用户名: 密码: 验证码:
基于随机模拟的火山岩储层描述
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着石油勘探的发展,国内外发现的火山岩油气藏越来越多。同时勘探表明,火山岩可以成为良好的油气储集层。火山岩储层作为一种特殊的油气藏类型,正在引起越来越大的关注。火山岩储层描述是继碎屑岩储层描述的另一重要研究领域。
     由于火山岩储层地质条件极其复杂,储层非均质性极强,因此火山岩储层描述还处于探索阶段。
     本文针对上述火山岩储层的复杂性,在研究区松辽盆地长岭凹陷提出了在测井解释的基础上,以随机模拟技术为核心的火山岩储层描述技术路线。
     在火山岩储层测井解释方面,以前人的研究成果为基础,结合研究区的火山岩特点对其进行火山岩岩性识别和储层参数(孔隙度、渗透率、饱和度)测井解释。
     在随机模拟方面,根据火山岩储层自身的特点,选择使用序贯指示模拟方法对火山岩岩性进行建模和模拟,并在岩性模拟结果控制下使用序贯指示模拟方法对孔隙度进行建模和模拟。
     最终对火山岩储层进行描述,包括:储层分类评价和有利储集带划分。论文创新之处包括以下三点:
     1、将序贯指示模拟方法应用于火山岩储层随机模拟研究中,并得到良好的模拟效果;
     2、结合变异函数分析结果总结出火山岩岩性和孔隙度的变异函数参数选择范围;
     3、根据样品分析结果、测井解释结果和随机模拟实现,提出火山岩储层有利储集带划分。
With the development of oil exploration at home and abroad, there have been found an increasing number of volcanic reservoir of resources. Back in the late century, Cuba, Japan, Argentina, the United States and the former Soviet Union and other countries, gas and oil have been found in igneous rock reservoir. China from south to north, from east to west of the vast scope of territory, geologists have found igneous rocks as reservoirs of oil and gas reservoirs.
     Volcanic rocks, as a new special type of reservoir, because of its great depth, complexity and the hidden reservoir to reservoir description and other specialty has been in a stage of qualitative description. The use of advanced algorithms and interpretation of the current theory of its semi-quantitative - quantitative description has become a research hotspot. At home and abroad still no mature theory as a guide.
     The thesis of the study area for the basin Changling sag, for volcanic reservoir description of this goal, the introduction of stochastic reservoir simulation of the most widely used algorithm for reservoir description of the mature theory to determine the direction of comprehensive multi- research methods. The main research contents include:
     1. Volcanic lithology identification technology: According to the core description, petrography and casting ordinary thin slice identification and logging lithology in the study area and characteristics of volcanic rock types; to core and slice the results scale logging data, through ECS and conventional logging response characteristics of the lithology, the formation of a fusion cross plot and neural network integrated identification technology volcanic rocks;
     2. Pore structure analysis: The core descriptions, thin section, CT scanning, pressure mercury on the Combination, from the qualitative to semi-quantitative and quantitative study of the pore throat volcanic type, throat type of pore structure;
     3. Dual media volcanic reservoir parameters (porosity, permeability, saturation) Well Logging Interpretation: Based on core analysis, ECS calculation and logging measurement data analysis to determine volcanic rock matrix parameters (neutron, density and acoustic lag), using conventional logging data logging interpretation of reservoir parameters, including porosity (effective porosity, fracture porosity and total porosity), permeability (matrix permeability, fracture permeability and the total penetration rate of rock) and saturation (base saturation block, crack saturation and pore saturation). The results of the volcanic core analysis porosity and permeability of reservoir evaluation;
     4. Stochastic simulation of volcanic reservoir: use of laboratory analysis and interpretation of data logging, combined with geostatistical theory, with the over on the lithology and porosity variability, variation parameter extraction, a true reflection of the study area as far as possible deeper distribution and porosity of volcanic rocks in the spatial distribution of the form of stochastic model, combined with geological analysis and geological knowledge chose the right;
     5. Volcanic reservoir description: using core analysis, well logging porosity and permeability characteristics and based on the results of the study area heterogeneity of the study and analysis of distribution of reservoir parameters and rules; combination of gas test results, volcanic reservoir classification, classification criteria given in logging, processing of the volcanic section, statistics of reservoir development situation; combination of stochastic simulation to achieve, in-depth analysis of volcanic reservoir distribution, the distribution of facies belts made form.
     The main technical line is: The core, testing and logging, based on observations by a large number of core, laboratory and theoretical research, the initial formation of a deep volcanic reservoir description technology, including the identification of volcanic rock, volcanic rock double media storage layer parameters (porosity, permeability, saturation) log interpretation techniques, and porosity of volcanic rocks in stochastic simulation, reservoir classification and classification techniques with favorable reservoirs. Of the reservoir characteristics of the integrated application of qualitative description, cross plot analysis, neural network algorithm, sequential indicator simulation, spatial variability analysis methods.
     Based on the analysis and conclusion volcanic reservoir modeling and reservoir description based on the results of research and put forward some new ideas and innovative approach. Innovations include the following:
     1. The first time, sequential indicator simulation method is applied to volcanic reservoir stochastic simulation study, and get good simulation results;
     2. Combining variogram analysis summarized in the study area and porosity of volcanic rocks in the range of variation of the function parameters;
     3. According to results of sample analysis, log interpretation results and stochastic simulation to achieve favorable volcanic reservoir was first proposed reservoir zonation.
     Through the above study the following conclusions and understanding of:
     1. Research group at the top of Yingcheng mainly brown gray, gray tuff, the lower purple gray, dark gray, gray rhyolite. Volcanic component is relatively simple, mainly acidic rhyolitic, dacitic and see a small amount of rough dacitic composition, lithology is relatively complicated, mainly rhyolite, tuff breccia, welded tuff, in situ angle conglomerates and a few sedimentary pyroclastic rocks;
     2. Study area, type of volcanic reservoir space including pores and cracks in two categories, each subdivided into primary and secondary classes of two subtypes. Of the main volcanic reservoir space porosity and secondary porosity original composition, the main types of pores, pore filling of the residual after the hole, almond body hole, the ball mid-stream pattern grain quality rhyolite glass devitrification produce micro pores, feldspar dissolution pores, pore ash dissolution, carbonate dissolution pores, dissolution of quartz dust holes, gravel between the holes, pellets and tablets around the seam between the shrinkage, cracks and micro cracks. Reservoir pore space based mainly belonging fractured - porous, macroscopically become porous reservoir.
     3. Volcanic identify basic idea is to "significantly sub-categories, and then gradually broken down," is to use cross plots of log data interpretation routine basis. ECS as a new method of logging of wells in a measure to use. GR-DEN and TH-U plate quickly, clearly and accurately basic distinction in the study area, neutral, and acidic volcanic rocks in the four major categories of acidic volcanic rocks, but the most widely distributed in the study area rhyolite and tuff of the distinction between effects not ideal; use of neutron logging can be acidic igneous lava and acid tuff distinction;
     4. Core analysis results show that the volcanic rocks of the study area developed cracks and holes, are fractured reservoir. According to mercury curve analysis combined with core porosity and permeability results and findings volcanic reservoir at home and abroad, the study area is divided into five volcanic reservoir
     ClassⅠreservoir pore permeability, porosity, and mean throat radius of the largest saturation value of mercury into the largest and smallest displacement pressure, the best properties, gap degreeФ> 9%, permeability K> 0.1×10-3μm2, for the good of the reservoir
     ClassⅡ: pore structure corresponds to partial pore wide form, with reservoir properties general, smaller displacement pressure, pressure mercury saturation in the higher value, the maximum saturation value of mercury lower; such type of reservoir development in the pore more, including the intergranular pores, intergranular dissolution pores, intragranular pore, dissolution pores, and other types of micro pore over development; pore throat radius of more uniform distribution in the 0.025μm~0.25μm between the porosity distribution range of 4% to 9% and permeability K>0.1×10-3μm2, crack-based reservoir.
     ClassⅢ: pore structure corresponds to partial pore throat narrow form, with poor reservoir properties, large displacement pressure, pressure mercury saturation in the higher value, the maximum value of the high mercury saturation, pore throat is small, the performance of capillary pressure curve for the skewness characteristics of fine; pore throat radius centered on 0.025μm ~ 0.01μm between a small number of high-value, distribution porosity of 4% to 9% and permeability K <0.1×10-3μm2.
     ClassⅣ: pore structure corresponds to pore throat narrow form, with poor reservoir properties, large displacement pressure, pressure mercury saturation in the high value of the maximum saturation value of mercury is low, a small pore, capillary pressure curve showed skewness smaller features; such reservoirs, including intergranular pores, intergranular dissolution pores, intragranular pore, dissolution pores, pore type, etc., generally do not classⅡpore structure corresponds to the pore growth, and poor connectivity with some reservoir capacity of the pore structure is poor; mainly distributed in the volcanic breccia, welded tuff, crystal tuff, rhyolite and volcanic breccia Melting; pore throat radius is small, the lack of high value. Very low porosity and permeability and porosity distribution of 3% to 4% and permeability distribution range 0.01×10-3μm2 ~ 0.1×10-3μm2.
     ClassⅤcategories: less than 3% porosity, a non-reservoir.
     In the study area to the main reservoir is ClassⅢ;
     5. Through variogram analysis, the study area are given top business city group of volcanic rocks (mainly developed in the rhyolite and tuff) and different lithology porosity variogram parameters, the results show that the porosity of rhyolite variability slightly higher than the variability of the porosity of tuff; rocks in the range of variation within the range of 80m, nugget = 0.04; acidic lava (rhyolite) and acid pyroclastic rocks (tuff) the porosity of the range of variation in the 30m ~ 50m between the nugget value is between 1 and 2.
     6. In the study area target layer distribution of volcanic gas reservoirs has obvious characteristics of the gas into the water, according to pilot test the oil reservoir gas conclusions will be divided into gas, bad gas, gas water layers and dry layer four, with properties , electrical, lithology and reservoir characteristics of changes in space as a standard for classification of volcanic reservoir and reserve evaluation, the results of statistics on the study area, the effective thickness of the volcanic gas percentage was 39.4%, and poor gas and gas-water layer effective thickness of the percentage was 13.1%, the percentage of dry layer thickness of 47.5% effective.
     7. At 5000m depth, the volcanic rock porosity and permeability with depth was not obvious, but the relationship with the location of a larger structure: the volcanic slope in the reservoir structure with larger pores, are in the hole and permeability , local high porosity and high permeability; tectonic uplift belt of volcanic and tectonic depression porosity smaller than the uniform distribution, a low porosity and low permeability reservoir, but the tectonic uplift of the reservoir parameters volcanic tectonic sag slightly better than band; the same tectonic zone, the site of reservoir parameters faults better.
引文
[1].曹宝军,刘德华.浅析火山岩油气藏分布与勘探、开发特征[J].特种油气藏,2004,11(1):18~20
    [2].陈岩.克拉玛依油田一区石炭系火山玄武岩油藏剖析[J].新疆石油地质,1988,9(29):17~31
    [3].陈海云,林春明,张云银,等.济阳拗陷新生代火成岩的识别[J].石油地球物理勘探,2005,40(6):663~672
    [4].陈恭洋.碎屑岩油气储层随机建模[M].北京:地质出版社,2000
    [5].陈丽华,王家华.油气储层研究技术[M].北京:石油工业出版社,2000
    [6].程华国,袁祖贵.用地层元素测井(ECS)资料评价复杂地层岩性变化[J].核电子学与探测技术,2005,25(3):233~238
    [7].迟昭利,魏旭光,刘立勤,等.三维地质模型的建立——以阿尔及利亚Zarzaitine油田为例[J].地层学杂志,2007,31(增刊Ⅱ):532~553
    [8].邓攀,陈孟晋,高哲荣,等.火成岩储层构造裂缝的测井识别及解释[J],石油学报,2002,23(6):32~36
    [9].丁次乾.矿场地球物理[M].东营:石油大学出版社,1992
    [10].杜贤樾,肖焕钦.渤海湾盆地火成岩油气藏勘探研究进展[J].复式油气田,1998,23(4):1~4
    [11].冯志强,任延广,张晓东,等.海拉尔盆地油气分布规律及下步勘探方向[J].石油地质,2004,4:19~22
    [12].高美娟,田景文,赵启蒙.用序贯指示随机模拟法结合地震数据研究渗透率空间分布[J].石油地球物理勘探,2003,38(增刊):98~102
    [13].高知云,章谦澄.大港油田勘探丛书[M].北京:石油工业出版社,1999
    [14].郭占谦.火山作用与油气田的形成和分布[J].新疆石油地质,2001,22(3):183~185
    [15].韩琳.元素俘获谱测井(ECS)在火成岩岩性识别与储层评价中的应用研究[D].长春,吉林大学地球探测科学与技术学院,2009
    [16].何健,王家华.基于工作流技术的多点统计储层建模方法研究[J].计算机时代,2007,12:5~6
    [17].金强.裂谷盆地火山活动与油气藏的形成[J].石油大学学报,2001,25(1):27~29
    [18].匡立春,薛新克,邹才能,等.火山岩岩性地层油藏成藏条件与富集规律-以准噶尔盆地克-百断裂带上盘石炭系为例[J].石油勘探与开发,2007,34(3):285~290
    [19].李长山,陈建文,游俊,等.火山岩储层建模初探[J].地学前缘,2000,7(4):381~389
    [20].李少华,张昌民,尹艳树,等.多物源条件下的储层地质建模方法[J].地学前缘,2008,15(1):196~201
    [21].李亚美.基础地质[M].北京:地质出版社,1994
    [22].刘红歧,夏宏泉,王拥军.地层胶结指数m的分形特征研究[J].测井技术,2001,25(1):24~27
    [23].刘金平.松辽盆地徐家围子断陷火山岩储层哦组能够和预测方法研究[D].长春:吉林大学,2006
    [24].刘为付.松辽盆地徐家围子断陷深层火山岩储层特征及有利区预测[J].石油与天然气地质,2004,25(1):115~119
    [25].刘万洙,王璞珺,门广田,等.松辽盆地北部深层火山岩储层特征[J].石油与天然气地质,2003,24(1):28~31
    [26].刘绪钢,孙建孟.新一代元素俘获谱测井仪(ECS)及其应用[J].国外测井技术,2004,19(1):26~30
    [27].刘绪纲,孙建孟,郭云峰.元素俘获谱测井在储层综合评价中的应用[J].测井技术,2005,29(3):236~239
    [28].刘泽容,信全麟,王永杰,等.山东惠民凹陷西部第三纪火山岩油藏形成条件与分布规律[J].地质学报,1998,62(3):210~222
    [29].刘阵武,方朝亮,乔立. 21世纪初中国油气应用基础研究展望[C].北京:石油工业出版社,2003
    [30].刘铮锋.高温高压、泥质含量、润湿性及实验方法对阿尔齐公式的影响分析[J].测井技术,1998,22(4):23~26
    [31].路波,赵萍.火山岩的分布及其对油气藏的作用[J].特种油气藏,2004,11(2):17~19
    [32].罗静兰,曲志浩,孙卫,等.风化店火山岩成因、储集孔隙类型及其火山岩相与油气的关系[J].石油学报,1996,17(1):32~39
    [33].罗静兰,邵红梅,张成立.火山岩油气藏研究方法与勘探技术综述[J].石油学报,2003,24(1):31~37
    [34].罗群,刘为付,郑德山..深层火山岩油气藏的分布规律[J].新疆石油地质,2001,22(3):196~198
    [35].吕炳全,张彦军,王红罡,等.中国东部中、新生代火成岩石油地质研究、油气勘探前景及面临问题[J].海洋石油,2003,23(4):9~11
    [36].吕晓光,李洁.油气储层表征技术[M].北京:石油工业出版社,2005
    [37].马全华.辽河盆地东部凹陷欧利坨子地区特殊储层评价技术研究[D].北京:中国地质大学,2008
    [38].马永昌,王胜伟,董庆禄,等.冀东中生代凹陷与辽西中生代凹陷中地质上的差异[J].有色矿冶,2004,20(2):1~3
    [39].穆龙新,贾爱林.储层精细研究方法[M].北京:石油工业出版社,2000
    [40].潘保芝,薛林福,李舟波,等.裂缝性火成岩储层测井评价方法与应用[M].北京:石油工业出版社,2003
    [41].潘保芝,薛林福,黄布宙,等.基于QAPM矿物模型遗传算法评价火成岩储层(英文)[J]. Applied Geophysics,2008,5(1):1~8
    [42].潘保芝,李舟波,付有升.测井资料在松辽盆地火成岩岩性识别和储层评价中的应用[J].石油物探,2009,48(1):48~52
    [43].庞彦明.酸性火山岩储层储集空间特征与评价研究—以松辽盆地北部营城组为例[D].长春:吉林大学,2006
    [44].庞彦明,章凤奇,邱红枫,等.酸性火山岩储层微观孔隙结构及物性参数特征[J].,2007,28(6):72~77
    [45].邱家骧,陶奎元,赵俊磊,等.火山岩[M].北京:地质出版社,1996
    [46].裘亦楠.油藏描述[M].北京:石油工业出版社,1996
    [47].裘亦楠,薛淑浩.油气储层评价技术[M].北京:石油工业出版社,1997
    [48].任宝生.碎屑岩储层建模方法研究——以港西油田三区二断块油藏为例[D].成都,西南石油学院,2005
    [49].司马立强.测井地质应用技术[M].北京:石油工业出版社,2002
    [50].孙先达,王璞珺,索丽敏,等.松辽盆地火山岩储层三维可视化描述[J].吉林大学学报(地球科学版),2007,37(6):1272~1278
    [51].谭廷栋.裂缝性油气藏测井解释模型与评价方法[M].北京:石油工业出版社,1987
    [52].唐华风,庞彦明,边伟华,等.松辽盆地白垩系营城组火山机构储层定量分析[J].石油学报,2008,29(6):841~846
    [53].王贵文,郭荣坤.测井地质学[M].北京:石油工业出版社,2000
    [54].王焕弟,牛滨华,任敦占,等.隐蔽油气藏勘探现状与对策分析[J].石油地球物理勘探,2004,39(6):739~744
    [55].王家华,张团峰.油气储层随机模拟[M].北京:石油工业出版社,2001
    [56].王家华.迎接尤其储层建模理论、应用的大发展——从2007年国际石油地质统计学大学谈起[J].地学前缘:2008,15(1):16~25
    [57].王朋岩,赵荣.松辽盆地西斜坡构造运动强度与油气运移[J].天然气工业,2003,26(7):8~10
    [58].王璞珺,迟元林,刘万洙,等.松辽盆地火山岩岩相:类型、特征和储层意义[J].吉林大学学报(地球科学版),2003,33(4):449~456
    [59].王向荣.洪积扇储层油藏描述及地质建模研究[D].北京:中国地质大学,2006
    [60].王拥军.深层火山岩气藏储层表征技术研究[D].北京:中国地质大学,2006
    [61].王允诚,孔金祥,李海平,等.气藏地质[M].北京:石油工业出版社,2004
    [62].文华川.威远气田的气水关系[J].天然气工业,1986,6(2):14~19
    [63].吴胜和,李宇鹏.储层地质建模的现状与展望[J].海相油气地质:2007,12(3):53~60
    [64].吴星宝,李少华,尹艳树,等.相控随机建模技术在非均质性研究中的应用[J].断块油气田,2009,16(2):58~60
    [65].吴永平. Z241、Z242断块多层系油藏开发中后期精细油藏描述[D].成都,成都理工大学,2008
    [66].伍友佳,刘达林.中国变质岩火山岩油气藏类型及特征[J].西南石油学院学报,2004,26(4):1~4
    [67].夏红敏,黄旭日,王尚旭,等.区域特性约束下的油藏物性模拟[J].地球物理学进展,2005,20(3):769~774
    [68].闫磊,潘保芝,陈玉魁.松辽盆地东岭地区火山岩气层测井识别与综合评价[J].物探与化探,2008,32(6):657~660
    [69].杨满平,郭平,彭彩珍,等.火山岩储层的应力敏感性分析[J].大庆石油地质与开发,2004,23(2):19~20
    [70].杨新明.闵桥油田火山岩油藏储层特征[J].江苏油气,1993,4(3):24~31
    [71].伊培荣,彭峰.国外火山岩油气藏特征及其勘探方法[J].特种油气藏,1988,5(2):65~70
    [72].印兴耀,贺维胜,黄旭日.贝叶斯—序贯高斯模拟方法[J].石油大学学报(自然科学版),2005,29(5):28~31
    [73].雍世和,张超谟.测井数据处理与综合解释[M].山东东营:石油大学出版社,1996
    [74].于兴河.碎屑岩系油气储层沉积学[M].北京:石油工业出版社,2002
    [75].袁祖贵.地层元素测井(ECS)评价油水层[J].核电子学与探测技术,2004,24(2):126~131
    [76].曾文冲,欧阳健,何登春.测井地层分析与油气评价[M].石油勘探部培训教材,1982
    [77].张冰,潘保芝,王英伟,等.神经网络方法识别测井曲线形态[J].物探化探计算技术,2009,31(6):611~615
    [78].张殿成,何德友,尚广弟.松辽盆地汪家屯东火山岩储层预测[J].石油物探,2000,39:36~43
    [79].张景和.低渗透油田开发技术[M].北京:石油工业出版社,1994
    [80].张丽华.火山岩储层测井评价方法研究[D].长春,吉林大学地球探测科学与技术学院,2009
    [81].张仁铎.空间变异理论与应用[M].北京:科学出版社,2005
    [82].赵澄林,孟卫工,金春爽,等.辽河盆地火山岩与油气[M].北京:石油工业出版社,1999
    [83].赵海玲,刘振文,李剑,等.火成岩油气储层的岩石学特征及研究方向[J].石油与天然气地质,2004,25(6):609~613
    [84].赵劲松,唐洪明,雷卞军.矿物岩石薄片研究基础[M].北京:石油工业出版社,2003
    [85].赵良孝,补勇.碳酸盐岩储层测井评价技术[M].北京:石油工业出版社,1994
    [86].郑亚斌,王延斌,冉启全.枣35断块火山岩储层特征研究[J].石油学报,2006,27(4):54~58
    [87].周波,李舟波,潘保芝.火山岩岩性识别方法研究[J].吉林大学学报(地球科学版),2005,35(3):394~397
    [88].中国石油天然气总公司. SY/T 5830-93.中华人民共和国石油天然气行业标准-火山岩储集层描述方法[M].北京:石油工业出版社,1993
    [89]. Bahat D. Joint and an Echolen Cracks in Middle Eocene Chalks near Beer Sheva. Israel [J], J.Str.Geo.,1986(8): 181~191
    [90]. Browne E J P. Systematic reservoir description by computer [C]. SPE 4902, 1974
    [91]. Burger H B, Thompson M T. Fracture Analysis of the Carmichael Peak Anticline[J], Madison County, Montana, GSA. 1970, 81:1831~1836
    [92]. Callard G J. Reservoir description from production data[C]. SPE 9238, 1980
    [93]. Chessa A G. On the object-based method for simulation sandstone deposits:The third European conference on the mathematics ofoil re-covery, June 17-19, 1992[C]. Delft, Netherlands,1992:67~78
    [94]. Coats K M, Dempsey J R, Henderson J H. A new technique for determining reservoir description from field performance data[C]. SPE 2344, SPE Journal,Volume 10, Number 1,March, 1970
    [95]. Haldorsen H.H, Damsleth E. Challenges in Reservoir Characterization [J]. AAPG,1994,77(4):71~73
    [96]. Hawlander H M. Diagenesis and resevoir potential of volcanogenic sandstones-Cretaceous of the Surat Basin,Australia[J]. Sedimentary Geology, 1990,66(3/4):181~195
    [97]. Hearn C L, W J Ebanks Jr, V Ranganath. Geological Factors Influencing Reservoir Performance of Hartzog Draw Field [J],Wyoming. JPT,Aug 1984: 1335~1344
    [98]. Howard H. Floodplain Processes, Modeling channel evolution and floodplain morphology [M]. Wiley J, Sons. Floodplain Processes,1996
    [99]. H. Scott Hamlin, Shirly P. Dutton, Robert J. Seggie, et al. Depositional Controls on Reservoir Properties in a Braid Delta Sandstone, Tirrawarra Oil Field, South Australia[J]. AAPG Bullletin, 1996,80(2): 139~156
    [100]. Koedertiz L F, Simon A D. A technique for generating grid-dependent reservoir descriptive data[C]. SPE 6509, 1977
    [101]. LaPointe P, P Wallmann, S Follin.Continuum Modeling of Fractured Rock, Masses:Is it useful [J]. Proceedings,1996,31(2):25~26
    [102]. Lopez S, Cojan I, et al. Process-based stochastic modeling in the example of meandering channelized Reservoirs: EAGE Annual Conference, 2004 [C], Paris: ,Kluwer Academic Publishers,2004
    [103]. Mark E M, John G M. Volcaniclastic deposits: implications for hydrocarbon exploration. In: Richard V, Fisher, Smith G A, eds. Sedimentation in volcanic settings [J]. Society for Sedimentary Geology, Special Publication 1991,45:20~27
    [104]. Matheron G, Beucher H. Conditional simulation of the geometry of fluvio-deltaic reservoirs [C]. SPE paper 16753, 1987,
    [105]. Monteto M, Herrera P. Multi-elemental characterization of volcanic and volcano-sedimentary rocks from Pina petroleum [J]. Ore central Cuba. Nuclear Geophysics, 1994, 8(4): 23~32
    [106]. Secmann U, Schere M. Volcaniclastics as potential hydrocarbon reservoirs[J]. Clay Minerals, 1984,19(9):457~470
    [107]. Sibit A M, Faivre O. The dual lateralog response in fractured rocks [C]. SPWLA, 26th annual symposium transaction, 1985
    [108]. Srivastava R M. An Overviewof stochastic methods for Reser-voir Characterization [C]. Yarus, Chamber. Stochastic mod-eling and geostatistics: principles, methods, and case studies. AAPG Computer Application in Geology, No.3. The American Association of Petroleum Geologists,Tulsa,Oklahoma,USA,1994:3~20
    [109]. Steve Cuddy, Gareth Allinson, Richard Steele. A Simple, Convincing Model for Calculating Water Saruration in Southern North Sea Gas Field [C]. SPWLA 34th Annual Logging Symposium, 1993, 13~16
    [110]. Strebelle S, Journel A. Reservoir modeling using multiple-point statistics [C]. SPE paper 71324, 2001
    [111]. Strebelle S. Conditional simulation ofcomplexgeological structures using multiple-pointstatistics [J]. Mathematical Geology, 2002,34(1):1~21
    [112]. Surdam R C, MacGRowan D B. Oilfield waters and sandstone diagenesis [J]. Appl Geochem, 1988,2:613~620
    [113]. Wang J. Reservoir description: exploration stage[M]. Bei-jing: Petroleum Industry Press, 1996(in Chinese)
    [114]. Worthington P F. Influence of microporosity upon the evaluation of hydrocarbon saturation [C]. SPE 14296, 1985
    [115]. Yuli Mitsuhata, Koichi Matsuo, Matato Minegishi. Magnetotelluric survey for exploration of a volcanicrock reservoir in the Yurihara oil and gas field, Japan[J]. Geophysical Prospecing, 1999,47(2):195~218

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700