用户名: 密码: 验证码:
深圳湾临时倾倒区对所在海域及其周边环境的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
海洋倾倒区是用来倾倒固体废弃物的特殊功能海域。近年来,海洋倾倒区周边环境的污染问题越来越严重。本文以深圳湾临时倾倒区周边环境为研究区域,于2005年11月到2006年7月间,分别九次对该区附近的九个站点进行了现场水质指标测定。基于这些数据,应用单因子指数法,富营养化指数法,有机污染指数法和综合评价方法,对其水质进行了分析。
     单因子评价结果表明:整个监测海区的水温变化幅度较小,基本符合一、二类海水水质标准。pH值仅在2006年5月符合一、二类海水水质标准,其余月份均出现超标现象,属三类海水水质标准。溶解氧(DO)含量除2006年2月、6月和7月属三类海水水质标准,其余月份均符合二类海水水质标准或一类海水水质标准。化学需氧量(COD)在2006年1月、2月和7月属三、四类海水水质标准,有极个别属劣四类海水水质标准,其余月份均未出现超标现象,符合二类海水水质标准或一类海水水质标准。悬浮物含量相对较低,但在倾倒初期有明显增大(2005年11月至2006年2月),而后来月份(2006年5月至7月),虽然受降水影响,监测海区的悬浮物含量也有所上升,但并不显著,说明该监测海区海水自净能力还是相对较好,符合二、三类海水水质标准。锌、镉、铅、汞、砷含量均比较低,符合二类海水水质标准。铜含量除2005年11月和2006年7月出现超标现象,属三、四类海水水质标准,其余月份的铜含量未出现超标,符合二类海水水质标准。无机氮(DIN)和无机磷(DIP)含量严重超标,属劣四类海水水质标准。海水中高含量的无机氮和无机磷主要来源于珠江径流携入及周围沿岸生活和工农业污水排入。石油类含量因受船舶及陆源水的影响,含量均相对较高,每月均出现超标现象,属三类海水水质标准。
     此外,富营养化指数评价法表明营养盐是调查水域水质的主要污染物,各航次监测水质均达到富营养或者超营养状态。由于DO,COD和石油类在大多数航次监测中都超标,结合有机物污染指数评价,研究区域有有机物污染也十分显著。通过以上单因子标准评价、富营养化评价和有机污染评价表明,深圳湾临时倾倒区氮、磷超标严重,有机污染也相当显著。另外,虽然重金属的污染情况并不突出,但是由于它们在环境评价中的重要地位不容忽视,因此本研究最终选取DIN、DIP、COD、DO、石油类、重金属Cu、Zn、Pb、Cd等9项作为水质综合评价指标,对深圳湾临时倾倒区水质进行综合评价。结果表明,九个航次的综合污染指数都较高,其排列顺序为:2006年7月>2006年3月>2006年1月>2006年2月>2006年6月>2005年11月>2006年4月>2005年12月>2006年5月。其中,前五位的月份综合指数Q >2,属于污染较严重的Ⅵ类水,后四位的月份的综合指数1.0≤Q <2.0,属于重污染的Ⅴ类水。
Marine Dumping Ground is a special function area for dumping the solid waste. Fortunately, it brought more and more serious environmental pollution. Based on the data of nine cruise surveys during Nov 2005 and July 2006 in Shenzhen Bay Temporary Dumping Ground and its surroundings, this paper carries on a systematical analysis and evaluation of the seawater environment on the models of single-factor evaluation, eutrophication assessment, organic pollution evaluation and comprehensive assessment.
     Results from the single-factor evaluation model showed as follows. No obvious variation was found for the temperatures, basically meeting the first and second class water quality standards. pH values labeled the third class water quality standards in all months except for May 2006 who was located within the standard range. Regarding to DO, data monitoring in Feb 2006, June 2006 and June 2006 exceeded the standard. Similarly, COD concentrations seriously exceeded in Jan 2006, Feb 2006 and June 2006, which mostly belonged to the third and fourth class water quality standards. Moreover, some of them were worse than Grade IV. Suspended matter content was relatively low, although there was significant increase when early dumping, suggesting the relatively well self-purification capacity of water. Concentration of heavy metals including Zn, Cd, Pb, Hg and As were lower and within the second-class water quality standards. However, Cu, the important heavy metal for environment, appeared extended values in Nov 2005 and July 2006. Obviously, contents of DIN and DIP were worse than Grade IV water quality standard, largely resulting from the Pearl River run off as well as the industrial and agricultural sewage. Affected by ship and land-based sources of water, petroleum content appeared excessive each month, locating the third class water quality standards.
     Furthermore, analysis according eutrophication assessment model demonstrated nutrients are the main pollutants in the investigations, which leads the water was in the status of eutrophic or over eutrophic. Combination of organic pollution index assessment, the study area has very significantorganic pollution as well.
     As discussed above, Shenzhen Bay Temporary Dumping Ground and its surroundings suffered serious nutrient pollution and organic pollution. Taking into account the important role of heavy metals on the evaluation of water quality, nine parameters including DIN, DIP, COD, DO, petroleum, Cu, Zn, Pb and Cd were selected as the comprehensive evaluation index for the water quality. The results showed that the comprehensive pollution indexes of nine cruises are higher in the order of: July 2006> Mar 2006> Jan 2006> Feb 2006> June 2006>Nov 2005> Apr 2006> Dec 2005> May 2006. Among them, five months before with the index Q> 2, are theⅥtype water. Additionally, the last four months with the composite index of 1.0≤Q <2.0, are theⅤtype water.
引文
[1] Boehmer-Christiansen S A. Dumping nuclear waste into the Sea: International control and the role of science and law. Marine Policy, 1983, 7(1): 25~36
    [2]王森,胡本强,辛万光,戚丽.我国海洋环境污染的现状、成因与治理.中国海洋大学学报(社会科学版),2006,5:l-~6
    [3]尹杰.关于海洋倾废区管理的探讨--以青岛胶州湾外三类疏浚物海洋倾倒区为例.海岸工程,2001,20(1):48~51
    [4]肖慧丹.海洋倾倒区监测在海洋倾废管理中的应用研究:[硕士学位论文].青岛:中国海洋大学,2006
    [5]高专.海洋倾废管理的现状和未来.交通环保,1995,16(4):25~29
    [6]赵明静,乔志香,曹丛华,等.青岛胶州湾外三类疏浚物海洋倾倒区综合整治研究.海洋开发与管理,2010,20(11):61~62
    [7]张玉芬,蔡思忠.疏浚物倾倒对海域环境影响预测.海洋通报,1992,11(6):77~92
    [8]黄奕龙,王仰麟,张利萍.深圳市近岸海域水体和沉积物环境质量评价.海洋环境科学,2006,25(4):28~32
    [9]国家环境保护总局.中国保护海洋环境免受陆源污染工作报告.2003
    [10] Zou Keyuan. Regulation of waste dumping at sea: The Chinese practice. Ocean & Coastal Management, 2009, 52(7): 383~389
    [11]李壮伟.汕尾电厂临时倾倒区对所在海域及其周边环境的影响.广东海洋大学学报,2010,30(6):45~49
    [12]吴瑞贞,高会旺,林端,等.大亚湾倾倒区海洋动力对疏浚物扩散的影响分析.台湾海峡,2006,25(1):89~95
    [13]张国安,虞志英.连云港疏浚工程的环境效应—以羊窝头抛泥区为例.黄渤海海洋,2001,19(2):46~56
    [14]姜重臣,刘蔚秋,郑西来.临时海洋倾倒区对所在海域及其周边环境的影响.中山大学学报,2006,45(2):88~91
    [15]任荣珠,张瑞安,梁源高.牟平港化工专用码头倾倒区海域环境现状及评价.海岸工程,1997,16(4):44~47
    [16]郑琳,崔文林,贾永刚.青岛海洋倾倒区沉积物重金属污染及其生态风险评价.海洋环境科学,2008,27(A02):45~48
    [17]刘洁平.厦门浯屿临时倾倒区监测与评价:[硕士学位论文].厦门:国家海洋局第三海洋研究所,2008
    [18]何明海,杨顺良.塔角海洋倾倒区环境调查.台湾海峡,1995,14(3):249~261
    [19]纪灵,马根之.烟台海洋倾倒区环境监测及对比评价.海洋通报,2003,22(2):53~59
    [20]梁龙广.阳西海域疏浚物倾倒对海洋环境影响的研究:[硕士学位论文].青岛:中国海洋大学,2006
    [21]叶慧明.洋山临时海洋倾倒区使用对所在海域及其周边环境的影响分析.海洋环境科学,2008,27(A01):29~33
    [22]黄秀清,潘海洪.长江口疏浚泥对倾倒区环境质量的影响.海洋通报,1993,12(5):62~68
    [23]江志华,蔡伟叙,胡希声.长期倾倒疏浚物对珠江口内伶仃岛东南倾倒区环境的影响.广州环境科学,2007,22(4):24~31
    [24]江四义,苗丰民,温玉波.珠江口海洋倾倒区现状与存在问题讨论.海洋环境科学,2009,28(4):460~462
    [25]何明海.塔角海洋倾倒区底栖生物生态.海洋通报,1995,14(6):29~39
    [26] Simonini, R., et al. Effects of long-term dumping of harbor-dredged material on macrozoobenthos at four disposal sites along the Emilia-Romagna coast (Northern Adriatic Sea, .Italy). Marine Pollution Bulletin, 2005, 50(12): 1595~1605
    [27]余素华,张玉兰,杨晓强,等.深圳湾北岸新民孔岩心晚更新世以来的环境记录.海洋地质与第四纪地质,2003,23(2):9~18
    [28]深圳市环保局.深圳市环境保护规划纲要,2008
    [29] Sonja Boehmer-Christiansen. The scientific basis of marine pollution control. Marine Policy, 1982, 6(1): 2~10
    [30]荣四海,吴刚.基于模糊综合评判法的水环境评价.华北水利水电学院学报,2009,30(4):91~93
    [31]周振民.基于模糊综合评判法水环境评价及其可靠性分析.中国农村水利水电,2009,(5):15~17
    [32]刘现明,徐恒振.疏浚物倾倒区海水水质级别的模糊综合评价.海岸工程,1995,14(2):33~37
    [33]刘粤生.灰色关联分析法在珠江广州河段水环境评价中的应用.广东水利水电,2008,(5):33~34
    [34]薛巧英.水环境质量评价方法的比较分析.环境保护科学,2004,30(4):64~67
    [35]金栋梁,刘予伟.水环境评价概述.水资源研究,2006,27(4):33~35
    [36]曲玲,李青霞,韩晓,等.三种水环境评价方法比较分析.山东水利,2006,(10):40~41
    [37]潘日华.水环境评价模型综述.广东化工,2010,37(5):299~300
    [38]田晓刚.水环境评价与规划综合模型的开发及应用研究:[硕士学位论文].雅安:四川农业大学,2009
    [39]于瑞宏.乌梁素海水环境评价及遥感解译分析研究:[硕士学位论文].内蒙古:内蒙古农业大学,2003
    [40]王琳,陈上群.深圳湾自然条件特征及治理应注意的问题.人民珠江,2001,(6):4~7
    [41]张静,孙省利,陈春亮,等.深圳湾潮流动力特征研究.广东海洋大学学报,2010,30(3):77~81
    [42] Hakanson, L. An ecological risk index for aquatic pollution control. A sedimentological approach. Water Research, 1980, 14(8): 975~1001
    [43]李浇.深圳河(湾)流域污水资源化工程研究:[硕士学位论文].南京:河海大学,2006
    [44]胡利芳,李雪英,孙省利,等.深圳湾COD与TOC分布特征及相关性.海洋环境科学,2010,29(2):221~224
    [45]袁国明.珠江三角洲经济发展对珠江口水环境的影响:[硕士学位论文].青岛:中国海洋大学,2005
    [46]程声通.环境系统分析教程.北京:化学工业出版社环境能源出版中心,2006
    [47]陆雍森.环境评价.上海:同济大学出版社,1999
    [48]慕建东.渤海重要渔业水域生态环境质量状况评价:[硕士学位论文].青岛:中国海洋大学,2009

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700