用户名: 密码: 验证码:
自适应光学技术在大气光通信中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
大气光通信系统是近几年通信领域研究的热门话题。大气湍流导致光束的振幅和相位随机起伏,致使接收面出现光强闪烁、波面畸变等现象,严重制约了大气光通信系统的性能。自适应光学技术(AO)是缓解湍流影响,改善光束传输质量的主要手段。本论文针对开关键控(OOK)、光强调制/直接解调(IM/DD)非相干光通信和零差二进制相移键控(BPSK)相干光通信两种系统,研究大气湍流对光通信系统的影响机制以及AO在其中的作用。主要的研究工作概括如下:
     利用数值仿真的方法建立了OOK、IM/DD的非相干光通信系统模型,分析了AO校正对于提高非相干光通信系统性能的作用。结果显示发射端和接收端AO校正都有利于提高光通信系统性能,但校正结果的优劣与收发口径有关:在大口径下接收端校正要优于发射端校正;在小口径下接收端校正的作用不大,但是发射端校正仍能取得不错效果。
     本文开展了2.5Gbps高码率的大气光通信AO校正模拟实验。用多模光纤做接收时,AO闭环后误码率最大的改善多于4个数量级。用单模光纤作为接收时,AO能有效地抑制接收信号的深度衰落。并且AO仅校正倾斜时,误码率改善了一个数量级;AO全闭环后,120s内无误码出现。设置实验对比了接收端和发射端AO校正的差异:接收端校正后和发射端校正后,平均误码率分别改善了2~3个数量级和近7个数量级。
     本文建立了空间零差BPSK相干光通信数学仿真模型。结果显示湍流引起的整体平移(piston)像差会导致系统出现严重误码。不考虑piston影响时,使用波面RMS和PV的概率密度分布的统计方法来研究波面畸变程度和出现误码的关系。当信噪比趋于无穷大时,波面RMS≥0.28λ,PV≥1.02λ时会出现误判现象;当SNR=8时,RMS≥0.16λ,PV≥0.71λ即会出现误码;并且随着SNR的降低,对波面RMS和PV值要求更加严格。
     本文采用变形镜拟合校正和Zernike模式法校正两种方法来分析和讨论AO在相干光通信系统中的作用。结果显示:在弱湍流条件下,仅校正倾斜像差就能有效的提高混频效率。当湍流较强时,需要更多的高阶校正才能有效提高混频效率。在AO系统校正阶数和大气相干长度r0一定的情况下,存在一个理论最优的口径,使得信噪比增益最大化。
     在实验室搭建了180度光混频器和零差BPSK相干光通信测试系统,通过发射和接收随机二进制码来分析大气湍流像差对相干光通信误码率的影响机制。piston的影响主要表现在接收到的信号幅值忽大忽小,导致接收信号反向180度。模拟强湍流时会导致接收信号起伏和整体偏移。
     全文通过理论、仿真和实验等方面证实:在非相干光通信系统中,AO技术有利于提高系统信噪比、减少衰落的强度和频率从而降低系统误码率。在BPSK相干光通信系统中,AO技术能够有效的校正波面畸变,提高本振光和信号光的相位匹配程度,从而降低系统误码率。
Atmospheric optical communications are hot issue in the communication fieldpresently. The random fluctuations of beam amplitude and phase caused by atmosphericturbulence will induce intensity scintillation and wave-front aberration at the receiver,which severely limite the performance of optical communication systems. Adaptiveoptics (AO) is an important technique to alleviate the turbulence and improve thepropagation quality of beam. This dissertation mainly researched the impact ofturbulence and the action of AO in optical communication based on On-Off-Keying(OOK), Intensity Modulate/Directly Demodulate (IM/DD) inherent communication andhomodyne Binary-Phase-Shift-Keying (BPSK) coherent communication systems. Themain contents include:
     An optical communication system model based on OOK,IM/DD was built withnumerical simulation method to analysis the effect of AO correction in improvment ofinherent communication performance. The results showed that AO correction at both thetransmitter and receiver were useful for improving the performance of opticalcommunications, however, the outcome of AO correction was related with the aperture:with big aperture, receiver AO was more available than transmitter AO; with smallaperture, receiver AO had litter effect, but transmitter AO was available, too.
     Experiment of AO correction in2.5Gbps optical communication is developed inthis dissertation. When multiple-mode fiber was used as receiver, the bit-error-rate(BER) with AO closed could be improved more than4orders. When single-mode fiberwas used as receiver, AO could restrain the deep fading of received signal effectively.And BER with AO tip-tilt correction would be decreased one order, while there was nobit-error in120seconds when AO was closed. The difference between receiver andtransmitter AO correction was contrasted in experiment: the average BER decreased2~3orders and7orders after receiver and transmitter AO correction respectively.
     In this dissertation, a numerical simulate model of space homodyne BPSK coherentcommunication was built. The result showed that total piston induced by turbulencewould cause serious error-codes. When the piston was removed, a probability densityfunction (PDF) statistic method of wave-front RMS and PV was proposed to study therelationship between the level of wave-front aberration and BER. In the case ofinfinitely SNR, error code was prone to emerge if wave-front RMS≥0.28λ and PV≥1.02λ; when SNR=8, error code would be emerge if wave-front RMS≥0.16λ andPV≥0.71λ. And the RMS and PV value of wave-front would be strictly required withthe decreasing of SNR.
     The deformable mirror fitting correction and Zernike mode correction were used toanalysis and discuss the effect of AO in the coherent optical communication system.The result showed that, with weak turbulence, the homodyne mixing efficiency could beraised when tip-tilt aberration was corrected only. Well, higher order correction wasneeded to raise the mixing efficiency when turbulence is strong. When the correctionorders of AO system and atmosphere coherent length r0were fixed, there was an optimalaperture, which could maximize signal-noise-ratio (SNR) gain.
     180degree optical hybrid and homodyne BPSK coherent optical communicationtest system were built in lab. The effect on BER of coherent optical communication ofatmospheric turbulence was analyzed by transmitting random binary code. The effect ofpiston was the amplitude of received signal was unstable, and the received signal wouldreverse. Strong simulative turbulence would cause fluctant and offset of received signal.
     It is confirmed through theory, simulation and experiment that, AO technologywere useful for decreasing the BER by improving system SNR and decreasing theintensity and frequency of fading in inherent optical communication system. In BPSKcoherent optical communication system, AO technology could correct wave-frontaberration effectively, and improve the phase matching degree of local beam and signalbeam to decrease system BER.
引文
[1]柯熙政,席晓莉.无线激光通信概论[M]。北京:北京邮电大学出版社,2004:5
    [2] Morio Toyoshima. Trends in Laser Communications in Space. Space Japan Review,2010,70:1-6
    [3]李睿,赵洪利,曾德贤.空间激光通信及其关键技术.应用光学,2006,27(2):152-154
    [4]王佳,俞信.自由空间光通信技术的研究现状和发展方向综述。光学技术,2005,31(2):259-265
    [5]郑勇刚,李博.自由空间光通信技术的应用与发展。光通信技术,2006,7:52-53
    [6]江亿.自由空间光通信技术.通信世界,2003,1:41-42
    [7]孙兆伟,吴国强等。国内外空间光通信技术发展及趋势研究。光通信技术,2005,9:61-64
    [8]饶瑞中.光在湍流大气中传播。合肥:安徽科技技术出版社2005:4
    [9] Le Nguyen Binh. Digital Optical Communications. Taylor&Francis Groups CRC,2011
    [10]曹志刚,钱亚生。现代通信原理。北京:清华大学出版社,1992
    [11] Leitget E, Muhammad S S, Chlestil C. Reliability of FSO links in next generation opticalnetworks. ICTON,2005,1:394-401
    [12]雷震洲.宽带接入新技术——自由空间光通信系统.现代电信科技,2001,5:1-6
    [13] Robert Lange, Berry Smutny, and Bernhard Wandernoth.“142km,5.625Gbps Free-SpaceOptical Link based on homodyne BPSK modulation” Tesat-Spacecom, Free-Space LaserCommunication Technologies XVIII. Proc. of SPIE2006,6105
    [14]赵春英。相干光通信的外差异步解调技术的研究。硕士学位论文,长春理工大学,2010
    [15] http://wave.lusterinc.com/news/article_1651.html
    [16]蔡燕民,陈刚等。 l55Mbits/s大气传输光通信系统及其测试。中国激光,2000,27(11):1040-1044
    [17]谭大川,史清白,范天泉。大气激光通信机的设计。光电工程,2005,32(11):84-86
    [18]柯熙政等。无线激光通信系统中的编码理论。北京:科学出版社,2009:6
    [19]艾勇,陈晶等.2.3km距离1.25Gb/s速率自由空间光通信实验.光通信技术,2007,9:55-57
    [20]陈晶,艾勇等.16km水平激光链路孔径接收条件下信号衰落规律.半导体光电,2008,26(6):928-931
    [21] Yoshinori Arimoto, Mono Toyoshima. Preliminary result on laser communication experimentusing ETS-VI. SPIE,1995,2381:151
    [22] H. Hemmati,“Deep Space Optical Communication” EISBN:0-470-04002-5
    [23] H. Hemmati. Free-Space Optical Communications at JPL/NASA” ppt from net
    [24] Yoshihisa Takayama,“Expanded laser communications demonstrations with OICETS andground stations. NICT, JAXA, SED, Free-Space Laser Communication Technologies XXII,Proc. of SPIE,2010,7587
    [25] Morio Toyoshima. Data analysis results from the KODEN experiments. Free-Space LaserCommunications VII, Proc. of SPIE,2007,6709
    [26] N. Perlot, M. Knapek. Results of the Optical Downlink Experiment KIODO from OICETSSatellite to Optical Ground Station Oberpfaffenhofen (OGS-OP).
    [27] Keith E. Wilson. Preliminary results of the OCTL to OICETS optical linkexperiment(OTOOLE). Free-Space Laser Communication Technologies XXII, Proc. of SPIE,2010,7587:758703
    [28] H. Kunimori, Y. Shoji, M. Toyoshima, Y. Takayama. Research and development activities onspace laser communications in NICT. Free-Space Laser Communication Technologies XXI,Proc. of SPIE,2009,7199:719904
    [29] Robert Lange, Berry Smutny. Optical inter-satellite links based on homodyne BPSKmodulation: Heritage, status and outlook. Free-Space Laser Communication TechnologiesXVII,, Proceedings of SPIE,2005,5712
    [30] Morio Toyoshima. Ground-to-satellite optical link tests between Japanese lasercommunications terminal and European geostationary satellite ARTEMIS. Free-Space LaserCommunication Technologies XVI,, Proc. of SPIE Vol.5338(SPIE, Bellingham, WA,2004)
    [31] José Romba,“ESA’s Bidirectional Space-to-Ground Laser Communication Experiments”Free-Space Laser Communications IV, Proceedings of SPIE Vol.5550(SPIE, Bellingham, WA,2004)
    [32] F. Heine, H. K mpfner, R. Lange. Optical Inter-Satellite Communication Operational. The2010Military Communications Conference, IEEE,2010
    [33] Mark Gregory, Frank Heine. Inter-Satellite and Satellite-Ground Laser Communication LinksBased on Homodyne BPSK. Tesat Free-Space Laser Communication Technologies XXII, Proc.of SPIE2010,7587
    [34] Renny A. Fields a, David A. Kozlowski.5.625Gbps Bidirectional Laser CommunicationsMeasurements between the NFIRE Satellite and an Optical Ground Station. SPIE,2011,8184,81840
    [35] Don M. Boroson. An overview of Lincoln Laboratory development of lasercom technologiesfor space. SPIE,1993,1866:31-39
    [36] Mark Gregory, Frank Heine. Inter-Satellite and Satellite-Ground Laser Communication LinksBased on Homodyne BPSK. Tesat Free-Space Laser Communication Technologies XXII, Proc.of SPIE,2010,7587
    [37] Isaac1. Kim, Brian Riley. Lessons learned from the STRV-2satellite-to-ground lasercomexperiment. Free-Space Laser Communication Technologies XIII, Proceedings of SPIE Vol.4272(2001)
    [38] A. Biswas. Mars Laser Communication Demonstration: What it would have been. Free-SpaceLaser Communication Technologies XVIII,Proc. of SPIE,2006,6105,610502
    [39] H. Hemmati, W. H. Farr. Deep-space Optical Terminals (DOT). Free-Space LaserCommunication Technologies XXIII, Proc. of SPIE2011,7923,79230C
    [40] http://news.stnn.cc/c6/2012/0302/3824986777.html
    [41]姜文汉,自适应光学技术,自然杂志,2005,28(1):7-13
    [42] R.K.Tyson. Principles of adaptive optics. Academic Press Inc, San Diego,1991
    [43] Born and Wolf. Principles of Optics: Electromagnetic Theory of Propagation,Interference andDiffraction of Light. Cambridge University Press,1999
    [44] R. J. Noll, Zernike polynomials and atmospheric turbulence, J. Opt. Soc. Am. A.,1977,67(8):1065
    [45] John W. Hardy. Adaptive Optics for Astronomical Telescopes. Oxford University Press,1998
    [46]杨华锋。用于提高自适应光学系统空间校正能力的组合变形镜波前校正技术。博士学位论文,中科院光电技术研究所,2008
    [47]姜文汉,凌宁,侯静。像差与斯特列尔比的极限曲线。光学学报,2001,21
    [48] R. K. Tyson. Adaptive optics and ground-to-space laser communications. Applied Optics,1996,35(19):3640-3646
    [49] R. K. Tyson. Bit-error rate for free-space adaptive optics laser communications[J]. J. Opt. Soc.Am.2002,19(4):753-758
    [50] Aniceto Belmonte. Influence of atmospheric phase compensation on optical heterodyne powermeasurements. Optics Express,2008,16(9)
    [51] Aniceto Belmonte and Joseph M. Kahn. Performance of synchronous optical receivers usingatmospheric compensation techniques. Optics Express,2008,16(18)
    [52] R. K. Tyson and D. E. Canning. Indirect measurement of a laser communications bit-error-ratereduction with low-order adaptive optics[J]. Applied Optics,2003,42(21):4239-4243
    [53] R. K. Tyson, D. E. Canning and J.S. Tharp. Measurement of the bit-error rate of an adaptiveoptics, free-space laser communications system, part1: tip-tilt configuration, diagnostics, andclosed-loop results [J]. Optical Engineering,2005,44(9):096002(1-6)
    [54] R. K. Tyson, D. E. Canning and J.S. Tharp. Measurement of the bit-error rate of an adaptiveoptics, free-space laser communications system, part2: multichannel configuration, aberrationcharacterization, and closed-loop results [J]. Optical Engineering,2005,44(9):096003(1-6)
    [55] K. H. Kudielka, et, al. Low-order adaptive optics system for free-space lasercom design andperformance analysis. Intl. Workshop on AO. For Industry and Mesicine, Durham,1999
    [56] T.Weyrauch, M.A.Vorontsov. Free-space laser communications with adaptive optics:atmospheric compensation experiments[R]. J. Opt. Fiber. Commun. Rep.2004,1:355~379
    [57] T. Weyrauch and M. A. Vorontsov. Atmospheric Compensation with a speckle beacon instrong scintillation conditions: directed energy and laser communication applications. AppliedOptics,2005,44(30):6388-6401
    [58] M. A. Vorontsov. Adaptive Optics: Transition to High-Resolution Wavefront Control:Algorithms and System Architectures. The U.S. Army’s Corporate Laboratory PPT report
    [59] Jennifer Roberts, Mitchell Troy et, al. Performance of the Optical Communication AdaptiveOptics Testbed. SPIE Free-Space Laser Communications V,2005,589212
    [60] M.W.Wright,, M.Srinivasan, and K.Wilson. Improved Optical Communications PerformanceUsing Adaptive Optics with an Avalanche Photodiode Detector. IPN Progress report42-161,2005
    [61] MalcolmW.Wright, JenniferRoberts et, al. Improved optical communications performancecombining adaptive optics and pulse position modulation. Optical Engineering,2008,47(1):016003
    [62] Juan C. Juarez, David W. Young et, al. Free-space optical channel propagation tests over a147-km link. SPIE Atmospheric Propagation VIII,80380B
    [63] Zoran Sodnik, Josep Perdigues Armengol et, al. Adaptive Optics and ESA’s Optical GroundStation.SPIE, Free-Space Laser Communications IX,2009,746406
    [64] Thomas Berkefeld, Dirk Soltau. Adaptive optics for satellite-to-ground laser communication atthe1m Telescope of the ESA Optical Ground Station, Tenerife, Spain. Proc. of SPIE Vol.7736,77364C
    [65]夏利军,李晓峰.基于自适应光学的大气光通信波前校正实验[J].信息与电子工程,2010,Vol.8,No.3:331-335
    [66] Wu Yunyun, Chen Erhu, Zhangyu et al., Simulation and Experiment of Adaptive Optics in2.5Gbps Atmospheric Laser Communication[C], ICOEIS2011
    [67]武云云,陈二虎,张宇等.自适应光学技术提高FSO性能的实验验证[J].光通信技术,2012,36(4):15-18
    [68]武云云,陈二虎,张宇等.自适应光学技术在光通信中的仿真与实验分析[J].光通信技术,2012,36(8):52-55
    [69] Kalman Kiasaleha. Performance Analysis of Free-space, On-Off-Keying OpticalCommunication Systems Impaired by Turbulence[C]. SPIE,2002,4635:150~161
    [70]樊昌信,张甫翊,徐炳祥,吴成柯.通信原理[M].北京:国防工业出版社,2001,142~147
    [71]李晓峰.星地激光通信链路原理与技术[M].北京:国防工业出版社,2007:76-204
    [72] Tataraskii V I. Wave Propagation In a Turbulence Medium. New York: Hill Book Company,1961:11-253
    [73] Tataraskii V I. Some New Aspects in the Problem of Wave and Turbulence. Radio Science,1987,22(6):859-865
    [74]张慧敏,李新阳.大气湍流畸变相位屏的数值模拟方法研究[J].光电工程,2006,33(1):14~19
    [75]张慧敏。激光大气传输湍流效应数值模拟的初步研究。硕士学位论文,中科院光电技术研究所,2005
    [76]周仁忠,阎吉祥.自适应光学理论[M].北京:北京理工大学出版社,1996:98
    [77]李新阳,李敏,凡木文,邬春明.热风式大气湍流模拟装置[P].中国发明专利,申请号:201010605579.6,2010.12.27
    [78] W.H. Jiang, N. Ling et al.“37-element adaptive optics experimental system and turbulencecompensation experiments,” Proceedings of SPIE,1996,2828:312-320
    [79] L.G. Kazovsky and Wei-Tao Shaw, Homodyne PSK Systems: Past Challenges and FutureOpportunities, Journal of Lightwave Technology,2006,24(12):4876-4884
    [80] Dirk Giggenbach. Wavefront measurements at ESA’s optical ground station and simulation ofheterodyne receiver performance. SPIE,2000,3932:78:89
    [81] Takashi Takenaka, Kazumasa Tanaka, and Otozo Fukumitsu. Signal-to-noise ratio in opticalheterodyne detection for Gaussian fields. APPLIED OPTICS,1978,17(21):3466
    [82] Khan M. Iftekharuddin and Mohammad A. Karim. Heterodyne detection by using adiffraction-free beam: tilt and offset effects. APPLIED OPTICS,1992,31(23)
    [83]向劲松,潘乐春。空间相干光通信外差效率及天线像差的影响。光电工程2009,36(11)
    [84]刘宏展,纪越峰等。信号与本振光振幅分布对星间相干光通信系统混频效率的影响。光学学报,2011.10
    [85] D. Fink. Coherent Detection Signal-to-Noise, Appl. Opt.1975,14,689
    [86]邵玉斌。Matlab/Simulink通信系统建模与仿真实例分析。北京:清华大学出版社,2008
    [87]韦岗,季飞等。通信系统建模与仿真。北京:电子工业出版社,2007
    [88] L.G.Kazovesky. Decision-driven phase-locked loop for optical homodyne receivers:Performance analysis and laser linewidth requrements. J. Lightwave Technol.1985,3(6):1238-1247,
    [89] Martyn J.Fice, Homodyne Coherent Optical Receiver Using an Optical Injection Phase-LockLoop[J]. Journal of Lightwave Technology,2011,29(8)
    [90]宁禹。双压电片变形反射镜的性能分析与应用研究。博士学位论文,国防科学技术大学研究生院,2008
    [91] N. Roddier. Atmospheric wavefront simulation using Zernike polynomials. Optical Engineering,1990,29(10):1174-1180
    [92] Ya’nan Zhi, Yu Zhou, Jianfeng Sun and Liren Liu. Design and fabrication of optical90°hybrid by birefringent crystals for coherent receiver in free-space optical communicationsystem. SPIE,2010,7814:781411
    [93] R. Garreis, Carl Zeiss.90' optical hybrid for coherent receivers. Optical Space Communication,SPIE,1991,1522
    [94] Abbas G L, et al. A dual-detector optical heterodyne receiver for local oscillator noisesuppression. Journal of Lightwave Technology,1985,39(5):1110~1122.
    [95]李健,李藻等。软件编程法克服BPSK的相位模糊。四川大学学报(自然科学版),1999,36(3):589-593

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700