用户名: 密码: 验证码:
松辽盆地南部中西部断陷带深层烃源岩评价及有利区预测
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近些年来随着深层天然气勘探步伐的加快,松辽盆地南部深层的火山岩和碎屑岩储层中均获得了重大突破,展现了松辽盆地南部深层天然气勘探的广阔前景。与此同时,在天然气勘探过程中发现烃类气藏往往富集在烃源岩附件,而远离烃源岩的区域常常为CO2气藏,源岩的分布控制着烃类气藏的富集。至此,深层供烃源岩的潜力到底有多大?烃类气资源量到底有多少?便成为该地区深层天然气勘探中亟待回答的问题。本文针对此问题对松了盆地南部的英台断陷和长岭断陷深层烃源岩展开评价,在此基础上进行了成藏期研究和气源对比,并综合考虑天然气成藏主控因素进行了有利区的预测和目标井位的选取,有望对下一步深层天然气勘探工作起到重要的指导作用。
     利用实测的分析化验数据对源岩的丰度、类型和成熟度进行了评价,并应用改进的测井地化评价方法对源岩的非均质性进行了刻画,消除了由于实测数据数据有限所造成的评价误差。改进后的测井地化ΔlogR方法主要是利用计算机自动拟合出声波时差和电阻率之间的最佳耦合关系,使得实测TOC和计算TOC具有最佳的相关性,计算出的TOC能更真实的反应源岩的实际丰度。研究表明,英台和长岭断陷有机质丰度整体较高,类型以Ⅱ型为主,成熟度也基本进入高成熟-过成熟阶段,为有利的供气源岩。
     热史恢复是烃源岩定量评价的基础,在对英台断陷和长岭断陷分别进行常规热史恢复的基础上,综合考虑火山岩体的热效应,恢复了英台断陷岩浆侵入区域(龙深1井区)的热史。火山岩体的侵入加速了侵入岩周边源岩的生烃进程,在岩浆侵入后短时间内有机质转化率就基本达到90%以上,不利于天然气聚集成藏。
     在烃源岩定量评价方面主要根据热模拟实验的结果建立研究区的成烃剖面,在此基础上对原始有机碳和生烃潜力进行恢复,并利用化学动力学和Monte Carlo相结合的方法对生排烃量进行计算。首先对测得的TOC和HI进行马尔可夫(Markov)概型分析,根据参数的概型分布特征进行Monte Carlo法随机抽样,进而用这些抽样数据利用化学动力学法进行生烃量的模拟计算,经过多次抽样模拟计算,统计生烃量的概率分布规律,得出在不同概率风险下的生烃量。通过定量计算,长岭断陷沙河子组生气量高于营城组,而英台断陷在反之,因此判定长岭断陷沙河子组为主力源岩,英台断陷营城组为主力源岩。
     对于天然气成藏方式和成藏期的确定,主要从碳同位素分馏角度和流体包裹体均一温度这两方面进行展开研究。利用碳同位素分馏动力学结合化学动力学,研究甲烷碳同位素的演化趋势,结合实测甲烷碳同位素,从而判定研究区烃类气成藏模式和成藏时期,同时借助流体包裹体的均一温度和热史恢复的结果对天然气的成藏期进行判定。
     利用天然气的组分、碳同位素和稀有气体同位素以及轻烃组成进行天然气的成因分析,阐述了同位素发生倒转的原因,确定了烃类气和CO2的成因类型。利用天然气的成熟度和轻烃指纹进行气源对比,明确了该地区天然气的来源。气源对比表明,长岭断陷烃类气主要来自于沙河子组,而英台断陷主要来自于营城组。
     火山岩是深层天然气的主要储集空间,本次研究主要从成岩角度出发,对火山岩成岩作用及其对储层的影响进行分析,总结了对储集空间具有建设性和破坏性的成岩作用类型,在此基础上阐述了研究区火山岩储层的储集空间类型,明确了深层火山岩储层的优越性。
     在综合考虑源岩、储层、盖层、构造、圈闭等因素的基础上,对实例井进行了成藏主控因素分析,并进行了有利区预测和目标井位的优选。研究表明,临近烃源岩或处于源岩内部的火山岩体是烃类气聚集的有利区,远离烃源岩的区域由于气体分子小、易扩散,难以长距离侧向运移,不易形成烃类气藏。
With the rapide development of the deep gas exploration these years, the volcanic rocks and clastic reservoirs in the south of the SongLiao Basin have got a great breakthrough, showing the bright prospects of the deep gas exploration in the south of the SongLiao Basin. At the same time, gas reservoirs with high CO2 or pure CO2 gas are often found while looking for pure hydrocarbons reservoirs, so far, how the potential of the deep source rocks is on earth ? How much hydrocarbon gas resources there is? This has become the region's problems in the deep gas exploration which remains to be solved. This passage gives remarks on the deep source rocks in the YingTai rift and Changling depression in the south of the SongLiao Basin based on this problem, then the time of the accumulation of hydrocarbon and the comparition of gas source is dicussed, and we also give the forecast of beneficial areas and the selection of the targeting wells considering the main controlling factors of gas accumulation. It means great guiding significance to deep gas exploration in the next step .
     Estimate the abundance, type and maturity of the source rock using the measured analysis test data, and describe the uneven value of the source rock according to the improved logging geochemical valuation methods, eliminating the evaluation error the limited measured data caused. The improvedΔlogR logging geochemical method mainly use the computer to automatically fit the the best combination relationship between time difference of acoustic wave and resistivity,making the measured TOCand the calculated TOC get the best correlation so that the calculated TOC can represent the actual source rock abundance better.
     Thermal history recovery is the foundation of quantify evaluation of hydrocarbon source rock, this study recovers the thermal history of Yingtai fault magmatism invasive area (Long 1 deep well area),based on routine Thermal history recovery of the Yingtai and Changling rift, and comprehensive consideration of the thermal effect of volcanic rocks.
     The hydrocarbon bisect in the studied area is seted up mainly according to the results of the thermal simulation experiment in the the aspect of quantitative evaluation of source rocks. Based on this, we do the the recovery of the original organic carbon and hydrocarbon potential, and calculate the amount of hydrocarbon generation and expulsion using the method of chemical dynamics combined with Monte Carlo. Firstly, analyse Markov probability distribution of the measured TOC and HI and random sample with the Monte Carlo method according to the probability distribution characteristicsof paraters, and then do the simulation calculation of the amount of hydrocarbon generation using these sample data, after several times of sampling simulation, finding the law of probability distribution of hydrocarbon generation amount and obtaining the hydrocarbon generation amountn under different probability risk.
     As for the identification of ways of natural gas accumulation and accumulation period, we mainly study from the two aspects of the perspective of carbon isotope fractionation and fluid inclusions. Study the evolution of methane carbon isotope trend using carbon isotope dynamics combined with chemical dynamics. To determine the hydrocarbon gas into the reservoir model and the accumulation period in the study area, also determine the natural gas accumulation period.using homogenization temperature of fluid inclusion and the results of thermal history recovery.
     Using the components of natural gas, isotopic and light hydrocarbon composition to analysis the origin of natural gas, elaborate the reason of the reverse of the isotope, and determine the origin of natural gas. The maturation of natural gas and light hydrocarbon fingerprint are used to be Gas source correlation, clear the sources of natural gas in the region.
     Volcanic rock is the mainly reservoir space of the deep strata natural gas,this article mainly embarks from the diagenesis, the influence of the diagenesis of volcanic rocks and it’s influence to the reservoir. Analyzed and described reservoir spaces type of the volcanic reservoir, and cleared the superiority of the deep volcanic reservoir. in the study area.
     Considering such factors as state of the Source rock、reservoir、cap rock、tectonic activity of casualties , analyze main control factors for hydrocarbon accumulation of the sample well ,made prediction of favorable areas and the selected objective target well position. The results show that the area nearby the hydrocarbon source rock or volcanic rock inside the source rock is the place where hydrocarbon gas easily to get together, because the gas in the area where far away from the hydrocarbon source rock has small molecule easily to diffuse and hardly to lateral move for a long distance,it is difficult to generate hydrocarbon gas reservoir.
引文
[1]李剑,刘成林,等.松辽盆地北部深层天然气资源潜力[C].见:贾承造主编.松辽盆地深层天然气勘探研讨会报告集.北京:石油工业出版社,2004,74~87.
    [2]金晓辉,林壬子,等.松辽盆地徐家围子断陷火山活动期次与烃源岩演化[J].石油与天然气地质.2005,26(3):349~355.
    [3]殷进垠,刘和甫,等.松辽盆地徐家围子断陷构造演化[J].石油学报,2002,23(2):26~29.
    [4]李桂俊,李国艳,等.松辽盆地深层地层及构造特征[J].吉林地质,2009,28(2):4~7.
    [5]单伟,刘少峰,等.松辽盆地南与应变模式[J].地质通报,2009,28(4).
    [6]张玮,李洪革,等.松辽盆地南部长岭断陷区深层构造特征与天然气聚集[J].现代地质,2008,22(4).
    [7]卢双舫,张敏.油气地球化学[M] .石油工业出版社,2008.
    [8]程克明,王铁冠,等.烃源岩地球化学[M].科学出版社,1995.
    [9]王启军,陈建渝.油气地球化学[M].武汉:中国地质大学出版社,1988.
    [10]黄第藩,李晋超,等.陆相有机质演化和成烃机理[M].北京:石油工业出版社,1984.
    [11]黄第藩,李晋超.干酪根类型划分的X图解[J].地球化学(1),1982,21~30.
    [12]卢双舫,庞雄奇,等.干酪根类型数值化的探讨[J].天然气工业,1986,6(3):17~23.
    [13]涂建琪,王淑芝,等.透射光-荧光下干酪根有机显微组分的划分[J].石油勘探与开发.1998,25(2):27~31
    [14] Aquino Neto F.R.,Triguis J.,et al..Organic geochemistry of geographically unrelated Tasmanites[J].14th International Meeting on Organic Geochemistry,Pairs,Abstract.1989,No.189.
    [15] Azevedo D.A.,Aquino Neto F.R.,et al..Novel series of tricyclic aromatic terpanes characterized in Tasmanian tasmanite[J].Organic Geochemistry,1992,18:9~16.
    [16] Ten Haven H.L.,De Leeuw J.W.,et al..Application of biological markers in the recognition of palaeopersaline environments[J].In: Lacustrine Petroleum Source Rocks (Fleet A J,Kelts K,albot M R T .Eds.) Geological Society Special Publication .1988,No.40,123~130.
    [17] Shimoyama A.and Johns W.D..Formation of alkanes from fatty acids in the presence of CaCO3[J].Geochim.Cosmochimi.Acta .1972,36,87~91.
    [18] Scalan R.S.and Smith J.E..An improved measure of the old~even predominance in the normal alkanes of sediment extracts and petroleum[J].Geochimica et Cosmochimical Acta .1970,34:611~620.
    [19] Eglinton G. and Calvin M..Chemical fossils[J].Scientific American .1967,261:32~43.
    [20] Eglinton G.and Murphy M.T.J..Organic Geochemistry~Methods and Results.Springer~Verlag.Germany[J].1969,828.
    [21] Passey Q.R.,Creaney S.,et al..A practical model for organic richness from porosity and resistivity logs[J].AAPG Bulletin.1990,74(5):1777~1794.
    [22]张志伟,张龙海.测井评价烃源岩的方法及其应用效果[J].石油勘探与开发.2000,27(3):84~87.
    [23]王贵文,朱振宇.烃源岩测井识别与评价方法研究[J].石油勘探与发.2002,29(4):50~52.
    [24]朱振宇,刘洪,李幼铭.ΔlogR技术在烃源岩识别中的应用与分析[J].地球物理学进展.2003,18(4):647~649.
    [25]贺君玲,邓守伟,陈文龙等.利用测井技术评价松辽盆地南部油页岩[J].吉林大学学报(地球科学版) .2006 ,34 (6):909~914.
    [26]闫建平,蔡进功,赵铭海,郑德顺.运用测井信息研究烃源岩进展及其资源评价意义[J].地球物理学进展.2009,24(1):270~279.
    [27]王方雄,侯英姿,夏季.烃源岩测井评价新进展[J].测井技术.2004,26(2):89~93.
    [28] Schmoker J.W..Determination of organic~matter content of Appalachian Devonian shales from gamma ray logs[J].AAPG Bulletin.1981,65 (7): 1285~1298.
    [29] Fertl W.H.,Chillnger G.V..Organic carbon content determined from well logs[J].SPE Formation Evaluation.1988,3(2):407~419.
    [30]朱光有,金强,张林晔.用测井信息获取烃源岩的地球化学参数研究[J].测井技术,2003,27(2):104~109.
    [31] Meyer B.L.,Nederlof M.H..Identification of source rocks on wireline logs by density/resistivity and sonic transit time/resistivity cross plots[J].AAPG Bull.1984,68(2):121–129.
    [32]张立鹏,边瑞雪,杨双彦,等.用测井资料识别烃源岩[J].测井技术.2001,25(2):146~152.
    [33] Mohammad Reza Kamalia,Ahad Allah Mirshadyb.Total organic carbon content determined from well logs usingΔlogR and Neuro Fuzzy techniques[J]. Journal of Petroleum Science and Engineering .2004,45(3~4): 141~148.
    [34] Kadkhodaie,Ilkhchi, et al..A committee neural network for prediction of normalized oil content from well log data: An example from South Pars Gas Field,Persian Gulf[J].Journal of Petroleum Science and Engineering.2009,65(1~2): 23~32 .
    [35]张立强,罗晓容,何登发等.准噶尔盆地南缘下白垩统层序界面的识别[J].沉积学报.2004,22(4):636~613.
    [36] Yukle,M.A.,C.Cornford,et al..One-Dimensional Model to Simulate Geologic,Hydrodynamic and Thermodynamic Development of a Sedimentary Basin: Geol[J].Rundschau.1978.67:960~979.
    [37] Ungerer P.F.,Bessis,et al..Geological and Geochemical Models in Oil Exploration: Principles and Practical Examples , in F . Demasion , ed ., Petroleum Geochemistry and Basin Evaluation[J]. AAPG Memoir.1984,35:53~77.
    [38]石广仁.油气盆地数值模拟方法[M],北京:石油工业出版社.1999.
    [39]李泰明.石油地质过程定量研究概论[M].东营:石油大学出版社.1989,4~10.
    [40]孟元林.成岩演化数值模拟[A].见:许怀先,陈丽华,万玉金等编.石油地质实验测试技术与应用[C].北京:石油工业出版社.2001.184~192.
    [41]孟元林,肖丽华,杨俊生,等.成岩演化数值模拟[J].地学前缘.2000,7(4),430.
    [42]孟元林,肖丽华,杨俊生,等.成岩作用过程综合模拟及其应用[J].石油实验地质.2003,25(2):211~215.
    [43]庞雄奇.2003.地质过程定量模拟.北京:石油工业出版社.
    [44] Pollack,H.N.,S.J.Hurter,et al.. Heat Flow from the Earth’s Interior:Analysis of the Global Data set:Reviews of Geophysics.1993,31:267~280.
    [45] Lerche,I.,R.F.Yarzab,et al.. Determination of Paleoheat Flux form Vitrinite Reflectance Data: AAPG Bulletin.1984,68: 1704~1717.
    [46]程本合,胡圣标,熊亮萍等.用镜质体反射率资料恢复热史的相关问题及处理方法[J].中国海上油气(地质).2000,14(3):210~213.
    [47]宋党育,秦勇.镜质组反射率反演的EASY%Ro数值模拟新方法[J].煤田地质与勘探.1998,26(3):15~17
    [48]卢双舫,王子文,付晓泰等.镜质体成烃反应动力学模型的标定及其在热史恢复中的应用[J].沉积学报.1996,14(4):24~30
    [49] Finkelman R.B.,Bostick N.H.,et al..Influence of an igneous intrusion on the inorganic geochemistry of a bituminous coal from Pitkin County,Colorado: International Journal of Coal Geology.1998,36:243~258.
    [50] Robinson N.,Parnell J.,et al..Hydrocarbon compositions of bitumens from mineralized Devonian lavas and Carboniferous sedimentary rocks,central Scotland: Marine and Petroleum Geology.1989,67:251~267.
    [51] Finkelman R.B.,Bostick N.H.,et al..Influence of an igneous intrusion on the inorganic geochemistry of a bituminous coal from Pitkin County,Colorado: International Journal of Coal Geology.1998, 36:243~258.
    [52] Chen Z.,Yan H.,,et al..Relationship Between Tertiary Volcanic Rocks and Hydrocarbons in the Liaohe Basin,People’s Republic of China: AAPG Bulletin.1999,83:1004~1014.
    [53] Fjeldskaar W.,Helset H.M.,et al..Thermal modelling of magmatic intrusions in the Gjallar Ridge,Norwegian Sea: implications for vitrinite reflectance and hydrocarbon maturation: Basin Research.2008,20:143~159.
    [54] Galushkin Y.I..Thermal effects of igneous intrusions on maturity of organic matter: A possible mechanism of intrusion: Organic Geochemistry.1997,26:645~658.
    [55] Othman R.,Arouri K.R.,Ward C.R.and McKirdy,D.M..Oil generation by igneous intrusions in the northern Gunnedah Basin,Australia:Organic Geochemistry.2001,31:177~202.
    [56] Wang X.,Lerche I.,et al..The effect of igneous intrusive bodies on sedimentary thermal maturity: Organic Geochemistry.1989,36:303~307.
    [57] Hurter S.J.and Pollack H.N.. Effect of the Cretaceous Serra Geral igneous event on the temperatures and heat flow of the Parana Basin,southern Brazil: Basin Research.1994,6:239~244.
    [58] Jaeger J.C.. The temperature in the neighborhood of a cooling intrusive sheet: American Journal of Science.1957,255:306~318.
    [59] Carslaw H.S.and Jaeger J.C.. Conduction of Heat in Solids: New York,Oxford Univ.1959:510.
    [60] Galushkin Y.I..Thermal effects of igneous intrusions on maturity of organic matter: A possible mechanism of intrusion: Organic Geochemistry.1997,26:645~658.
    [61]冉起贵,胡国艺,陈发景.镜质组反射率热史反演[J].石油勘探与开发.1998,25(6):29~32.
    [62]熊永强,耿安松,等.干酪根二次生烃动力学模拟实验研究[J].中国科学(D辑).2001,31(4).
    [63] Sweeney J.J.,Burnham A.K..Evaluation of a sample method of vitrinite reflectance based on chemical kinetics[J].AAPG Bulletin,1990,74(4):1559~1570.
    [64] Kelley S.A.,Jayuidon D.G.,et al..Thermal conditions in the Anadarko basin,Oklahoma[J].AAPG Bull.1991,75(3):607.
    [65]卢双舫.有机质成烃动力学理论及其应用[M].北京:石油工业出版社.1996:54~121.
    [66] Ungerer P.State of the art of research in kinetic modeling of oil formation and expulsion[J].Org Geochem.1990,16:1~25.
    [67] Tissot,B.P.,Pelet,R.,et al..Thermal history of sedimentary basins,maturation indices,and kinetics of oil and gas generation[J].AAPG Bulletin.1987,71:1445~1466.
    [68] Ungerer P.,Behar F.,et al..Kinetic modelling of oil cracking[J].Organic Geochemistry.1988,13:857~868.
    [69]卢双舫,陈昕,等.台北凹陷煤中有机质的成烃动力学模型及其初步应用[J].沉积学报.1997:126~129.
    [70]卢双舫,付晓泰,等.原油族组分成气的化学动力学模型及其标定[J].地质学报.1997:367~373.
    [71]卢双舫,付晓泰,等.油成气的动力学模型及其标定[J].天然气工业.1996:6~8+95.
    [72]庞雄奇,方祖康.地史过程中的岩石有机质含量变化及其计算[J].石油学报.1988,9:17~24.
    [73]庞雄奇.地质过程定量模拟[M].北京:石油工业出版社.2003.
    [74]庞雄奇,Lerche,等.煤系源岩排烃门限理论研究与应用[M].北京:石油工业出版社.2001.
    [75]庞雄奇,金之钧,等.叠合盆地油气资源评价问题及其研究意义[J].石油勘探与开发.2002,29(1):9~13.
    [76]庞雄奇,李丕龙,等.油气成藏门限研究及其在济阳坳陷中的应用[J].石油与天然气地质.2003,24(3):204~209.
    [77]王涵云,杨天宇.原油热解成气模拟实验[J].天然气工业.1982,4(3) .
    [78]程顶胜,郝石生.烃源岩热模拟实验研究的进展[J].石油大学学报(自然科学版).1995,19(2).
    [79]张林晔,王新洲,等.烃源岩热模拟过程中轻烃组分变化特征[J].石油勘探与开发.1996,23(3).
    [80]张旭升,王远坤,等.烃源岩热模拟实验的应用[J].石油实验地质.1998,20(3).
    [81] Castelli A ., et al .. Thermal degradation of kerogen by hydrous pyrolysis , A kinetic study[J].Org.Geochem.1990,110:125~245.
    [82] Lafargue E .,et al..Experimental simulation of hydrocarbons expulsion[J].Org.Geochem.1990,16:2~3 .
    [83]金强,钱家麟,等.生油岩干酪根热解动力学研究及其在油气生成量计算中的应用[J].石油学报.1986,7(3) .
    [84] Lewan M.D.and Williams I.A..Evaluation of petroleum generation from resinites by hydrous pyrolysis[J].AAPG Bulletin.1987,71:207.
    [85]张大江,姚焕新,等.褐煤中干酪根、腐殖酸、抽提物对成油的作用和贡献[M].北京,石油工业出版社,1995:1~32.
    [86] Saxby,J.D.and Riley,K.W.. Petroleum generation by laboratory-scale pyrolysis over six years simualting conditions in a subsiding basin[J].Nature.1984,308:177~179.
    [87] Allred V.D.. Kinetics of oil shale pyrolyis[J].Chemical Engineering Progress.1966,62:55~60.
    [88] Tissot B.. Premie`res donne′es sur les me′canismes et la cinetique de la formation du pe′trole dans les bassins se dimentaires Simulation d’un schema reaction nature ordinateur[J].Oil and Gas Science and Technology.1969,24:470~501.
    [89] Tissot B.and Espitalie J..L’evolution de la matie`re organique des se′diments: application d’unesimulation mathe′matique[J].Institut Francias du Pétrole,Revue.1975,30:743~777.
    [90]黄第藩,李晋超,等.陆相有机质的演化和成烃机理[M].石油工业出版社,北京.1984.
    [91]王剑秋,邬立言,等.应用岩石评价仪进行生油岩热解生烃动力学的研究[J].华东石油学院学报.1984:56~64.
    [92] Klomp U.C.and Wright P.A.. A new method for the measurement of kinetic parameters of hydrocarbon generation from source rocks[J].Organic Geochemistry.1990:1649~60.
    [93] Zhang X.,De Jong W.,et a1..Estimating kinetic parameters in TGA using B-spline smoothing and the Friedman method[J].Biomass and Bioenergy.2009,33:1435~1441.
    [94]金强,钱家麟,等.生油岩干酪根热降解动力学研究及其在油气生成量计算中的应用[J].石油学报.1986,7:11~19.
    [95]李维铮,等.运筹学[M].北京,清华大学出版社.1982.
    [96]王跃文,卢双舫.烃源岩生烃量的概率统计方法[J].大庆石油学院学报.2005,29(3).
    [97]卢双舫,薛海涛,等.地史过程中烃源岩有机质丰度和生烃潜力变化的模拟计算[J].地质论评.2003,49(3):292~297.
    [98]卢双舫,刘晓艳,等.海拉尔盆地呼和湖凹陷烃源岩原始生烃潜力和原岩原始生烃潜力和原始有机碳的恢复[J].大庆石油学院学报.1995,19 (1):31~34.
    [99]卢双舫,薛海涛,等.地史过程中烃源岩有机质丰度和生烃潜力变化的模拟计算[J].地质论评.2003,49(3):292~297.
    [100] Sehoell M.The hydrogen and carbon isotopic composition of methane from natural gases of various origins[J].Geoehemieal et Cosmoehimiea Aeta.1980,44(5):649~661.
    [101] Sehoell M.Genetic characterization of natural gases[J].AAPG Bulletin.983,67(12):2225~2238.
    [102] Sehoell M.Recent advanees in Petroleum isotope geochemistry [J].Organic Geochemistry.1984,6:645~663.
    [103]周兴熙,王红军.略论天然气甲烷同位素的累积效应[J].石油勘探与开发.1999,26(1):10~12.
    [104] Stahl W.J,Carey B.D..Source-rock identification by isotope analyses of natural gases from fields in the volverde and Dclawere Basins West Texas[J].Chem Geol.1975,16(4):257~267.
    [105] Crame B.,Ungerer P.,et a1..Molecular and isotopic fractionation of light hydrocar-bons between oil and gas phases,[J].Organic Geochemis-try.1996,24:1115~1139.
    [106] Cifuentes L.A.,Salata G.G.Significance of carbon isotope discrimination between bulk carbon and extracted phospholipids fatty acids ins elected terrestrial and marine environments[J].Organic Geochemistry,2001,32:613~621.
    [107] Rooney M.A.,Claypllo G.E.,et a1..Modeling thermogenic gas generation using carbon isotope ratios of natural gas hydrocarbons[J].Chenical Geology.1995,126:219~232.
    [108] Berner U.,Faber E.,et a1..Mathematical simulation of the carbon isotopic fractionation between huminitic coals and related methane[J].Chemical Geology(Isotope Gwoscience Section) .1992,94:315~319.
    [109] Berner U.,Faber E.,et a1..Primary cracking of algal and landplant kerogens:kinetic models of isotope variations in methane,ethane and propane[J].Chemical geology.1995,126:233~245.
    [110] Tang Y.,Perry J.K.,et a1..Mathematical modeling of stable carbon isotope ratios in natural gases[J].Geochimica et Cosmochimica Acta.2000,64:2673~2687.
    [111] Gaschnite R.. Pyrolysis-GC-IRMS : isotope fractionation of thermally generated gases from coals[J].Fuel.2001,80:2139~2153.
    [112] Lorant F.,Behar F.,et a1..Methane Generation from M ethylated Aromatics:Kinetic Study and Carbon Isotope Modeling[J].Energy Fuels,2000,14:1143~1155.
    [113] Lorant F.,Prinahofer A., et a1..Carbon isotopic and molecular constraints on the formation and the expulsion of thermogenic hydrocarbon gases[J].Chemical Geology,1998,147:249~264.
    [114]郑永飞,陈江峰.稳定同位素地球化学[M].北京:科学出版社,2000:74~1.
    [115]卢双舫,李吉君,薛海涛,等.碳同位素分馏模型比较研究[J].天然气工业,2006,26(7):1~4.
    [116]卢双舫,李吉君,薛海涛,等.油成甲烷碳同位素分馏的化学动力学及其初步应用[J].吉林大学学报(地球科学版),2006,36(5):82~829.
    [117]李吉君,卢双舫,薛海涛,等.川东北飞仙关组鲡滩气藏天然气运聚效率[J].地球科学-中国地质大学学报,2008,33(4):565~571.
    [118] Crame B.,Krooss B.M.,et al..Modelling isotope fractionation during primary cracking of natural gas:a reaction kinetic approach[J].Chemical Geology,1998,149:235~250.
    [119] Crame B.,Faber E.,et al..Reaction kinetics of stable carbon isotopes in natural gas-insights from dry,open system pyrolysis experiments[J].Energy & Fuels,2001,15:517~532.
    [120]帅燕华,邹艳荣,彭平安.塔里木盆地库车坳陷煤成气甲烷碳同位素动力学研究及其成藏意义[J],地球化学,2003,32(5):469~475.
    [121]帅燕华,邹艳荣,彭平安.天然气甲烷碳同位素动力学模型与地质应用新近展[J].地球科学进展,2003,18(3):405~411.
    [122]邹艳荣,帅燕华,孔枫,等.煤成甲烷碳同位素演化的数学模型与应用[J].天然气地球科学,2003,14(2):92~96.
    [123]张文淮,陈紫英.流体包裹体地质学[M].中国地质大学出版社,1993.
    [124]纪学雁,舒萍,曲延明等.流体包裹体在庆深气田火山岩气藏研究中的应用[J].吉林大学学报(地球科学版).2007,37(4):739~743.
    [125] Chi G.X.,Chou Y.M.,et al..An overview on current fluid-inclusions research and applications[J].Acta Petrologica Sinica,2003.19(2): 201~212.
    [126] George S.C.,Volk H.,et al..Oil-bearing fluid inclusions: Geochemical analysis and geological applications[J].Acta Petrologica Sinica.2004.20(6): 1319~1332.
    [127]卢焕章,范宏瑞,等.流体包裹体[M].北京:科学出版社.2004:276~282.
    [128] Meng Yuanlin,XiaoLihua,et al..The activity of high-temperature hydrothermal fluids and the formation of the hydrocarbon reservoirs in the Wen’an slope of the Bohaiwan basin,China[J].Acta Petrologica Sinica.2003,19(2): 337~347.
    [129]陶士振.包裹体应用于油气地质研究的前提条件和关键问题[J].地质科学.2004,39(1):77~91
    [130]高玉巧,欧光习,等.歧口凹陷西坡白水头构造沙一段下部油气成藏期次研究[J].岩石学报.2003,19(2):359~365.
    [131]旷理雄,郭建华,等.塔里木盆地阿克库勒凸起于奇地区哈拉哈塘组油气成藏机制[J].吉林大学学报(地球科学版) .2008,38(2):249~254.
    [132] Meng Y.L.,Yang J.S.,Xiao L.H..Diagenetic evolution modeling system and its application.In:Hao Dongheng ed.Treatises ofⅩⅢKerulien international conference of geology[J].Shijiazhuang,China:Shijiazhuang University of Economics.2001:25~27.
    [133]林壬子.轻烃技术在油气勘探中的应用[J].中国地质大学出版社.1992.
    [134]戴金星.天然气地质和地球化学论文集[C].北京:石油工业出版社,1998:204~213.
    [135]宋岩,戴金星,等.中国大中型气田主要地球化学和地质特征[J].石油学报.1998,19(1):1~5.
    [136]徐永昌.天然气成因理论及应用[M].北京:科学出版社.1994.
    [137]徐永昌,傅家谟,郑建京.天然气成因及大中型气田形成的地学基础[J].北京:科学出版社.2000.
    [138]廖永胜.应用碳同位素探讨油气成因[J].石油学报.1981,增刊:52.
    [139]戴金星.天然气碳氢同位素特征和各类天然气鉴别[J].天然气地球科学.1993,2(3):1~40.
    [140]孙秀凤,崔永强,等.天然气成因碳同位素指标评述[J].化工矿产地质.2006,28(4):225~231.
    [141]宋岩,徐永昌.天然气成因类型及其鉴别[J].石油勘探与开发.2005,32(4):24~29.
    [142]黄第藩,刘宝泉,王庭栋,等.塔里木盆地东部天然气的成因类型及其成熟度判识[J].中国科学:D辑,1996,26(4):365~372.
    [143]冯子辉,刘伟.徐家围子断陷深层天然气的成因类型研究[J].天然气工业.2006,26(6):18~20.
    [144]戴金星,邹才能,等.无机成因和有机成因烷烃气的鉴别[J].中国科学D辑:地球科学.2008,38(11):1329~1341.
    [145]张士亚,郜建军,等.利用甲、乙烷碳同位素判别天然气类型的一种新方法[C].石油与天然气地质文集,第1集,中国煤成气研究.北京:地质出版社.1988.
    [146]沈平,徐永昌,等.气源岩和天然气地球化学特征及成气机理研究[J].兰州:甘肃科学技术出版社.1991.
    [147]戴金星,戚厚发,等.鉴别煤成气和油型气若干指标的初步探讨[J].石油学报.1985,6(2):31~38.
    [148]戴金星,宋岩,等.鉴别煤成气的指标,煤成气地质研究[M].北京:石油工业出版社.1987.
    [149]廖永胜.罐装岩屑轻烃和碳同位素在油气勘探中的应用[J].天然气地质研究论文集.北京:石油工业出版社.1989.
    [150]戴金星,夏新宇,秦胜飞,等.中国有机烷烃气碳同位素系列倒转的成因[J].石油与天然气地质.2003,24(1):1~6.
    [151]戴金星.云南腾冲县硫磺塘天然气碳同位素组成特征和成因[J].科学通报.1988,33(15):168~170.
    [152]刘婷,米敬奎,等.松辽盆地深层天然气碳同位素倒转数值模拟[M].2008,19(5):722~726.
    [153]戴金星.中国含油气盆地的无机成因气及其气藏形成条件[J].天然气工业.1995.15(3):22~27.
    [154]刘文汇,徐永昌.天然气成因类型及判别标志[J].沉积学报.1996,14(1):110~116.
    [155]许多,周瑶琪,等.中国东部幔源CO2气藏的CO2/3He比率及形成机制[J].石油与天然气地质.1999,20(4):290~294.
    [156]许多,朱岳年,等.地幔源气体的CO2/3He特征及其地质意义[J].地质地球化学.1999,27(4):87~92.
    [157]杨池银.板桥凹陷深层天然气气源对比与成因分析[J].天然气地球科学.2003,14(1):47~52.
    [158]蒋启贵,张志荣,等.轻烃指纹分析及其应用[J].地质科技情报.2005,24(1):61~64.
    [159]胡惕麟,戈葆雄,等.源岩吸附烃和天然轻烃指纹参数的开发和应用[J].石油实验地质.1990,12(4):375~394.
    [160]王廷栋,蔡开平.生物标志物在凝析气藏、天然气运移和气源对比中的应用[J].石油学报.1990,11(1):25~31.
    [161]蒋启贵,张志荣,等.轻烃指纹分析及其应用[J].地质科学情报.2005.24(1):61~64.
    [162]李景坤,孔庆云,等.松辽盆地北部深层气源对比[J].大庆石油地质与开发.1999,18(1):5~8.
    [163]申宝剑,黄智龙,等.天然气气源对比研究方法进展[J].天然气地球科学.2007,18(2):269~274.
    [164]蒋助生,罗霞,等.苯、甲苯碳同位素组成作为气源对比新指标的研究[J].地球化学.2000,29(4):410~415.
    [165]李剑,罗霞,等.对甲苯碳同位素值作为气源对比指标的新认识[J].天然气地球科学.2003,14(3):177~180.
    [166]冯志强,王玉华,等.松辽盆地深层火山岩气藏勘探技术与进展[J].天然气工业.2007,27(8):9~12.
    [167]刘成林,杜蕴华,等.松辽盆地深层火山岩储层成岩作用与孔隙演化[J].岩性油气藏.2008,20(4):33~37.
    [168]郭齐军、焦守诠.火山岩储层的岩石学评价[J].特种油气藏.1995,2.
    [169]赵海玲,刘振文,等.火山岩油气储层的岩石学特征及研究方向[J].石油与天然气地质.2004,25(6):609~613.
    [170]戴亚权,罗静兰,等.松辽盆地北部升平气田营城组火山岩储层特征与成岩演化[J].中国地质.2007,34(3):529~535.
    [171]迟元林,等.辽盆地北部深层火山岩储层预测与圈闭评价[J].大庆勘探开发研究院、大庆石油学院.
    [172]郭齐军,等.火山岩储集层的研究[J].石油实验地质.1997,19(4):6~8.
    [173]李国会.深层特殊岩性储层测井地质综合解释方法研究[J].大庆石油管理局勘探开发研究院.1999 .
    [174]刘明高.克拉玛依油田一区石炭系火山岩储层研究[J].新疆石油地质.1986,7(2).
    [175]邵红梅,王成,等.松辽盆地北部火山岩储层孔隙特征与演化[J].西北大学学报.2001.
    [176]王成,姜洪启,等.储层微观评价技术及应用[C].大庆油田发现40年论文集.石油工业出版社.
    [177]闫春德,等.江汉盆地火山岩气孔发育规律及其储集性能[J].江汉石油学院学报.1996,18(2):11~20.
    [178]杨瑞麟,刘明高.准噶尔盆地火山岩储层特征及评价[J].成都理工学院学报.1996 ,23(增).
    [179]余芳权.江陵凹陷金家场构造的火山岩储集层[J].石油勘探与开发.1990,2.
    [180]张子枢,吴邦辉.国内外火山岩油气藏研究现状及勘探技术调研[J].天然气勘探与开发,1994.
    [181]刘为付,王永生,等.松辽盆地徐家围子断陷营城组火山岩储集层特征[J].特种油气藏.2004,11(2):6~10.
    [182]刘为付,朱筱敏.松辽盆地徐家围子断陷营城组火山岩储集空间演化[J].石油实验地质.2005,27(1): 44~49.
    [183]曲延明,舒萍,等.兴城气田火山岩储层特征研究[J].天然气勘探与开发.2006,29(3):13~16.
    [184]邵红梅,毛庆云,等.徐家围子断陷营城组火山岩气藏储层特征[J].天然气工业.2006,26(6):29~32.
    [185]吴磊,徐怀民,等.松辽盆地杏山地区深部火山岩有利储层的控制因素及分布预测[J].现代地质.2005,19(4):585~595.
    [186]綦敦科,齐景顺,等.徐家围子地区火山岩储层特征研究[J].特种油气藏,2002,9(4):41~46.
    [187]曲延明,舒萍,等.兴城气田火山岩储层特征研究[J].天然气勘探与开发,2006,9:12~16.
    [188]刘万洙,王璞珺,等.松辽盆地北部深层火山岩储层特征[J].石油与天然气地质.2003,24(1):28~31.
    [189]赵玉婷,单玄龙,等.松辽盆地白垩系营城组火山岩脱玻化作用及其储层意义--以盆缘剖面为例[J].吉林大学学报(地球科学版) .2007,37(6):1153~1157.
    [190]杨双玲,刘万洙,等.松辽盆地火山岩储层储集空间特征及其成因[J].吉林大学学报(地球科学版) .2007,37(3):507~512.
    [191]刘秀明,吴志亮,等.铁木尔特多金属矿床烃碱流体-热水成矿作用[J].昆明理工大学学报.1999,24(1):145~149.
    [192]李庶勤等.徐家围子北部深层气藏形成条件及分布规律研究[J].大庆勘探开发研究院(内刊),1999.
    [193]蔡先华,谭胜章.松辽盆地南部长岭断陷火成岩分布及成藏规律[J].石油物探.2002,41(3):363~366.
    [194]邓玉胜,王蕴,朱桂生等.松辽盆地南部长岭断陷火成岩特征及其对油气藏的控制[J].中国石油勘探,8(3):31~37.
    [195]杨懋新.松辽盆地断陷期火山岩的形成及成藏条件[J].大庆石油地质与开发.2002,21(5):15~17.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700