用户名: 密码: 验证码:
采场底板应力传播规律及其对底板巷道稳定性影响研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着煤矿开采范围及开采强度的增大,跨采动压巷道的支护问题日益突出,特别是受多次动压影响的巷道,围岩变形破坏机理复杂,且控制十分困难,因此,对跨采动压巷道围岩变形破坏及控制机理进行研究,不仅具有重要的理论意义,而且具有重要的工程应用价值。为此,本文基于弹性力学,首次应用附加应力算法分析了采动支承压力在底板中的传播规律,并将采动支承压力与巷道围岩应力有机结合在一起,建立了跨采动压巷道的弹塑性力学模型,进而运用数值模拟、相似模拟等研究手段,系统分析了煤层群采动影响下巷道围岩变形破坏特征与控制机理,并将研究成果成功运用到跨采动压巷道支护的工程实践,其主要创新性成果主要体现在如下五个方面:
     (1)基于弹性力学半无限体理论,采用附加应力计算方法建立了采场底板应力分布的力学模型及采动支承压力传播的力学模型,分析了工作面回采过程中底板采动应力分布及传播规律,得到了工作面开采过程中支承压力诱导的底板下某一固定点的应力变化规律。
     (2)考虑底板采动应力与巷道围岩应力的耦合及岩石应力-应变软化特性,建立了跨采动压巷道的弹塑性力学模型,分析了上覆不同煤层工作面开采时巷道围岩的应力分布规律及巷道围岩变形特征,讨论了支护阻力与跨采动压巷道围岩变形之间的关系,给出了巷道应力及变形随工作面回采时的表达式。
     (3)借助数值模拟与相似材料模拟方法,分析了跨采动压巷道在煤层群采动时的稳定性特征,得到了巷道围岩应力、塑性区范围及变形规律等随不同的煤层群开采顺序、巷道与上覆工作面不同垂直距离、水平距离的变化规律。研究表明:自上而下的煤层群开采顺序更有利于底板巷道围岩的控制;巷道与上覆工作面水平距离、垂直距离越小时,受到的采动影响越大;巷道靠近工作面一侧拱腰处最先进入破坏状态,且破坏范围最大,是重点的围岩控制区域。
     (4)运用数值模拟与相似模拟研究了不同支护强度对跨采动压巷道围岩的控制作用,揭示了跨采动压巷道围岩的变形破坏特征,据此提出了“分阶段”支护理念,即根据上覆煤层不同的开采顺序,选用不同的支护方案。
     (5)针对淮北矿业股份有限公司海孜煤电跨采动压巷道支护存在的问题,提出了以注浆锚杆为核心的分阶段支护方案,通过现场长时间观测,结果表明该支护方案有效地控制了巷道围岩的剧烈变形,保持了巷道围岩的稳定,巷道安全性大大提高。
With an increase in coal mining strength, supporting and maintaining the cross-mining roadway with dynamic pressure have become increasingly prominent, expecially the roadway affected by dynamic preeure many times. Its mechanism is so complex to support, therefore, to research mechanism and control of floor roadway with dynamic pressure not noly has important theoretical significance, but also has important application value. Therefore, based on elasticity, this paper firstly analyzes the spread laws of floor abutment pressure in mining by using additional stress algorithm and combines the mining abutment pressure with stress of surrounding rock. And the elastic-plastic model of cross-mining roadway with dynamic pressure is established. In addition, under the conditions of mining coal groups, the features of deformation fracture and mechanism of grading support are systematically analyzed by numerical simulation and analog simulation. And the results were successfully applied to engineering practice of supporting cross-mining roadway with dynamic pressure. The main innovative achievements are as follows:
     (1) Based on the theory of semi-infinite in elasticity, the mechanical models of floor stress distribution and floor abutment pressure transmission are established by using additional stress algorithm. The distributing and transmission laws of floor abutment pressure during the mining process are analyzed and the changing laws of stress at a fixed point under the floor induced by abutment pressure are obtained.
     (2) The coupling of floor abutment pressure and roadway rock stress is achieved. Base on this and tri-linear rock stress-strain softening property, this paper establishes an elastic-plastic mechanical model of cross-mining roadway with dynamic pressure and analyses the distribution and deformation laws of surrounding rock during mining different coal. The relationship between the support resistance and deformation of cross-mining roadway with dynamic pressure is discussed and the expressions of stress and deformation of surrounding rock during mining the coal face are obtained.
     (3) With the help of numerical simulation method and similar material simulation method, this paper analyses the stability characteristics of cross-mining roadway with dynamic pressure under the condition of mining coal groups. And the laws of surrounding rock stress, size of plastic zone and deformation with the different coal mining orders, vertical distances from roadway to overlying workface and horizontal distances are got. The results show that: the order of top-down coal mining is more conducive to control floor surrounding rock. When the horizontal distance between roadway and overlying workface is near, the stability of surrounding rock will be impacted by the overlying mining face and the smaller vertical distance, the greater the impact. The arch lumbar side of the roadway near the workface is the most easily get into the damaged state and its extent of damage is the largest. It is the weak point for the roadway surrounding rock.
     (4) Using numerical simulation and similar simulation, this paper studies the control effects of different supporting strengthens of abutment pressure in cross-mining roadway with dynamic pressure. And this reveals roadway surrounding rock deformation characteristics of cross-mining roadway with dynamic pressure. Therefore, the idea of "stages" supporting is proposed. That is, the choice of different support programs is based on the different coal mining orders.
     (5) For the existing support problems of cross-mining roadway with dynamic pressure in Cross Haizi Coal Electricity Huaibei Coal Mining Co., Ltd., a stage supporting program with the core of grouting bolt is put forward. Through field observations, the results show that the support scheme can effectively control the severe deformation of surrounding rock and maintain the stability of roadway. And the roadway safety is greatly enhanced.
引文
[1]张向阳.动压影响下大巷围岩变形机理与卸压控制研究[D].安徽:安徽理工大学,2007
    [2]顾世亮.软岩动压巷道稳定性原理及控制技术研究[D].江苏:中国矿业大学,2004
    [3]钱鸣高,石平五.矿山压力与岩层控制[M].徐州:中国矿业大学出版社,2003
    [4]徐芝伦.弹性力学[M].北京:高等教育出版社,2002
    [5]唐孟雄.采面底板应力计算及应用[J].湘潭矿业学院学报, 1990,5 (2): 119-124.
    [6]朱术云,姜振泉,姚普等.采场底板岩层应力的解析法计算及应用[J].采矿与安全工程学报,2007,24(2): 192-195.
    [7]肖远见,李美海,周定武.开采层底板岩层的应力分布实验及探讨[J].矿业安全与环保,2005,32(5): 28-31.
    [8]张晓君.矿柱及围岩对采空区破坏影响的数值模拟研究[J].采矿与安全工程学报,2006,23(1): 123-126
    [9]彭维红,董正筑,李顺才.半平面体弹性问题的边界积分公式及应用[J].中国矿业大学学报, 2005,34(3): 400-404.
    [10]弓培林,胡耀青,赵阳升等.带压开采底板变形破坏规律的三维相似模拟研究[J].岩石力学与工程学报,2005,24(23): 4396-4402.
    [11]林峰.煤层底板应力分布的相似材料分析[J].淮南矿业学院学报,1990,10(3): 19-27.
    [12]关英斌,李海梅,路军臣.显德汪煤矿9号煤层底板破坏规律的研究[J].煤炭学报, 2003,28(2): 121-125.
    [13]郭惟佳.采面底板应力分布及对底板突水的影响[J].中州煤炭, 1990(1): 19-21.
    [14]尹鹤峰,王宏,朱宏新.利用空间弹性理论分析和计算采动影响下的底板应力分布[J].阜新矿业学院学报, 1992,11 (1): 19-24.
    [15]李兴高,高延法.开采对底板岩体渗透性的影响[J].岩石力学与工程学报, 2003,22(7): 1078-1082.
    [16]秦忠诚,王同旭.深井孤岛综放面支承压力分布及其在底板中的传播规律[J].岩石力学与工程学报, 2004,23 (7): 1127-1131.
    [17]康红普,王金华等.煤巷锚杆支护理论与成套技术[M].北京:煤炭工业出版社,2007.
    [18]朱维申,何满潮.复杂条件下围岩稳定性与岩体动态施工力学[M].北京,科学出版社,1995.
    [19]徐有基.构造及采动对金川二矿区1150中段围岩及矿岩稳定性的影响[D].硕士学位论文,兰州大学,2006.
    [20]姚裕春.高水平应力软岩巷道围岩变形机理及支护对策[D].硕士学位论文,西安科技学院,2002.
    [21]林崇德.层状岩石顶板破坏机理数值模拟过程分析[J].岩石力学与工程学报,1999,18(4): 392-396.
    [22]贾蓬,唐春安,王述红等.巷道层状岩层顶板破坏机理[J].煤炭学报,2006,31(1):11-15.
    [23]李国富.高应力软岩巷道变形破坏机理与控制技术研究[J].矿山压力与顶板管理,2003,(2): 50~52.
    [24]姜耀东,刘文岗,赵毅鑫等.开滦矿区深部开采中巷道围岩稳定性研究[J].岩石力学与工程学报,2005,24(11): 1857-1861.
    [25] WJ.Gale.Strata Control Dtillising Rock Reinforcement Techniques and Stress Control Methods in Australia Coal Mines Mining Engineer,1991(1)
    [26] Jiang Jinquan, Ban Jisheng.Probability Distribution Characteristic Parameters and Method toPredict the Deformation of surrounding Rocks of Extraction Openings, A.A.BALKEMA/ROTTERDAMBROOKFIELD,1997.10
    [27] Hou Zhao jiong, He Yanan, Zhang Yidong. Key technique to compositely supporting the roadway driven along previous goaf with bolts, bara and chainmeshes under complex condition. Journal of Coal Science and Engineering(China),1995.7
    [28]孔德森,蒋金泉.深部巷道围岩在复合应力场中的稳定性数值模拟分析[J].山东科技大学学报(自然科学版),2001,20(1): 68-70.
    [29]陈祖煜.关于“边坡稳定性的三维极限平衡分析方法及应用”的讨论[J].岩土工程学报,2001,23(1): 127-129.
    [30]范文,俞茂宏.基于统一强度理论的地基极限承载力公式[J].岩土力学,2005,26(10): 1617-1622
    [31]付国彬.巷道围岩破裂范围与位移的新研究[J].煤炭学报,1995,20(3): 304-310.
    [32]刘夕才,林韵梅.软岩巷道弹塑性变形的理论分析[J].岩土力学,1994,15(2): 27-36
    [33]刘夕才,林韵梅.软岩扩容性对巷道围岩特性曲线的影响[J].煤炭学报,1996,21(6): 596-601
    [34]于学馥.地下工程围岩稳定分析[M].北京:煤炭工业出版社,1983
    [35]袁文伯,陈进.软化岩层中巷道的塑性区与破碎区分析[J].煤炭学报,1986(3): 77-85
    [36]王立朝.深井动压巷道围岩变形机理及支护技术研究[D].学位论文,山东科技大学,2000
    [37]魏福生.深部巷道围岩松动圈随地应力的变化规律及巷道控制技术的探讨[D].学位论文,重庆大学,2001
    [38]付国彬,靖洪文等.巷道围岩松动圈随采深变化的规律[J].建井技术,1994(4): 4-5
    [39]王永岩,马士进.软岩巷道围岩变形时序预测方法的研究[J].辽宁工程技术大学学报自然科学版,2001,20(4): 505~506
    [40]王永岩.软岩巷道变形与压力分析、控制与预测[J].岩石力学与工程学报,2004,23(1): 158~158
    [41]董方庭等.巷道围岩松动圈支护理论及应用技术[M].北京:煤炭工业出版社,2001
    [42]董方庭,宋宏伟,郭志宏等.巷道围岩松动圈支护理论[J].煤炭学报,1994,1
    [43]李明远,王连国,易恭蝤等.软岩巷道锚注支护理论与实践[M].北京:煤炭工业出版社,2001
    [44]翟所业,贺宪国.巷道围岩塑性区的德鲁克-普拉格准则解[J].地下空间与工程学报,2005,1(2): 223~226
    [45]蒋斌松,张强,贺永年等.深部圆形巷道破裂围岩的弹塑性分析[J].岩石力学与工程学报,2007,26(5): 982~986
    [46] Malan D F.Time-dependent behavior of deep level tabular excavations in hard rock[J]. Rock Mechanics and Rock Engineering, 1999, 32(2): 123-155
    [47] Grgic D, Homand F, Hoxha D.A short-and long-term rheological model to understand the collapses of iron mines in Lorraine, France [J] .Computers and Geotechnics, 2003, 30(7): 557-570.
    [48] Kawahara Mutsuto etc.Strain-softening finite element analysis of rock applied to roadway excavation. Proceedings of the International Symposium on Weak Rock,Tokyo,1981
    [49] Kitsutaka Yoshhinori. Fracture parameters by polylineat tension-softening analysis. Journal of Engineering Mechanics,1997,123(5)
    [50] Kaiser P K,Guenot A,Morgenstern N R.Deformation of small roadways;part IV-behavior during failure. Int J Rock Mech&Min Sci Geomech Abstr,1985,22: 141-152
    [51] Fairhurst C.Deformation,yield,rupture and stability of excavations at great depth[A].In:Fairhust C ed. Rockburst and Seismacity in Mines[C].Rotterdam:A.A.Balkema,1990: 1103-1114
    [52] P. Egger. Design and Construction Aspects of Deep Roadways (with particular emphasis on strain softening rocks)[J]. Tunnelling and Underground Space Technology, 2000, 15(4): 403-408
    [53] J.F. Shao, Q.Z. Zhu, K. Su. Modeling of creep in rock materials in terms of material degradation[J]. Computers and Geotechnics, 2003, 30: 549-555
    [54] Pusch R.Mechanisms and consequences of creep in crystal line rock[A].In:Hudson J A ed.Comprehensive Rock Engineering[C].Oxford:Program on Press,1993: 227-241
    [55] Kiyama H., Fujimara H., Nishimura T., et al. Theoretical construction of bearing characteristic curve in tunneling[J]. J. Soc. Mat. Sci. Japan, 1992, 41(463): 417-423
    [56] Ladanyi B., Gill D. E.. Design of tunnel linings in a creeping rock[J]. Int. J. Min.& Geological Eng.,1988, 6: 113-126
    [57] Minh D. N., Habib P., Guerpillon Y.. Time dependent behaviour of a pilot tunnel driven in hard marls. ISRMBGS. Cambridge. 1984. 453-459
    [58] Chern, J.C., F.Y. Shiao, C.W.Yu. An empirical safety criterion for tunnel construction[C].In: Regional Symposium on Sedimentary Rock Engineering. Taipei, Taiwan. 1998: 222-227
    [59] Fairhurst .Deformation, yield, rupture and stability of excavations at great depth[A].In:Fairhust C ed. Rockburst and Seismacity in Mines [C].Rotterdam:A.A.Balkema,1990: 1103-1114.
    [60] Pusch R. Mechanisms and consequences of creep in crystal line rock[A].In:Hudson J A ed.Comprehensive Rock Engineering[C].Oxford:Program on Press,1993: 227-241
    [61] I. Paraschiv-Munteanu, N.D. Cristescu. Stress relaxation during creep of rocks around deep boreholes[J]. International Journal of Engineering Science, 2001, 39: 737-754
    [62] Pusch R. Mechanisms and consequences of creep in crystal line rock[A] .In: Hudson J A ed. Comprehensive Rock Engineering[C].Oxford: Program on Press, 1993: 227-241.
    [63] Malan D F. Simulation and Rock Engineering of the time-dependent behavior of excavation sin hard rock[J]. Rock Mechanics2002:35(4): 225-254.
    [64]陈宗基,康文法.岩石的封闭应力、蠕变和扩容及本构方程[[J].岩石力学与工程学报,1991,10(4): 199-212
    [65]丁秀丽.岩体流变特性的试验研究及模型参数辨识[D].武汉:中科院武汉岩土力学研究所,2005
    [66]雷承弟.二滩水电站枢纽区岩体蠕变试验[J].水电工程研究,1989(1):1-11
    [67]缪协兴,陈智纯.软岩力学[M].徐州:中国矿业大学出版社,1995
    [68]张向东,李永靖,张树光.软岩蠕变理论及其工程应用[[J].岩石力学与工程学报,2004, 23(10): 1635-1639
    [69]刘建忠,杨春和,李晓红.万开高速公路穿越煤系地层的隧道围岩蠕变特性的试验研究[J].岩石力学与工程学报,2004,23(22): 3794-3798
    [70]丁志坤,吕爱钟.岩石粘弹性非定常蠕变方程的参数辨识[J].岩土力学,2004 25(增): 37-40
    [71]陈沅江,吴超,潘长良.一种软岩结构面流变的新力学模型[J].矿山压力与顶板管理,2005, (3): 43-45
    [72]陶波,伍法权.西原模型对岩石流变特性的适应性及其参数确定[J].岩石力学与工程学报,2005,24(17): 3165-3171
    [73]齐明山.大变形软岩流变性态及其在隧道工程结构中的应用研究[D].上海:同济大学,2007
    [74]梁先发.考虑围岩软化的圆形巷道粘弹塑性解析[J].工程力学,1998年增刊: 582-587
    [75]卢爱红,茅献彪,彭维红.软岩巷道的粘弹性分析[J].采矿与安全工程学报,2008,25(3): 313-317.
    [76]焦春茂,吕爱钟.粘弹性圆形巷道支护结构上的荷载及其围岩应力的解析解[J].岩土力学,2004,25(增): 103-106.
    [77]王汝嘉.粘弹性岩石中井筒的井壁压力及位移[J].东北工学院学报,1984(2): 1-12.
    [78]李忠华,官福海,潘一山.基于损伤理论的圆形巷道围岩应力场分析[J].岩土力学,2004,25(增): 160-163.
    [79]周小平,钱七虎.深埋巷道分区破裂化机制[J].岩石力学与工程学报,2007,26(5):877~885.
    [80]李树忱,钱七虎,张敦福等.深埋隧道开挖过程动态及破裂形态分析[J].岩石力学与工程学报,2009,28(10): 2104-2112.
    [81] E. T. Brown and E. Hoek. Trends in relationships between measured in-situ stresses and depth [J]. International Journal of Rock Mechanics and Mining Science & Geomechanics , 1978,15(4): 211-215.
    [82] John A. Hudson and John P. Harrison. In situ stress[J]. Engineering Rock Mechanics , 1997: 41-69.
    [83] J. A. Hudson and C. M. Cooling. In Situ rock stresses and their measurement in the U.K.—Part I. The current state of knowledge [J]. International Journal of Rock Mechanics and Mining Science & Geomechanics, 1988,25(6): 363-370.
    [84] C. M. Cooling, J. A. Hudson and L. W. Tunbridge. In situ rock stresses and their measurement in the U.K-Part II. Site experiments and stress field interpretation [J]. International Journal of Rock Mechanics and Mining Science & Geomechanics, 1988,25(6): 371-382.
    [85] O. Stephansson, C. Ljunggren and L. Jing. Stress measurements and tectonic implications in Fennoscandinavia [J]. International Journal of Rock Mechanics and Mining Science & Geomechanics, 1991,28(6): 317-322.
    [86] B. Amadei. Measurement of stress change in rock[J]. International Journal of Rock Mechanics and Mining Science & Geomechanics, 1985,22(3): 177-182.
    [87]王洪涛.深部巷道围岩破坏机理分析与防治技术[J].山东煤炭科技,2004(1): 4-5
    [88]翟新献,卢喜庸.深部巷道围岩变形机理及对策[J].煤矿设计,1995(2): 7-10
    [89]付国彬,徐金海.深井底板岩巷的围岩破裂范围[J].矿山压力与顶板管理,1996(4): 40-42
    [90]高明中,黄殿武.底板软岩动压巷道围岩应力分布的数值分析[J].安徽理工大学学报,2003(9): 14-18
    [91]翟新献,姜学云.移动压力支承作用下底板巷道围岩变形与采深的关系[J].焦作矿业学院学报,1994,13(6): 16-20
    [92]宋宏伟,郭志宏,周荣章等.围岩松动圈巷道支护理论的基本观点[J].建井技术,1994(4): 3-9.
    [93]樊克恭,翟德元.巷道围岩弱结构破坏失稳分析与非均称控制机理「M].北京:煤炭工业出版社,2004.
    [94]樊克恭,翟德元,刘锋珍.岩性弱结构巷道顶底板弱结构体破坏失稳分析[J].山东科技大学学报,2004, 23(2): 11-14.
    [95]张洪敏,陈建文,牛伟.动压巷道的矿压显现与控制[J].矿山压力与顶板管理,2004(1): 46-50
    [96]顾士亮.软岩动压巷道围岩稳定性原理及控制技术研究[J].能源技术与管理,2004(1): 15-37
    [97]徐任飞,马满顺.对穿岩大巷受上部动压影响的研究[J].河北能源职业技术学院学报,2002(4): 59-61
    [98]刘斌.巷道围岩非线性变形破坏机理及其控制方法[J].中国矿业,1996,15(2): 48-51
    [99]钱鸣高,缪协兴,许家林等.岩层控制的关键层理论[M].徐州:中国矿业大学出版社,2003
    [100]宋振骐,蒋金泉.煤矿岩层控制的研究重点与方向[J].岩石力学与工程学报,1996,15(2): 128-134
    [101]何满潮,袁和生,靖洪文等.中国煤矿锚杆支护理论与实践[M].北京:科学出版社,2004
    [102]柏建彪.高应力软岩巷道耦合支护研究[J].中国矿业大学学报,2007,36(4): 421-425.
    [103]冯振山,程洪良.受动压影响的巷道合理支护方式探讨[J].煤,16(4): 47-49
    [104]陆士良,付国彬.采动巷道岩体变形与锚杆锚固力变化规律[J].中国矿业大学学报,1999,28(3): 201-203
    [105]秦练,吴宝刚,李长龙.二矿深部地压巷道变形破坏的原因及防治[J].内蒙古煤炭经济,2002(5): 13-14
    [106] Stillborg Bengt. Professional users handbook for rock bolting. Trans Tech Publications,1994
    [107] Stille Hakan. Rock support in theory and practice. Rock support in mining and underground construction (Kaiser & McCreath eds), Balkema, Rotterdam, 1992.
    [108] Stankus John C., Peng Syd S. A new concept for roof support. Coal Age, September, 1996.
    [109] Guo Zhiqiang etc. Supporting techniques for soft rocks and coal with bolt and shotcrete. Mining Science and Technology, Guo & Golosinski (eds).Balkema, Rotterdam,1996.
    [110] D. F. Howarth. The Effect of Pre-Ezisting microcaviyies on Mechanical Rock Performance in Sedimentary and Crystalline Rock, Int . J. Rock Mech. Min. Sci. ,1987,24(4): 223-233
    [111]陆家梁.软岩巷道支护原则及支护方法[J].软岩工程,1990(3): 20-24.
    [112]王连国,李明远,王学知.深部高应力极软岩巷道锚注支护技术研究[J].岩石力学与工程学报,2005,24(16): 2889-2893.
    [113]王连国,张志康,张金耀等.高应力复杂煤层沿空巷道锚注支护数值模拟研究[J].采矿与安全工程学报,2009,26(2): 145-149.
    [114]李海亮,王连国,吴宇等.复杂难支护巷道锚注支护技术研究[J].煤炭科技,2008(2): 4-7.
    [115]王连国,田金栋,吴宇等.动压软岩巷道锚注支护技术试验研究[J].矿业开发与研究,27(1): 63-65.
    [116]吴宇,王连国,李青峰.软岩锚注巷道围岩变形量的时序预测[J].采矿与安全工程学报,2006,23(4): 456-459.
    [117]王连国,缪协兴,董建涛.动压巷道锚注支护数值模拟研究[J].采矿与安全工程学报,2006, 23 (1): 39-42.
    [118]王连国,缪协兴,董建涛等.深部软岩巷道锚注支护数值模拟研究[J].岩土力学, 2005,26(6): 983-985.
    [119]王连国,李明远,毕善军.高应力复杂构造区煤巷锚注支护试验研究[J].矿山压力与顶板管理, 2005,21(1): 2-4.
    [120]王连国,张连勇,李明好.高应力软岩巷道锚、梁、喷、注支护技术研究[J].矿山压力与顶板管理,2001(4): 14-15.
    [121]陈炎光,陆士良.中国煤矿巷道围岩控制[M].徐州:中国矿业大学出版社,1994
    [122] John A. Hudson Engineering rock mechanics [M].Red+ood Books Press,1997.
    [123] F.O.Franclss.WeakRockTunneling[M].A.A.Balkema Press,1997.
    [124] Kidybinski. Strata Control in Deep Mines [M].A.A.Balke-maPress,1990.
    [125]徐学锋,窦林名,刘军等.煤矿巷道底板冲击矿压发生的原因及控制研究[J].岩土力学,2010,31(6): 1977-1982.
    [126]王书兵,毛德兵,任勇.钻孔卸压技术参数优化研究[J].煤矿开采,2010,15(5): 14-17
    [127]冉玉江,赵立龙.爆破锚杆卸压锚固注浆加固反拱底板技术及施工工艺研究与应用[J].矿业安全与环保,2010,37(4): 68-70
    [128]潘天林.巷道围岩松动爆破卸压的试验研究[J].东北煤炭技术,1996(8): 22-25
    [129]杨永良.控制巷道变形的卸压爆破法[J].矿山压力与顶板管理,2005(1): 33-35
    [130]王永岩.软岩巷道爆破卸压方法的研究与实践[J].矿山压力与顶板管理,2003(1): 13-15
    [131]李金奎,崔世海.高应力软岩巷道基角深孔爆破卸压的试验研究[J].铁道建筑,2005(4): 79-80
    [132]康红普.巷道围岩的侧下角卸压法[J].东北煤炭技术,1994(2): 26-29
    [133]郝哲,刘斌.基于差分法及神经网络的硐室围岩力学参数反分析[J].岩土力学,2003,24(增刊): 77-79.
    [134]朱维申,何满潮.复杂条件下围岩稳定性与岩体动态施工力学[M].北京:科学出版社,1995,7.
    [135]孙金山,卢文波.非轴对称荷载下圆形隧洞围岩弹塑性分析解析解[J].岩土力学,2007,Vol.28(增刊): 327-332
    [136]谈国文.大倾角煤层回采巷道围岩力学特征及锚杆支护研究[D].安徽:安徽理工大学,2008
    [137]夏孝够.深井回采巷道围岩变形机理及支护技术研究[D].安徽:安徽理工大学,2006
    [138]鲁岩.构造应力场下影响下的巷道围岩稳定性原理及其控制研究[D].徐州:中国矿业大学,2008
    [139]王襄禹.高应力软岩巷道有控卸压与蠕变控制研究[D].徐州:中国矿业大学,2005
    [140]李鸿昌.矿山压力的相似模拟实验[M].徐州:中国矿业大学出版社,1988
    [141]付国彬,姜志方.深井巷道矿山压力控制[M].徐州:中国矿业大学出版社,1996
    [142] Brady, B.H.G, Brown, E.T. Rock Mechanics for underground mining. Chapman & Hall(London),1993.
    [143] SongGuo, Stankus J. Controlmechanism of a tensioned bolt system in the laminated roofwith a large horizontal stress [A]16thInt. Con.f on Ground Control inMining [C]. Morgantown, WestVirginia, 1997.
    [144]解联库,李华炜,杨天鸿等.侧向压力作用下巷道围岩破坏机理的数值模拟[J].中国矿业,2006,15(3): 54-57.
    [145]煤矿掘进技术译文集[C].北京:煤炭工业出版社,1-57.
    [146]李世平.岩石力学简明教程[M].北京:中国矿院出版社,1986
    [147]赖应得,崔兰秀.能量支护学概论[J].山西煤炭,1994(5):17-23.
    [148]于学馥,乔瑞.轴变论和围岩稳定轴比三规律[J].有色金属,1981(4):9-14.
    [149]郑雨天.关于软岩巷道地压与支护的基本观点[J].软岩巷道掘进与支护文集,1985(5): 31-35.
    [150]朱效嘉.锚杆支护理论进展[J].光爆锚喷,1996(3): 1-4.
    [151]何满潮.软岩巷道工程概论[M].中国矿业大学出版社,1993.
    [152]董方庭等.巷道围岩松动圈支护理论及应用技术[M].北京:煤炭工业出版社,2001.
    [153]董方庭,宋宏伟.巷道围岩松动圈支护理论[J].煤炭学报,1994,19(1): 21-32
    [154]侯朝炯,勾攀峰.巷道锚杆支护围岩强度强化机理研究[J].岩石力学与工程学报,2000,19(3): 342-345.
    [155]勾攀峰.巷道锚杆支护提高围岩强度和稳定性的研究[D].博士论文,中国矿业大学,1998.
    [156]何满潮,高尔新.软岩巷道耦合支护力学原理及其应用[J].锚杆支护,1997(2): 1-4.
    [157]孙晓明,何满潮,董海蝉.煤矿软岩巷道耦合支护技术研究[J].地球学报,2003,24(增刊):156-161.
    [158]何满朝,景海涛,孙晓明.软岩工程力学[M].北京:科学出版社出版社,2002.
    [159]李大伟.深井软岩巷道二次支护围岩稳定原理与控制研究[D].徐州:中国矿业大学,2006.
    [160]张玉军,孙钧.锚固岩体的流变模型及计算方法[J].岩土工程学报,1994(5): 33-45.
    [161] P. Williams. The development of rock bolting in UK coal mining. Mining Engineer, 1994(5)
    [162] R.G. Siddall, W.J. Gale, Strata control a new science for old problem, Mining Engineer, 1992 (5)
    [163] W.C.史密斯.美国煤矿井下顶板控制对策[J].中国煤炭,1998,24(4)
    [164]柏建彪.沿空掘巷围岩控制[M].徐州:中国矿业大学出版社,2006.
    [165]张农,高明仕.煤巷高强预应力锚杆支护技术与应用[J].中国矿业大学学报,2004,33(5): 524-527.
    [166]陆士良,汤雷,杨新安.锚杆锚固力和锚固技术[M].北京:煤炭工业出版社,1998.
    [167]柏建彪,侯朝炯,杜木民等.复合顶板极软煤层巷道锚杆支护技术研究[J].岩石力学与工程学报,2001,20(1): 53-56.
    [168]康红普,王金华,林健.高预应力强力支护系统及其在深部巷道中的应用[J].煤炭学报,2007,32(12): 1233-1238.
    [169]王金华.我国煤巷锚杆支护技术的新发展[J].煤炭学报,2007,32(2): 113-118.
    [170]康红普.高强度锚杆支护技术的发展与应用[J].煤炭科学技术, 2000, 28(2): 1-4.
    [171]康红普,林健,张冰川.小孔径预应力锚索加固困难巷道的研究与实践[J].岩石力学与工程学报, 2003,2(3): 387~390.
    [172]安学群,魏树群.锚杆预紧力对支护围岩的重要作用[J].河北煤炭,2000(4): 33-34.
    [173]陈荣德,张荪铭,胡立国等.高强度高预应力耦合支护技术在深井软岩巷道中的应用[J].煤矿开采,2008,13(1): 46-48
    [174]曹晨明,吴拥政.高预应力强力支护系统及其在潞安矿区的应用[J].煤炭科学技术,36(11): 26-30
    [175]杜计平,侯朝炯,朱亚平等.深井破碎围岩条件下煤巷锚杆构件合理配套[J].采矿与安全工程学报,2007,24(4): 401-404
    [176]何炳银.复合顶板顺槽锚索的破断及其预防[J].水力采煤与管道运输,2007(1): 27-31
    [177]何炳银,王珏.沿空巷道锚杆与锚索破断的调查分析[J].矿山压力与顶板管理,2005(1): 55-58
    [178] Wang weijun, Hou Chaojiong, Study of mechanical principle of floor heave of roadway driving along next golf in fully mechanized sub level caving face [J]. Journal of Coal Science& Engineering, June 2001, 17(l): 13-17.
    [179] Itasca Consulting Group, Inc. FLAC User Manuals, version 5.0, Minneapolis, Minnesota, 2005, 5
    [180] Itasca Consulting Group, Inc. UDEC User Manuals, version 4.0,Minneapolis, Minnesota, 2005
    [181] Cundall P A. Explicit fininte difference methods in geomechanics [C], Numerical methods in engineering, proceeding of the EF conference on numerical methods in geomechanics, Virginia, 1976, 1.
    [182] Cundall P A. Numerical experiments on location in friction material. Ingenieur-Archiv, 1989, 148-159.
    [183] Dong Fang-ting,Song Hong-Wei. The broken rock zone around tunnels and its support theory [C]. Peng. S.S proc of 7' international conference Morgantown WVU, 1988: 336-343.
    [184] Zhang Nong, Study on strata control delay grouting in soft rock roadway [J]. Journal of Coal Science & Engineering,June,2003, 9(l): 51-56.
    [185] Jing Hong-wen,XU Guo-an,Ma Shi-zhi. Numerical of discontinue rock mass in broken rock zone for deep analysis on displacement law roadway [J].Journal of China University of Mining & Technology, Dec.2001, 11(2): 132-137.
    [186] He Manchao, Xu Nengxiong, Yao Aijun, Theory of SCSTKP in soft rock roadway[J], Journal of China University of Mining & Technology, Dec.2000, 10(2): 107-111.
    [187] Zhang Kai-zhi, XIA Jun-min, JIANG Jin-quan. Variation law of quantity of coal dust in drill hole and its application to determination of reasonable width of coal pillar.Chinese Journal of Rock Mechanics and Engineering, 2004,23(8): 1307-1310.
    [188] Song Xuanmin, Jin Zhongmin. Study on coal-rock Moving Law and its Control for Long Wall Top-coal Caving Face. Proceeding of 99 International Workshop on Underground Thick-seam Ming.1999(10): 160-170.
    [189] P.O.Grady, P.Fuller, R.Dight. Cable bolting in Australian coal mines current practice and design considerations [J].Mining Engineer,1994(6): 396-404.
    [190] Li Xibing, Zhou Zilong, Li Qiyue. Parameter Analysis of Anchor Bolt Support for Large Span and Jointed Rock mass [J]. J. CENT. SOUTH UNIV TECHNOL. Aug.2005, 12(4): 483-487.
    [191] Zou Xizheng, Hou Chaojiong, LI Huaxiang, The Classification of the Surrounding of Coal Mining Roadways[J], Journal of Coal Science & Engineering, Dec. 1996, 2(2): 55-57.
    [192] Guo Yuguang, Bai Jianbiao, Hou Chaojiong, Study on the Main Parameters of Side Packing in the Roadways Maintained along god-edge[J], Journal of China University of Mining & Technology, Jun.1994, 4(l): 1-14.
    [193] LI Xue hua, Deformation mechanism of surrounding rock and key control technology forroadway driven along Engineering, goaf in fully mechanized top coal caving face}J}, Journal of Coal Science & June 2003, 9(l): 28-32.
    [194] Asmaa Mohamed Yassien. 2-D numerical Simulation and Design of Fully Grouted Bolts for Underground Coal Mines [D]. College of Engineering and Mineral Resources West Virginia University. 2003.
    [195] He Manchao, Ne}u Theory in Tunnel Stability Control of Soft Rock-Mechanics of Soft Rock Engineering [J]. Journal of Coal Science & Engineering, June 1996, 2(l): 39-44.
    [196] Matthews S. M. et al. Horizontal stress control in underground coal mines[C]. 11th International Conference on Ground Control in Mining the University of Wollongong N.S.W. July 1992.
    [197]远朝霞.软岩动压巷道锚杆注浆支护方式探讨[J].煤炭工程,2004(11): 13-14
    [198] Hou Chaojiong, Review of Roadway Control in Soft Surrounding Rock under Dynamic Pressure[J], Journal of Coal Science & Engineering, June 2003, 9(l): 1-7.
    [199]马念杰,刘少伟,邓广涛等.巷道锚杆尾部破断机理及合理结构的设计[J].煤炭学报,2005,3(3): 327-331
    [200]王强.预防锚索破断处理技术研究[J].煤,2007,16(7): 31-39.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700