初探[J].煤炭学报,1995,20(3):256-259.
    [149]王宏图,鲜学福,贺建民,等.用温度指标预测掘进工作面突出危险性的探讨[J].重庆大学学报(自然科学版):1999,22(2):34-38.
    [150]尹光志,赵洪宝,许江,等.煤与瓦斯突出模拟试验研究[J].岩石力学与工程学报,2009,28(8):1674-1680.
    [151]牛国庆,颜爱华,刘明举.煤与瓦斯突出过程中温度变化的实验研究[J].西安科技学院学报,2003,23(3):245-248.
    [152]郭立稳,蒋承林.煤与瓦斯突出过程中向温度变化的因素分析[J].煤炭学报,2000,25(4):401-403.
    [153]郭立稳,俞启香,蒋承林,等.煤与瓦斯突出过程中温度变化的实验研究[J].岩石力学与工程学报,2000,19(3):366-368.
    [154]谭学术,鲜学福,肖勤学.矿井煤与瓦斯突出中瓦斯膨胀能探讨[J].山东矿业学院学报,1986,3:37-41.
    [155]俞启香.矿井瓦斯防治[M].徐州:中国矿业大学出版社, 1992.
    [156] Valliappan S, Zhang Wohua. Role of gas energy during coal outbursts [J]. Int. J. Numer. Mech. Engng, 1999, 44 (7):875-895.
    [157]何学秋.含瓦斯煤岩流变动力学[M].徐州:中国矿业大学出版社, 1995.
    [158]吴俊.关于煤层气体热力学理论和若干参数计算的研究[J].煤炭学报,1989,2:99-112.
    [159]ВВХодот.Внезапныевопросыуголяигаза[M].ГостортсхиздатДенинград,1961:3-16.
    [160]鲜学福,辜敏,李晓红,等.煤与瓦斯突出的激发和发生条件[J].岩土力学,2009,30(3):577-581.
    [161]刘明举,颜爱华.煤与瓦斯突出热动力过程分析[J].焦作工学院学报(自然科学版). 2001, 20 (1): 1-7.
    [162]Аируниатидри.Coal and gas outburst theory under blast[M].Moscow:Moscow Mining Institute,1955.
    [163] Alexeeva A D,Revva V N,Alyshev N A,et al.True triaxial loading apparatus and its application to coal outburst prediction[J].International Journal of Coal Geology, 2004,58(4):245–250.
    [164]氏平增之.内部分か.压じよる多孔质材料の破坏づろや.たついてか.突出た关する研究[J].日本矿业会志,1984(100):397-403.
    [165]邓全封,栾永祥,王佑安.煤与瓦斯突出模拟实验[J].煤矿安全,1989,(11):5-10.
    [166]蒋承林,郭立稳.延期突出的机制与模拟试验[J].煤炭学报,1999,24(4):373-378.
    [167]孟祥跃,丁雁生,陈力,等.煤与瓦斯突出的二维模拟试验研究[J].煤炭学报,1996,21(1):57-62.
    [168]蔡成功.煤与瓦斯突出三维模拟试验研究[J].煤炭学报,2004,29(1):66–69.
    [169]陈安敏,顾金才,沈俊,等.岩土工程多功能模拟试验装置的研制及应用[J].岩石力学与工程学报,2004,23(3):372-378.
    [170]许江,陶云奇,尹光志,等.煤与瓦斯突出模拟实验台的研制与应用[J].岩石力学与工程学报,2008,27(11):2354-2362.
    [171]魏建平,陈永超,温志辉.构造煤瓦斯解吸规律研究[J].煤矿安全,2008,8:1-3.
    [172]张小东,张子戌.煤吸附瓦斯机理研究的新进展[J].中国矿业,2008,17(6):70-76.
    [173]许满贵,马正恒,陈甲,等.煤对甲烷吸附性能影响因素的实验研究[J].矿业工程研究,2009,24(2):51-54.
    [174]周世宁,林柏泉.煤层瓦斯赋存及流动规律[M].北京:煤炭工业出版社,1999:14-16.
    [175]高崇伊,朱琴.多方过程的定义及其和准静态过程的关系[J].大学物理,2006,25(2):13-15.
    [176]华安增.岩石冲击及能量释放[C].孙钧,林韵梅.岩石力学新进展,沈阳:东北工学院出版社,1989:220-229.
    [177]华安增,丁伯坤.就西安竖井煤和瓦斯突出论岩石冲击[J].矿山压力,1988,1:15-18.
    [178]孙重旭译.西德北莱茵-威斯特法伦矿山监察局防止突出规定[J].煤矿安全技术,1985,3:50-58.
    [179]КKоласа.ВнезапныхвыбросовпородигазавшахтахвЧешскойРеспублике[J],Шахтноестроительство,1974,7:30-32.
    [180]КК?wing.岩层地质构造与瓦斯突出的关系[C].煤、岩石和瓦斯突出国外资料汇编(第一集).重庆:科学技术文献出版社重庆分社,1979.
    [181] Sellers E J,Schweitzer.Mining of the effect of discontinutities on the extent of the fracture zone surrounding deep tunnels[J].Tunneling and underground space technology, 2000, 15(4):463-469.
    [182] ZUO Y J,LI X B,ZHOU Z L. Determination of ejection velocity of rock fragments during rockburst in consideration of damage[J]. Journal of Central South University, 2005, 12(5):618-622.
    [183]郭雷,李夕兵,岩小明.岩爆研究进展及发展趋势[J].采矿技术,2006,6(1):16-20.
    [184]徐则民,黄润秋,范国柱,等.长大隧道岩爆灾害研究进展[J].自然灾害学报,2004,13(2):16-24.
    [185]张咸恭,王思敬,张倬元,等.中国工程地质学[M].北京:科学出版社, 2000.
    [186]张倬元,王士天,王兰生.工程地质分析原理[M].北京:地质出版社, 1980.
    [187] FENG X T,WEBBER S,OZBAY M U,et al. An expert system on assessing rockburst risks for South African deep gold mines[J]. Journal of Coal Science and Engineering,1996,2(2):23-32.
    [188]徐林生,王兰生.岩爆形成机理研究[J].重庆大学学报,2001,24(2):115-121.
    [189]徐林生,王兰生,李天斌.国内外岩爆研究现状综述[J].长江科学院院报,1999,16(4):24-38.
    [190] Salamon M D G.Some applications of geomechanical modeling in rockburst and related research.In:Yang,ed.Rockburst and seismitity in mines.Rotterdam:A A Balkema, 1993: 297-309.
    [191]吉学文,王春来,吴爱祥,等.某深井矿山岩爆特征及及形成机理研究[J].金属矿山,2008,9:23-30.
    [192]秦跃平,姚有利,陈凤颖,等.基于岩石损伤力学的深部开采岩爆机理研究[C]//谢和平,等.深部开采基础理论与工程实践.北京:科学出版社,2006.
    [193]杨凌云.括苍山深埋特长隧道岩爆预测及防治研究[D].西安:长安大学,2007.
    [194]魏福生,胡国忠,王宏图,等.永川煤矿地应力测试及地应力变化特征[J].矿业安全与环保,2007,34(4):1-6.
    [195]郑颖人,赵尚毅.岩土工程极限分析有限元法及其应用.土木工程学报,2005,38(1):91-104.
    [196]刘鸿文.材料力学[M].北京:高等教育出版社,1992.
    [197]马建军.软岩巷道在周边爆破反复作用下的损伤疲劳破坏[J].中国矿业,2005,14(11):67-69.
    [198]严鹏,卢文波,罗忆,等.基于小波变换时-能密度分析的爆破开挖过程中地应力动态卸载振动到达时刻识别[J].岩石力学与工程学报,2009,28(增1):2836-2844.
    [199] P K Singh. Blast vibration damage to underground coal mines from adjacent open-pit blasting[J]. International Journal of Rock Mechanics and Mining Sciences, 2002, 39(8):959-973.
    [200]谭云亮,李芳成,周辉,等.冲击地压声发射前兆模式初步研究[J].岩石力学与工程学报,2000,19(4):425-428.
    [201]张志呈,王刚,杜云贵.爆破原理与设计[M].重庆:重庆大学出版社,1992.
    [202]孙重旭,孔凡正.炮采炮掘工作面煤与瓦斯突出的特点与防治[J].煤炭工程师,1998,3:19-22.
    [203]鲜学福,辜敏.煤与瓦斯突出的形成、发展、发生条件与自组织临界特性[R],2006.
    [204]涂忠仁.杨强.岩体负泊松比试验研究[J].岩土力学,2008,29(10):2833-2842.
    [205] Von Karman T.Festigkeitsversuche unter allseitigem Druck[C].In:Voight B (ed.),Mechanics of thrust faults and decollement.1976:86-96.
    [206]方华,伍向阳.温压条件下岩石破坏前后的力学性质与波速[J].地球物理学进展,1999,14(3):73-78.
    [207]黄荣樽,庄锦江.围压对岩石泊松比影响的试验研究[J].华东石油学院学报,1985,9(1):34-45.
    [208]鲜学福,辜敏,姜永东.对地下工程岩石和瓦斯突出中一些问题的讨论[R].重庆:重庆大学,2006.
    [209]鲜学福,李晓红,姜德义,等.瓦斯煤层裸露面蠕变失稳的时间预测研究[J],岩土力学,2005,26(6): 841-844.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700