用户名: 密码: 验证码:
混杂纤维增强高性能混凝土深梁受剪性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
钢筋混凝土深梁以其巨大的承载能力,在土木工程中得到越来越广泛的应用。由于深梁的跨高比较小,在荷载作用下弯矩值较低,而剪力值却相对较高,其受剪承载力的计算在结构设计中显得尤为重要。为了满足抗剪要求,深梁往往具有较大的高度,并且需要配置大量的钢筋,这样既浪费材料,同时也给施工增加了难度。高性能混凝土具有较高的强度和耐久性,将其应用于深梁结构能较大地提高深梁的承载能力,减小构件的尺寸和自重,节约建筑材料。但主要缺点是仍然没有改变混凝土的脆性性质,并且混凝土强度越高,其脆性越大,这使得深梁剪切破坏时延性更差,不利于结构抗震。混杂纤维混凝土以其优良的力学性能,越来越受到各国研究者的关注。能否将钢纤维/聚丙烯纤维混杂掺入高性能混凝土,得到性能更优的高性能混凝土:一方面利用混杂纤维增加高性能混凝土的韧性,提高深梁剪切破坏延性;另一方面依靠混杂纤维的增强作用,提高深梁斜截面承载能力,减小分布钢筋用量,解决配筋过密引起的施工困难。为此,本文采用试验研究与理论分析相结合的方法,对混杂纤维高性能混凝土深梁受剪性能进行较为深入的研究,主要包括以下几方面内容:
     (1)采用正交试验法设计混杂纤维高性能混凝土强度试验,分析钢纤维外形、长径比、体积率及聚丙烯纤维体积率对高性能混凝土立方体抗压强度、劈裂抗拉强度及拉压强度比的影响,比较各因素对高性能混凝土强度影响的大小顺序。结果表明,钢纤维/聚丙烯纤维混杂掺入高性能混凝土后,使基体高性能混凝土的立方体抗压强度、劈裂抗拉强度及拉压强度比普遍提高。其中,钢纤维外形的影响最大,钢纤维长径比的影响最小。
     (2)通过18根混杂纤维高性能混凝土深梁及2根普通高性能混凝土深梁的受剪试验,采用直观分析法对影响深梁抗剪极限强度的各因素进行定量分析与比较。结果表明,混杂纤维的掺入可以显著提高高性能混凝土深梁的抗剪极限强度。影响混杂纤维高性能混凝土深梁抗剪极限强度的各因素中,水平分布钢筋配筋率的影响最大,钢纤维长径比的影响次之,聚丙烯纤维体积率的影响最小。
     (3)结合我国现行《混凝土结构设计规范》(GB50010-2002)和《纤维混凝土结构技术规程》(CECS 38:2004)中深梁受剪承载力计算公式,参考国内外学者相关研究成果,分析规范现有受剪承载力计算公式对高性能混凝土深梁的适用性,提出混杂纤维高性能混凝土深梁斜截面受剪承载力计算公式,可供工程设计参考。
     (4)基于深梁受剪试验结果,采用直观分析法对影响深梁剪切初裂强度的各因素进行定量分析与比较。结果表明,混杂纤维的掺入可以显著提高高性能混凝土深梁的剪切初裂强度。在影响混杂纤维高性能混凝土深梁剪切初裂强度的诸因素中,钢纤维长径比的影响最大,聚丙烯纤维体积率的影响次之,竖向分布钢筋配筋率的影响最小。
     (5)结合我国现行《混凝土结构设计规范》(GB50010-2002)中普通混凝土深梁及《纤维混凝土结构技术规程》(CECS 38:2004)中钢纤维混凝土深梁斜截面抗裂度计算公式,参考国内外学者相关研究成果,建立了混杂纤维高性能混凝土深梁斜截面抗裂度计算公式,为实际工程设计提供参考。
     (6)在混杂纤维高性能混凝土深梁受剪性能试验研究的基础上,采用正交分析法探讨钢纤维外形、长径比及体积率、聚丙烯纤维体积率、水平及竖向分布钢筋配筋率对深梁受剪破坏形态及延性的影响,比较各因素对深梁剪切破坏延性的影响,分析了混杂纤维高性能混凝土深梁的受剪破坏机理。结果表明,混杂纤维的掺入可以显著提高高性能混凝土深梁剪切破坏延性。其中,钢纤维体积率的影响最大,超过了水平和竖向分布钢筋的影响,钢纤维外形的影响最小。
     (7)运用大型有限元分析软件ABAQUS对普通高性能混凝土深梁及混杂纤维高性能混凝土深梁受剪性能进行数值模拟,并与试验结果进行了比较,同时针对试验中未能考虑的影响因素进行有限元拓展分析。有限元分析结果表明,随着配筋率的增加,混杂纤维高性能混凝土深梁抗剪极限承载力有所提高,但提高的幅度很小;当剪跨比λ≤1时,混杂纤维高性能混凝土深梁受剪承载力随剪跨比的变化不明显;增大跨高比使混杂纤维高性能混凝土深梁的受剪极限承载力有所提高,但变化幅度不大,这些都与普通混凝土深梁的规律一致。
Nowadays, reinforced concrete deep beams are more and more widely used in civil engineering because of their tremendous bearing capacity. The shear capacity calculation of deep beam is of especial significance in the structural design because the span-depth ratio of deep beam is relatively small, which leads to a small moment but fairly high shear stress under loads. In order to meet the needs of shear resistance, deep beams are usually high with lots of steels inside, which on the other hand means more materials needed and more difficulties met in construction. High performance concrete (HPC) is featured in high strength and good durability. The application of HPC to deep beam structure will improve the bearing capacity of deep beam, reducing the component dimension and self-weight, to save the construction materials. However, HPC still fails to get rid of the brittle nature of concrete, and the higher strength of HPC, the brittler the concrete will be. Due to the bad ductility in shear failure, HPC deep beams are rarely favored to seismic resistance. Meanwhile, hybrid fiber reinforced concrete has been paid more and more attention to by researchers because of its eminent mechanical performance. So is it practical to reinforce HPC with steel and polypropylene hybrid fiber in order to obtain better-performance HPC: On the one hand, the advantage of hybrid fiber can increase the toughness of HPC and the ductility of deep beam in shear failure; on the other, making use of the reinforcement of hybrid fiber to improve the shear capacity of deep beam, which can reduce the amount of reinforcing steel so as to solve the construction problems caused by over-dense steel. Considering the reasons above, experimental and theoretical researches are carried out to study the shear performance of hybrid fiber reinforced HPC deep beams in this paper, with the following contents mainly concerned:
     (1) Orthogonal experimental method is adopted to conduct the cubic compression tests and tensile splitting tests of hybrid fiber reinforce HPC. The effects of several parameters (including the shape, length-diameter ratio, volume ratio of steel fiber, and the volume ratio of polypropylene fiber) on the cubic compression strength and tensile splitting strength of hybrid fiber reinforce HPC are analyzed respectively, and comparison is made to list these factors in order according to the magnitude of their effects. The test results show that the cubic compression strength, splitting tensile strength and the tensile-compression strength ratio of the HPC increased generally after being reinforced by the steel- polypropylene hybrid fiber, and among all the influencing factors, the shape of steel fiber is the most influential one, while the length-diameter ratio of steel fiber has the least effect.
     (2) Based on the shear tests of 18 HPC deep beams reinforced by steel- polypropylene hybrid fiber and 2 ordinary HPC deep beams, direct-viewing method is applied in comparing and quantitatively analyzing the effects of different factors on the shear capacity of deep beams. The test results indicate that the hybrid fiber can significantly increase the shear capacity of HPC deep beams. Among all the factors influencing the shear capacity of HPC deep beam reinforced by hybrid fiber, the reinforcement ratio of horizontal distribution bars is ranked as the top, the length-diameter ratio of steel fiber takes second place, and the volume ratio of polypropylene fiber is the least influential one.
     (3) Through combining the shear capacity calculation formulas for deep beams in current codes "Code for design of concrete structures" (GB50010-2002) with "Technical specification for fiber reinforced concrete structures" (CECS 38:2004), and referring to related research findings from scholars both at home and abroad, comparison is made to analyze the applicability of current shear capacity calculation formulas for HPC deep beams. Based on this analysis, a shear capacity calculation formula for HPC deep beams reinforced by steel- polypropylene hybrid fiber is proposed, which can be taken as a reference in engineering design.
     (4) Based on the shear tests of deep beams, direct-viewing method is adopted to quantitatively analyze and compare the effects of different factors on the initial cracking strength of deep beams. The test results show that the hybrid fiber can notably increase the initial cracking strength of HPC deep beams. Among all the factors influencing the initial cracking strength of HPC deep beam reinforced by hybrid fiber, the length-diameter ratio of steel fiber is the most influential one, the volume ratio of polypropylene fiber being less influential, and the reinforcement ratio of vertical distribution bars the least.
     (5) By combining the crack resistance capacity calculation formulas for steel fiber reinforced deep beams in current codes "Code for design of concrete structures" (GB50010-2002) with "Technical specification for fiber reinforced concrete structures" (CECS 38:2004), and basing on relevant research findings of scholars both at home and abroad, a crack resistance capacity calculation formula for HPC deep beams reinforced by steel- polypropylene hybrid fiber is come out with, which can provide references to engineering design.
     (6) Built upon the shear tests of HPC deep beams reinforced by steel- polypropylene hybrid fiber, orthogonal analysis is conducted to investigate the effect of different parameters, including the shape, length-diameter ratio, volume ratio of steel fiber, volume ratio of polypropylene, and horizontal and vertical reinforcement ratio, on the shear failure modes and ductility of the deep beams. Comparison is made to find out the magnitude of effect of different factors on the deformation and ductility of the deep beams. Hence, the shear failure mechanism of hybrid fiber reinforced HPC deep beams is revealed. The analysis results reflect that the hybrid fiber can greatly increase the ductility of HPC deep beam in shear failure. Among all the factors influencing the ductility of HPC deep beam reinforced by hybrid fiber in shear failure, the volume ratio of steel fiber is the most influential one, even more influential than the reinforcement ratio of vertical and horizontal distribution bars, and the shape of steel fiber being the least influential.
     (7) By using the large-scale finite element analysis software ABAQUS, numerical simulations of the shear performance of both ordinary HPC deep beams and HPC deep beams reinforced by hybrid fiber are made, and the simulation results and test results are compared. Meanwhile, expanding analysis is carried out to study those factors which have not been considered in experiments, for their effects on the shear performance of hybrid fiber reinforced HPC deep beams. The results of finite element analysis indicate that with the increment of reinforcement ratio, the shear capacity of HPC deep beams reinforced by hybrid fiber increases, but quite limited. When the shear span ratio is no more than 1(λ≤1), the variation of shear capacity of HPC deep beams reinforced by hybrid fiber is not that obvious as the shear span ratio changes. The increment of span-depth ratio can improve the shear capacity of HPC deep beams reinforced by hybrid fiber, but only with small amplitude. All these regularities are similar to those of ordinary reinforced concrete deep beams.
引文
[1]冯乃谦.高性能混凝土结构[M].北京:机械工业出版社,2004
    [2]夏冬桃.混杂纤维增强高性能混凝土深梁抗弯性能试验研究[D].武汉大学,2007
    [3]蒲心诚.超高强高性能混凝土[M].重庆:重庆大学出版社,2004
    [4]吴中伟,廉慧珍.高性能混凝土[M].北京:中国铁道出版社,1999
    [5]冯乃谦.高性能混凝土[M].北京:中国建筑工业出版社,1996
    [6]丁大钧.高性能混凝土及其在工程中的应用[M].北京:机械工业出版社,2007
    [7]黄承逵.纤维混凝土结构[M].北京:机械工业出版社,2004
    [8]J. P. Romualdi and G. B. Batson. Mechanics of Crack Arrestin Concrete[J]. Proc. ASCE, Vol.89, EM3,1963,6:147-168
    [9]J. P. Romualdi, Proc. Int. Conf.. The Structure of Concrete[M]. Brooks A. E. and K. Newman (eds), London,1968:190-250
    [10]J. P. Romualdi, J. A. Mandel. Tensile Strength of Concrete Affected by Uniformly Distributed and Closely Spaced Stort Length of Wire Reinforcement [J]. ACI Journal, Proceedings, Vol.6, June 1964:567-668
    [11]ACI 544.1R-96. State of the Art Report of Fiber Reinforced Concrete[S]. ACI Manual of Concrete Practice Part6, American Concrete Institute,2002
    [12]ACI 544.2R-89. Measurement of Properties of Fiber Reinforced Concrete[S]. ACI Manual of Concrete Practice Part6, American Concrete Institute,2002
    [13]ACI 544.3R-93(reapproved 1999). Guide for Specifying, Proportioning mixing, Placing and Finishing Steel Fiber Reinforced Concrete[S]. ACI Manual of Concrete Practice Part6, American Concrete Institute,2002
    [14]ACI 544.4R-88(reapproved 1999). Design Considerations for Steel Fiber Reinforced Concrete [S]. ACI Manual of Concrete Practice Part6, American Concrete Institute,2002
    [15]ASTM A820-02 Specification for Steel Fiber Reinforced Concrete [S]. Philadelphia, P. A.: American Society for Testing and Materials(ASTM)
    [16]ASTM C1018-97 Standard Test Method for Flexural Toughness and First-Crack Strength of Fiber Reinforced Concrete (Using Beam with Third-point Loading) [S]. Philadelphia, P. A.:American Society for Testing and Materials (ASTM)
    [17]ASTM C116-02 Standard Specification for Fiber Reinforced Concrete and Shot Crete [S]. Philadelphia, P. A.:American Society for Testing and Materials(ASTM)
    [18]ASTM C1399-01 Test Method for obtaining average residual-strength of Fiber Reinforced Concrete (Using Beam with Third-point Loading) [S]. Philadelphia, P. A.:American Society for Testing and Materials(ASTM)
    [19]ASTM C1550-02 Standard Test Method for Flexural Toughness of Fiber Reinforced Concrete (Using Centrally Loaded Round Panel) [S]. Philadelphia, P. A.:American Society for Testing and Materials (ASTM)
    [20]JSCE Steel Fiber Reinforced Concrete Research Subcommittee. Recommendation for Design and Construction of Steel Fiber Reinforced Concrete [S]. Concrete Library of JSCE No3. June 1984
    [21]Goldfein S. Fibrous Reinforcement for Portland Cement [J]. Modern Plastics.1965,42(8)
    [22]ACI Committee 544. Fiber Reinforced Concrete[M]. ACI 544,1996
    [23]陈斌.杜拉纤维应用于预应力转换梁的施工技术[J].广东土木与建筑,2002,(1)
    [24]董强.杜拉纤维在焦炭塔框架混凝土大厚板裂缝控制中的应用[J].工程质量,2000,(2)
    [25]苏晓薇,刘丽英.聚丙烯纤维混凝土的试验研究[J].吉林水利,2002,(3):15-17
    [26]刁天祥,方俊波.纤维混凝土在地铁车站结构自防水施工中的应用[J].铁道工程学报,2001,(4)
    [27]王成启,吴科如.混杂纤维水泥基复合材料及其应用[J].工业建筑,2002,(9)
    [28]邢锋.克裂速纤维增强混凝土抗裂性能[J].复合材料学报,2002,19(6)
    [29]朱江,苏健波.聚丙烯纤维混凝土的力学性能研究[J].广西工学院学报,2000,11(2)
    [30]孙家瑛,陈建祥,等.硅灰对水泥基PP纤维复合材料路用性能的影响[J].建筑材料学报,2000,(1)
    [31]王玉棠.掺加杜拉纤维混凝土抑制裂缝在工程中的应用[J].混凝土,2003,(5)
    [32]高丹盈,赵军,汤寄予.掺有纤维的高强混凝土劈拉性能试验研究[J].土木工程学报,2005,38(7)
    [33]邓宗才,李建辉,傅智,等.聚丙烯纤维混凝土直接拉伸性能的试验研究[J].公路交通科技,2005,22(7)
    [34]耿飞,钱春香,王瑞兴.南京地铁用模筑聚丙烯纤维混凝土力学性能试验研究[J].混凝土与水泥制品,2003,(2)
    [35]龚益,沈荣熹等.杜拉纤维在土建工程中的应用[M].北京:极限工业出版社,2002
    [36]苏晓薇,刘丽英.聚丙烯纤维混凝土的试验研究[J].吉林水利,2002,(3):15-17.
    [37]邓宗才,孙宏俊,李建辉等.低掺量聚丙烯纤维增强混凝土的轴拉性能[C].全国第十届纤维 混凝土学术会议论文集.上海:同济大学出版社,2004
    [38]华渊,张少波,姜稚清.混杂纤维混凝土弯曲疲劳性能的试验研究[J].混凝土与水泥制品,1997,(4)
    [39]刘数华,何林.聚丙烯纤维混凝土抗裂性的试验研究[J].化学建材,2005,(2)
    [40]华渊,刘容华,等.纤维增韧高性能混凝土的试验研究[J].混凝土与水泥制品,1998,(3):80-83
    [41]戴建国,黄承逵,赵国藩.低弹性模量纤维混凝土的剩余弯曲强度[C].全国第七届纤维水泥与纤维混凝土学术会议论文集.北京:中国铁道出版社,1998
    [42]王正友,廖明成,耿运贵.混杂纤维(钢/聚丙烯)高性能混凝土正交试验研究[J].焦作工学院学报(自然科学版),2003,(1)
    [43]王量,鞠丽艳,胡春花.混杂纤维高性能混凝土配合比优化设计[J].城市道桥与防洪,2006,(4)
    [44]王立久.低掺量钢纤维/聚丙烯纤维高性能混凝土试验研究[D].大连理工大学,2006
    [45]王凯,张义顺等.低掺量S-P混杂纤维增强增韧的作用研究[J].哈尔滨工业大学学报,2003,(10)
    [46]杨成蛟.混杂纤维混凝土力学性能及耐久性试验研究[D].大连理工大学,2006
    [47]徐礼华,夏冬桃,夏广政,池寅.钢纤维和聚丙烯纤维对高强混凝土强度的影响[J].武汉理工大学学报,2007,(4)
    [48]许碧莞,施惠生.混杂纤维在混凝土中的应用[J].房材与应用,2005,(6)
    [49]孙伟等.聚丙烯-钢纤维高强混凝土弯曲性能试验研究[J].建筑技术,2004,(1)
    [50]华渊,曾艺.纤维混杂效应的试验研究[J].混凝土与水泥制品,1998,(4)
    [51]王红喜,陈友治,丁庆军,胡曙光.混杂纤维对高性能混凝土力学性能与抗渗性能的影响[J].混凝土与水泥制品,2004,(1)
    [52]许碧莞等.混杂纤维对高性能混凝土高温性能的影响[J].同济大学学报(自然科学版),2006,(1)
    [53]王正友,廖明成,于水军,金祖权.混杂纤维高性能混凝土高温性能试验[J].焦作工学院学报(自然科学版),2002,(5)
    [54]谢志红,郭永昌.混杂纤维混凝土梁抗弯试验研究[J].广东建材,2006,(5)
    [55]夏广政,夏冬桃.混杂纤维增强高性能混凝土剪力墙性能研究[J].华中科技大学学报(城市科学版),2008,(4)
    [56]赵国藩.高等钢筋混凝土结构学[M].北京:机械工业出版社,2005
    [57]深梁专题组.钢筋混凝土深梁专题试验研究综合报告[M].1982
    [58]ACI-ASCE Committee 426, Shear Strength of Reinforced Concrete Members[J]. ASCE, Journal of Structural Engineering,1973,99 (6):1091-1187
    [59]Selvam, VK. Manicka, Thomas, Kuruvilla. Shear Strength of Concrete Deep Beams [J]. Indian Concrete Journal, Aug,1987,21(4):219-222
    [60]方江武.钢筋混凝土深梁抗剪强度的试验研究[J].石家庄铁道学院学报,1990,(1)
    [61]金天德,张连德,卫云亭.钢筋混凝土深梁非线性有限元分析[J].西安冶金建筑学院学报,1989,21(3)
    [62]Braam, C. R.. Control of crack width in deep reinforced concrete beams[J]. Heron,1990, 11(9):106
    [63]Tan, K. H., Tang, C. Y., Tong, K.. Shear strength predictions of pierced deep beams with inclined web reinforcement [J]. Magazine of Concrete Research, October,2004,23(1):443-452
    [64]刘立新.钢筋混凝土深梁、短梁和浅梁的受剪承载力分析及设计建议[J].郑州工业大学学报,1998,(2)
    [65]陈萌,刘辉,刘立新,赵更奇.钢筋混凝土梁受剪承载力的统一计算方法[J].郑州工业大学学报,2000,(2)
    [66]Sanad and M. P. Saka. Prediction of ultimate shear strength of reinforced concrete deep beams using neural networks[J]. ASCE. Journal of Structural Engineering,2001,7:818-828
    [67]Gerardo Aguilar, Adolfo B. Matamoros, Gustavo J. Parra-Montesinos, Julio A. Ramfrez and James K. Wight. Experimental Evaluation of Design Procedures for Shear Strength of Deep Reinforced Concrete Beams[J]. ACI Structural Journal,2002,131(4):98-105
    [68]项凯,刘华新,徐锦生.稳健设计在深梁抗剪强度分析中的应用[J].辽宁工学院学报,2005,(5)
    [69]赵军,朱海堂,高丹盈.钢筋钢纤维混凝土深梁受剪承载力的试验研究[J].河南科学,2003,(5)
    [70]徐礼华,池寅,李荣渝,苏洁.钢纤维混凝土深梁非线性有限元分析在ANSYS中的实现[J].岩土力学,2008,(9):2577-2582
    [71]Piero Colajanni, Antonino Recupero, Nino SpinellaYang. Shear Strength Prediction By Modified Plasticity Theory For SFRC Beams[C].2008 Seismic Engineering Conference Commemorating the 1908 Messina and Reggio Calabria Earthquake,2008,888-895
    [72]朱伟勇.正交与回归正交试验法的应用[M].沈阳:辽宁人民出版社,1978
    [73]沈荣熹,王璋水,崔玉忠.纤维增强水泥与纤维增强混凝土[M].北京:化学工业出版社,2006
    [74]中国工程建设标准化协会标准.纤维混凝土结构技术规程CECS 38:2004 [S].北京:中国计划出版社,2004
    [75]中国工程建设标准化协会标准.钢纤维混凝土试验方法CECS 13:89[S].北京:中国建筑工业出版社,1989
    [76]过镇海.混凝土的强度和变形[M].北京:清华大学出版社,1997
    [77]高丹盈,刘建秀.钢纤维混凝土基本理论[M].北京:科学技术文献出版社,1994
    [78]陈肇元,朱金锉,吴佩刚.高强混凝土及其应用[M].北京:清华大学出版社,1996
    [79]FIP and CEB. State of the arts Report on High Strength Concrete[S].1990
    [80]ACI 363 R-92. State of the arts Report on High Strength Concrete[S].2003
    [81]赵国藩,彭少民,黄承逵,等.钢纤维混凝土结构[M].北京:中国建筑工业出版社,1999
    [82]中华人民共和国国家标准.混凝土结构设计规范GB50010-2002[S].北京:中国建筑工业出版社,2002
    [83]R. F. Manuel. Failure of deep beams[J]. Shear in reinforced concrete, ACI, Sp42(2)
    [84]R. F. Manuel, B. W. Slight and G. T. Suter. Deep beam behavior effected by length and shear span variations[J]. ACI proceedings,1971,68(12)
    [85]Mau. S. T and Hsu. T. T. C. Shear strength prediction for deep beams with web Reinforeement [J]. ACI Structural Journal,1998,84(3):513-523
    [86]K. N. Smith and A. S Vantsiotis. Shear Strength of Deep Beam[J]. ACI Structural Journal, May-June,1982
    [87]S. J. Hwang, W. Y. Lu and H. J. Lee, Shear strength prediction for deep beams[J]. ACI Structural Journal 97,2000, (3):367-376
    [88]F. K. Kong P. J. Robins and G. R. Sharp. The design of reinforced concrete deep beams in current practice[J]. The structural Engineer,1975,53(4)
    [89]F. K. Kong, F. J. Robins, A. Singh and G. R. Sharp. Shear analysis and design of reinforced concrete deep beams[J]. The structural Engineer,1972,50(10)
    [90]F. K. Kong, P. J. Robins, A. Singh and D. F. Cole. Web reinforcement effects on deep beams[J]. ACI proceedings,1970,67(12)
    [91]F. K. Kong and A. Singh. Shear strength of lightweight concrete deep beams subjected to repeated loads[J]. Shear in reinforced concrete, ACI, Sp42(2)
    [92]卢建锋.桩基承台空间桁架理论设计方法研究[D].东南大学,2001
    [93]董毓利,樊承谋,潘景龙.钢纤维混凝土双向破坏准则的研究[C].全国第四届纤维水泥与纤维混凝土学术会议论文集,1992
    [94]Bazant ZP, Bhat PD. Endochronic Theory of Inelasticty and Fairlure of Concrete [J]. ASCE,1980, 106(EM5):925-950
    [95]Bazant ZP, Shieh CL. Hystertic Fracturing Endochronic Theory for Concrete [J]. ASCE,1990, 116(EM7)
    [96]Yazdani S, Schreyer HL. Combined Plasticity and Damage Mechanics Model for Plain Concrete [J].ASCE,1990,116(EM7)
    [97]Oliver J, Oller S, Onate E. A Plasticity- Damage Model for Concrete [J]. Inter Journal of Solids Structures,1989,25(3)
    [98]宋玉普,赵国藩.混凝土内时损伤本构模型[J].大连理工大学学报,1990,30(5)
    [99]Klisinski M. Plasticity Based on Fuzzy Sets[J]. ASCE,1988,114(EM4)
    [100]高丹盈.单轴受压下钢纤维混凝土的应力应变曲线[J].水利工程学报,1990,(10):43-48
    [101]Ghaboussi J, Garrett JH, Wu X. Knowledge Based Modeling of Material Behavior with Nnutral Networks [J]. ASCE,1991,117(EM1)
    [102]J. Mazars, G. Pijaudier-Cabot:Continuum Damage Theory[J]. Application to Concrete. J. Engrg. Mech. ASCE 115,1989:345-365
    [103]董哲仁.钢筋混凝土非线性有限元法原理与应用[M].北京:中国铁道出版社,1993
    [104]Hibbitt, Karlson, Sorenson. ABAQUS Version 6.4:Theory Manual, Users' Manual, Verification Manual and Example problems Manual[M]. Hibbitt, Karlson and Sorenson Inc.,2003
    [105]吕西林.钢筋混凝土结构非线性有限元理论与应用[M].中国建筑工业出版社,1997

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700