用户名: 密码: 验证码:
布吉河污染生物修复工艺研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
布吉河是深圳河的一级支流,由于沿岸工业废水和居民生活污水未经处理大量排入,水环境日益恶化。
     为了改善布吉河的水质状况从而改善深圳河流域的水环境,本论文开展了采用强化生物接触氧化-水生植物组合工艺对布吉河水进行生物修复小试试验研究。首先比较了聚乙烯中空悬浮球、软性纤维辫带式填料和阿科蔓新型填料的挂膜能力、污水处理能力和实用性。结果表明,阿科蔓填料具有污染物去除效果好、安装简单方便、后续维护管理省等特点,是该工艺的首选填料。然后选择了生物接触氧化的工艺模式。通过模拟河道动态试验研究表明好氧-好氧-氧模式为较好的工艺模式,其COD的去除率可达到60%,出水浓度可由进水浓度的120 mg/L降至50 mg/L,达到《城镇污水处理厂污染物排放标准》(GB18918-2002)中的1B标准。然而,氨氮和总氮的去除效果不佳,仅为34%和26%,出水浓度分别为13 mg/L和22 mg/L,未能达标。由于本工艺不设排泥,除磷效果也不佳。
     为了能够有效地提高本工艺的脱氮效果,采用了投加对环境无害的复配菌种强化对NH4+-N的去除。静态试验研究表明投加量为1/100时可取得良好的脱氮效果。通过动态试验研究结果表明投菌后氨氮和总氮的去除率分别可达到70%和50%,较未投菌前提高了35%和25%,出水氨氮和总氮浓度可分别降至6 mg/L和13 mg/L,达到《城镇污水处理厂污染物排放标准》(GB18918-2002)中的1B标准,其中总氮可达到1级A标准。
     为了强化本工艺的除磷效果,采用了水生植物工艺进行强化除磷。通过比较不同水生植物的脱氮除磷效果,试验结果表明金鱼藻结合介质可有效去除水中的磷。种植植物后出水总磷可以达到标准《城镇污水处理厂污染物排放标准》(GB18918-2002)中的1B标准,平均去除率为48%。
     最后,对本联合工艺的有效性和经济性进行了评价。采用本工艺可以改善布吉河的水质状况,处理后水质可以达到国家《城镇污水处理厂污染物排放标准》(GB18918-2002)中的1B标准;并且每吨水处理费用不到0.7元。
BuJi River is a primary branch of ShenZhen River. Due to the discharge of the industrial wastewater and sewage into the river, the water environment becomes worse and worse.
     In order to improve the water quality of BuJi River so that the water environment of ShenZhen River can be improved, augmentation biological contact oxidation-phytoremediation process was used to in-situ bioremediation of BuJi River. Through the testing of the three types of packing carriers, Aquamats packing carrier was selected for this process due its advantages of high pollutants removal efficiency, ease to fix and need of little maintenances.
     Aiming to acquire the optimal operating conditions, dynamic experiments were carried out. The experiments results show that aerated-aerated-anoxic condition has a better contaminants removal rate especially for the ammonia nitrogen and total nitrogen compared with the aerated-anoxic-aerated performance condition. So choose the former as the optimal condition which can make the COD removal rate reach to a level of 60%, the influent concentration reduce from 120 mg/L to 50 mg/L. NH_4~+-N and TN removal rates can be 34% and 26% with the effluent concentration of 13 mg/L and 22 mg/L, respectively. However, effluent concentrations of NH_4~+-N and TN were over the standard values even under the optimal performance condition. With no sludge discharge in this process, TP can not be removed efficiently.
     Through the adding of compounded microorganisms-adding, with the adding rate of 1/100, the effluent concentration of NH4+-N and TN reduced drastically with the removal rate of 70% and 50% respectively, and their values in the concentration were below 8 mg/L and 15 mg/L, which are under the standard limits.
     Ceratophyllum demersum L. is an aquatic plant using to remove TP of water. Static experiments reveal that the TP removal relies on the mechanisms of basis on which the plants were grown. Results of dynamic experiments showed planting Ceratophyllum demersum L. together with bases can assist TP removal with the effluent concentration below 1 mg/L, reaching the standard values.
     Finally, after estimating, calculating and analyzing, the treatment cost can be less than 0.7 yuan RMB/m3, furthermore, Ceratophyllum demersum L can be used to feed on the fishes and livestock and so on. It has been illustrated in this thesis that this process is feasible and cost-effective for the bioremediation of polluted rivers.
引文
1刘宁,吕锐锋.深圳河湾水污染水环境治理.中国水利水电出版社. 2006: 21~23
    2倪晋仁,刘元元.论河流生态修复.水利学报. 2006, 37(9): 1029~1037
    3刘晓涛.城市河流治理若干问题的探讨.规划师. 2001, 17(6): 66~69
    4陈克坚,金腊华.深圳市福田河水环境综合整治研究.环境科学与技术. 2006, (29): 163~165
    5王建国,吕志鹏.世界城市滨水区开发建设的历史进程及其经验.城市建设. 2001, 25(7): 41~46
    6钟春欣,张玮.基于河道治理的河流生态修复.水利水电科技进展. 2004, 24(3): 12~14
    7邓建棉.污染河流生物修复技术研究.环境科学与技术. 2003, 26(6): 55~57
    8薄涛.特效菌剂在福田河水质净化工程中的应用研究.哈尔滨工业大学硕士论文. 2007: 11~13
    9钦佩,安树青,颜京松.生态工程学.南京大学出版社, 2002: 54~56
    10张捷鑫.污染河道治理技术研究进展.生态科学. 2005, 24(2): 178~181
    11陈思模.国外一些河流和流域水污染防治与管理的主要经验.水利科技. 1999, (2): 6~9
    12 I. D.Rutherfurd, K. M. N. Jerie. A Rehabilitation Manual for Australian Streams. Land and Water Resources Research and Development Corporation, 2000, 189~192.
    13汤建中,宋涛,江心英.城市河流污染治理的国际经验.世界地理研究. 1998, 7(2): 114~119
    14 J. William, Mitsch. Jean. Ecological Engineering Applied to River and Wetland Restoration. Ecological Engineer. 2002, 8: 529~541
    15文红.疏浚对影响上覆水体自净能力的研究.农业环境科学. 2003, 22(3): 318~320
    16熊万永.福州内河引水冲污工程的实践与认识.中国给水排水. 2000, 16(7): 26~28
    17 J. Cairns, J. R. Pratt. Ecological Restoration through Behavioral Hange Restoration Ecology. 1999, 3(1): 51~53.
    18彭祺,郑金秀,涂依等.污染底泥修复研究探讨.环境科学与技术. 2007, 30(2): 103~105
    19 A. M. Agdaleno, A. Puig, L. E. de. Cabo. Water Pollution in an Urban Argentine River. Environmental Contamination and Toxicology. 2001, (67): 408~415.
    20 N. M. Davis, V. Weaver, K. E. Parks. An Assessment of Water Quality, Physical Habitat, and Biological Integrity of an Urban Stream in Wichita, Kansas, Prior to Restoration Improvements. Environmental Contamination andToxicology. 2003, (44): 351~359
    21 P. J. Whalen, L. A. Toth, .J. S. W. Koebel, River Restoration: a Case Study. Water Science and Technology, 2002, 45(11): 55~62
    22李艳霞,王颖,张进伟等.城市河道水体生态修复技术的探讨.水利电力科技. 2006, 32(4): 34~37
    23夏宏生,梁世军.城市污染水体的生物修复技术.广东水利电力职业技术学院学报. 2006, 4(4): 59~61
    24杨京平,卢剑波.生态恢复工程技术.化学工业出版社, 2002: 11~13
    25 E. Bruce. Rittmann, L. Perry. McCarty. Environmental Biotechnology: Principles and Application.北京:清华大学出版社, 2002: 25~27
    26李捍东,王庆生.优势复合菌群用于城市生活污水净化新技术的研究.环境科学研究. 2000, 13(5): 14~16
    27 EM情报室.相野谷川水质净化实验. Eco Pure. 1999, 19(8): 14~15
    28 J. L. Wang, X. C. Qian and P. Li. Microbial Degradation of Quinoline by Immobilized Cells of Burkholderia Pickettii. Water Research, 2002, 36(9): 2288~2296
    29 I. A. T. Lombard, J. R. Garcia. Bioleaching of Metals from Anaerobic Sewage Sludge: Effects of Total Solids, Leaching Microorganisms, and Energy Source. Environmental Geochemistry and Health. 2001, 36(5): 793~806
    30 W. F. M. Roling, M. G. Milner. Robust Hydrocarbon Degradation and Dynamics of Bacterial Communities During Nutrient-Enchanced Oil Spill Bioremediation. Applied and Environmental Microbiology. 2002, 68(11): 5537~5548
    31 D. G. Allision. Bacterial Biofilms. Microbiology. 1999, (76): 305~321
    32 E. Akiyoshi. Novel Concept for Evaluation of Biofilmadhesion Strength by Applying Tensile Force and Shear Force. Water Science and Technology. 1996, (34): 201~211
    33 E. A. J. Peter. Toiuene Biodegradation and Biofilm Growth in an Aerobic Fixed-film Reactor. Applied Microbiology and Biotechnology. 1992, (37): 510~517
    34 T. Picek, H. Cizkova and J. Dusek. Greenhouse Gas Emissions from a Constructed Wetland-Plants as Important Sources of Carbon. Ecological Engineering. 2007, 31(2): 98~106
    35 M. A. Maine, N. Sune, H. Hadad, et al. Removal Efficiency of a Constructed Wetland for Wastewater Treatment According to Vegetation Dominance. Chemosphere. 2007, 68(6): 1105~1113
    36 C. Vohla, R. Alas, K.Nurk, et al. Dynamics of Phosphorus, Nitrogen and Carbon Removal in a Horizontal Subsurface Flow Constructed Wetland. Science of The Total Environment. 2007, 380(1-3): 66~74
    37 J. Willian. Jewel. The Role of Water Plant in Water Treatment. Agriculture Ecosystems and Environment. 1986, 57(6): 9~10
    38 S. R. Pezeshki, M. W. Hester, Q. Lin, et al. The Effects of Oil Spill and Cleanup on Dominant US Gulf Coast Marsh Macrophytes: a Review. Environmental Pollution. 2000, 108(2): 129~139
    39 M. Walter, K. Boyd. Wilson, L. Boul, et al. Field-scale Bioremediation of Pentachlorophenol by Trametes Versicolor. International Biodeterioration and Biodegradation. 2005, 56(1): 51~57
    40 M. H. Abdel, Y. A. Azab, W. M. Ibrahim. Use of Plant Genotoxicity Bioassay for The Evaluation of Efficiency of Algal Biofilters in Bioremediation of Toxic Industrial Effluent. Ecotoxicology and Environmental Safety. 2007, 66(1): 57~64
    41 V. P. Grichk. Increased Ability of Transgenic Plants Expressing the Bacterial Enzyme ACC Deaminase to Accumulate Cd, Co, Cu, Ni, Pb and Zn. Journal of Biotechnology. 2000, (81): 45~53
    42 S. L. Doty, T. Q. Shang, Enhanced Metabolism of Halogenated Hydrocarbons in Transgenic Plants Containing Mam-malian Cytochrome. Proceeding National Academy of USA, 2000, 97: 6287~6291
    43深圳市水利规划设计院.布吉河、福田河应急改善方案设计.深圳, 2006, 13~26
    44邵林广.南方城市污水处理工艺的选择.给水排水. 2000, 26(6): 32~34
    45 Ursula. Telgmann, E. M. Horn. Influence of Growth History on Sloughing and Erosion from Biofilms. Water Research. 2004, (38): 3671~3684
    46 C. M. Lopez. Vazquez, C. M. Hooijmans, D.Brdjanovic, et al. Factors Affecting the Microbial Populations at Full-scale Enhanced Biological Phosphorus Removal (EBPR) Wastewater Treatment Plants in the Netherlands. Water Research. 2008, 42(10-11): 2349~2360
    47 M. Sperandio, V. Pambrun, E. Paul. Simultaneous Removal of N and P in a SBR with Production of Valuable Compounds: Application to Concentrated Wastewaters. Water Science and Technology. 2008, 58(4): 859~864
    48 K. Kapdan, S. Aslan. Application of the Stover-Kincannon Kinetic Model to Nitrogen Removal by Chlorella Vulgaris in a Continuously Operated Immobilized Photobioreactor System. Journal of Chemical Technology and Biotechnology. 2008, 83(7): 998~1005
    49 R. Huang, D. Li, X. Li, et al. Positive Role of Nitrite as Electron Acceptor on Anoxic Denitrifying Phosphorus Removal Process. Chinese Science Bulletin, 2007, 52(16): 2179~2183
    50 S. Dogruel, M. Sievers, F. Germirli. Babuna. Effect of Ozonation on Biodegradability Characteristics of Surplus Activated Sludge. Ozone-Science and Engineering. 2007, 29(3): 191~199
    51 K. M. de, C. Picioreanu, M. Hosseini, et al. Kinetic Model of a Granular Sludge SBR: Influences on Nutrient Removal. Biotechnology and Bioengineering. 2007, 97(4): 801~815
    52 O. S. Amuda, I. A. Amoo. Coagulation/Flocculation Process and SludgeConditioning in Beverage Industrial Wastewater Treatment. Journal of Hazardous Materials. 2007, 141(3): 778~783
    53 J. Serralta, J. Ferrer, L. Borras, et al. Effect of pH on Biological Phosphorus Uptake. Biotechnology and Bioengineering. 2006, 95(5): 875~882
    54 R. Barat, L. M. van. Potential Phosphorus Recovery in a WWTP with the BCFS Process: Interactions with the Biological Process. Water Research. 2006, 40(19): 3507~3516
    55 M. Radoux. The Impact of Typha latifolia L. on the Treatment of Wastewater by Surface-flow Constructed Wetland. Natural and Constructed Wetlands: Nutrients, Metals and Management, 2005, 8: 271~281
    56 V. Mahendraker, D. S. B. Mavinic, Effect of Nonsteady State H2O2 Tests on Oxygen Transfer Rate in Enhanced Biological Phosphorus Removal Process. Journal of Environmental Engineering. 2005, 131(12): 1684~1697
    57 H. L. Stephens, H. D. Stensel. Effect of Operating Conditions on Biological Phosphorus Removal. Water Environment Research. 1998, 70(3): 362~369
    58 C. A. Arias, B. M. Del and H. Brix. Phosphorus Removal by Sands for Use as Media in Subsurface Flow Constructed Reed Beds. Water Research. 2001, 35(5): 1159~1168
    59 S. Y. Gebremariam, M. W. Beutel. Nitrate Removal and DO Levels in Batch Wetland Mesocosms: Cattail (Typha spp.) Versus Bulrush (Scirpus spp.). Ecological Engineering. 2008, 34(1): 1~6
    60 C. G. Brantley, J. W. Day, R. R. Lane, et al. Primary Production, Nutrient Dynamics, and Accretion of A Coastal Freshwater Forested Wetland Assimilation System in Louisiana. Ecological Engineering. 2008, 34(1): 7~22
    61 P. Molleo, S. Prost-Boucle, A. Lienard. Potential for Total Nitrogen Removal by Combining Vertical Flow and Horizontal Flow Constructed Wetlands: A Full-scale Experiment Study. Ecological Engineering. 2008, 34(1): 23~29
    62 W. H. Park, C. Polprasert. Roles of Oyster Shells in an Integrated Constructed Wetland System Designed for P Removal. Ecological Engineering. 2008, 34(1): 50~56
    63 E. Ojeda, J. Caldentey, M. W. Saaltink, et al. Evaluation of Relative Importance of Different Microbial Reactions on Organic Matter Removal in Horizontal Subsurface-flow Constructed Wetlands Using A2D Simulation Model. Ecological Engineering. 2008, 34(1): 65~75
    64 S. M. Nelson, J. S. Thullen. Aquatic Macroinvertebrates Associated with Schoenoplectus Litter in a Constructed Wetland in California (USA). Ecological Engineering. 2008, 33(2): 91~101
    65 E. Kiedrzynska, I. Wagner, M. Zalewski. Quantification of Phosphorus Retention Efficiency by Floodplain Vegetation and a Management Strategy for a Eutrophic Reservoir Restoration. Ecological Engineering. 2008, 33(1): 15~25
    66 H. Goosen, R. Janssen, J. E. Vermaat. Decision Support for Participatory Wetland Decision-making. Ecological Engineering. 2007, 30(2): 187~199
    67 W. W. Van, K. Keesman, P. Burgess, et al. Yield-SAFE: A Parameter-Sparse,Process-Based Dynamic Model for Predicting Resource Capture, Growth and Production in a Groforestry Systems. Ecological Engineering. 2007, 29(4): 419~433
    68 A. R. Graves, P. J. Burgess, J. H. Palma, et al. Development and Application of Bio-economic Modelling to Compare Silvoarable, Arable, and Forestry Systems in Three European Countries. Ecological Engineering. 2007, 29(4): 434~449
    69 J. H. Palma, A. R. Graves, P. J. Burgess, et al. Methodological Approach for The Assessment of Environmental Effects of Agroforestry at The Landscape Scale. Ecological Engineering. 2007, 29(4): 450~462
    70 G. Sin, D. Kaelin, M. J. Kampschreur, et al. Modelling Nitrite in Wastewater Treatment Systems: A Discussion of Different Modelling Concepts. Water Science and Technology. 2008, 58(6): 1155~1171
    71 A. Gross, M. Y. Sklarz, A.Yakirevich, et al. Small Scale Recirculating Vertical Flow Constructed Wetland (RVFCW) for The Treatment and Reuse of Wastewater. Water Science and Technology. 2008, 58(2): 487~494
    72 U. Zoller. Distribution Profiles of Endocrine Disrupting PAHs/APEOs in River Sediments: Is There a Potential Ecotoxicological Problem. Water Science and Technology. 2008, 57(2): 237~242
    73范婕. A2/O工艺反硝化除磷机理与性能的研究.哈尔滨工业大学硕士论文. 2006: 92~93

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700