用户名: 密码: 验证码:
拉应变对土工织物孔径特征及反滤性能影响的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
土工织物作为反滤材料广泛应用于水利、土木、港航等领域。土工织物要实现反滤功能,需满足保土、透水、防淤堵三个反滤准则。孔径是土工织物反滤准则的重要参数。由于土工织物纤维多、孔径小、工作状态应变大,其孔径受拉应变影响很大。而土工织物的孔径指标和测试均在未受拉状态下进行,导致实际应用中原本满足孔径指标的织物反滤失效。因此,本文通过理论分析与试验测试,研究拉应变T (Tensile)、土工织物孔径特征O (Opening)、及反滤性能F (Filtration)三者的关系。
     1)建立单/双向拉应变与土工织物孔径特征关系的(T-O)理论模型。针对有纺织物平面二维结构,建立单/双向拉应变下有纺织物单孔模型,根据有纺织物基本物理力学参数和拉应变值,分别推导特征孔径(O)及开孔面积率(POA, Percent open area)随单/双向应变变化的理论解;针对无纺织物三维空间结构,基于单向应变下已有两种体系的孔径参数理论解,即佘巍(2011)等效孔径(095)理论解和Rawal(2011)孔径分布曲线(PSD, Pore size distributions)理论解,分别推导不等轴双向应变下无纺织物等效孔径O95bi理论解、及孔径分布曲线PSDbi理论解。
     2)测试单/双向拉应变与土工织物孔径特征的(T-O)试验关系。通过数字图像法测试单丝条膜有纺织物孔径,在维持拉应变的同时采集图像,定量测试单/双向应变下,有纺织物孔径参数随拉应变的变化规律;通过干筛试验测试单/双向应变下,短纤针刺无纺织物孔径参数随拉应变的变化规律;用拉应变下的土工织物孔径参数理论解预测试验结果,理论值与试验值吻合较好,并得出土工织物孔径参数与拉应变的近似线性关系。
     3)测试单向拉应变与土工织物反滤性能(T-F)的关系。运用梯度比渗透仪进行淤堵试验,对应反滤设计中透水、保土和防淤堵三个准则,分别测试单向拉应变对透过土工织物的水流速率、漏土量、梯度比的影响。拉应变下的反滤性能试验结果,佐证了孔径随拉应变的变化规律,由此建立了土工织物孔径特征与反滤性能(O-F)的定性关系。
     4)探讨土工织物泊松比随拉应变的变化规律。通过图像法试验,测试8种有纺及无纺织物泊松比随单向拉应变的变化关系,并与Giroud(2004)提出的可压缩材料和不可压缩材料泊松比变化公式进行对比。
As filtration materials, the geotextiles are widely used in water conservancy, civil engineering, port, shipping and other fields. To ensure the effective filtration applications, the pore sizes of geotextiles typically need to meet several criteria, including retention, permeability, and anti-clogging capabilities. Pore size characteristics are important parameters in filtration applications. The filtration applications of geotextiles are usually subjected to tensile loads, whereas the characteristic pore sizes are commonly tested and determined in the unstrained condition, which results in the failure of filtration applications despite the satisfaction of design criteria. The cause of the failure in filtration applications is the influence of tensile strain on pore size characteristics. And the phenomenon of the failure is the influence of tensile strain on filtration properties. Hence, it's important to study the analytical and experimental relationship among tensile strain (T), pore size characteristics (O), and filtration properties (F) of the geotextiles.
     1) The analytical relationship between tensile strain and pore size characteristics (the relationship of T-O) have been established. Depending on the two-dimensional structure of woven geotextiles, analytical solutions have been proposed to predict the pore size characteristics of woven slit-film geotextiles under certain uniaxial and biaxial tensile strains. The strained percent open area (POA) and equivalent pore size can be calculated based on the physical properties of the geotextiles and the tensile strains. When it comes to nonwoven geotextiles, the analytical solutions under uniaxial tensile strains have already been proposed to predict the characteristics pore size and the pore size distributions, which are the equations of uniaxial strained equivalent pore size by Wei She (2011), and the equation of uniaxial strained pore size distributions by Rawal(2011). Depending on the three-dimensional structure of nonwoven geotextiles, the analytical solutions about the equivalent pore size Obi95and pore size distributions PSDbi subjected to unequal biaxial tensile strains have been proposed.
     2) The experimental relationship between tensile strain and pore size characteristics (the relationship of T-O) have been established. The pore size parameters of three woven slit-film geotextiles subjected to several levels of strains were measured by image analysis. The uniaxial and biaxial strained pore size parameters of needle-punched nonwoven geotextiles have been tested by dry sieving. The experimental results were compared with the analytical predictions. The analytical results correlate well with the experimental results, and the pore size parameters change approximately linearly with tensile strains.
     3) The experimental relationship between tensile strain and filtration characteristics (the relationship of T-F) have been established. Gradient ratio tests are carried out to study the influence of uniaxial tensile strain on the filtration properties of geotextiles. Four kinds of geotextiles (two needle-punched nonwoven and two slit-film woven) are employed in the tests. The flow rate through the geotextiles, quantity of soil passed the geotextile, and the gradient ratio were analyzed depending on the filtration criteria. The variations of filtration characteristics agree with the influences of tesile strains on pore sizes. The relationships between pore size characteristics and filtration characteristics (the relationship of O-F) have been established qualitatively.
     4) The variations of passion's ratio of geotextiles subjected to tensile strains have been involved in the analytical solutions of pore size. Hence, image analysis was adopted to determine the passion's ratio of eight kinds of woven and nonwoven geotextiles. The strained passion's ratio equations of incompressible and compressible materials have been proposed by Giroud(2004). The experimental results of passion's ratio were compared with the equations.
引文
ASTM D4751. Test Method for Determining the Apparent Opening Size of a Geotextile. ASTM International, West Conshohocken, PA, USA.
    ASTM D5101. Standard Test Method for Measuring the Soil-Geotextile System Clogging Potential by the Gradient Ratio. ASTM International, West Conshohocken, PA, USA.
    ASTM D4491-89, Test Method for Water Permeability of Geotextiles by Permittivity,1991, American Society for Testing and Materials, Philadelphia, Vol.4.08.
    ASTM D5101-90, Test Method for Measuring the Soil Geotextile System Clogging Potential by the Gradient Ratio,1991, American Society for Testing and Materials, Philadelphia, Vol.4.08.
    ASTM D4751-87, Test Method for Determining the Apparent Opening Size of a Geotextile, 1992, American Society for Testing and Materials, Philadelphia, Vol.4.08.
    Ahmet H., Aydilek. Digital Image Analysis to Determine Pore Opening Size Distribution of Nonwoven Geotextiles. Journal of computing in civil engineering 2002(8):280281.
    Austin D., Mylnarek J.., Blond E. Expanded anti-clogging criteria for woven filtration geotextiles. Proceedings of Geosynthetics 1997:1123-1144.
    Aydilek A.H., Oguz S.H., Edil T.B. Digital image analysis to determine pore opening size distribution of nonwoven geotextiles. Journal of Computing in Civil engineering 2002, 16(4):280-290.
    Aydilek, A.H. Filtration Performance of Geotextile Waste water Sludge Systems. Ph.D. dissertation, University of Wisconsin-Madison, WI 2000.
    Aydilek A.H., Edil T.B. Filtration performance of woven geotextiles with wastewater treatment sludge. Geosynthetics International 2002,9(1):41-69.
    Aydilek A.H., Edil T.B. Long-term filtration performance of nonwoven geotextile-sludge systems. Geosynthetics International 2003,10(4):110-123.
    Aydilek A.H., Edil T.B. Evaluation of woven geotextile pore structure parameters using image analysis. Geotechnical Testing Journal 2004,27(1):99-110.
    Aydilek A.H., Edil T.B. Pore structure parameters of woven geotextiles. Geotechnical Testing Journal 2004,27:99-110.
    Aydilek A.H., Oguz S.H., Edil T.B. Constriction size of geotextile filters. Journal of geotechnical and geoenvironmental engineering 2005,131(1):28-38.
    Aydilek A.H. A semi-analytical methodology for development of woven geotextile filter selection criteria. Geosynthetics International 2006,13(2):59-72.
    Aydilek A.H., Oguz S.H., Edil T.B. Digital image analysis to determine pore opening size distribution of nonwoven geotextiles. Journal of Computing in Civil engineering 2002, 16(4):280-290.
    Bhatia S.K., Smith J.L. Geotextile characterization and pore-size distribution:Part I. A review of manufacturing processes. Geosynthetics International 1996,3:85-105.
    Bhatia S.K., Smith J.L., Christopher B.R. Geotextile Characterization and Pore-Size Distribution:Part III:Comparison of Methods and Application to Design. Geosynthetics International 1996,3:301-328.
    Bhandari A., Han J. Investigation of geotextile-soil interaction under a cyclic vertical load using the discrete element method. Geotextiles and Geomembranes 2010,28(1):33-43.
    Cantre S., Saathoff F. Design method for geotextile tubes considering strain-formulation and verification by laboratory tests using photogrammetry. Geotextiles and Geomembranes 2011,29(3):201-210.
    CANICGSB-148. Method of Testing Geotextiles, Filtration Opening Size of Geotextiles, 1991,1-10, fifth draft, Method 10, Canada.
    Dierickx W. Opening size determination of technical textiles used in agricultural applications, Geotextiles and Geomembranes 1999,17(3):231-245.
    Dierickx W. Opening size determination of technical textiles used in agricultural applications. Geotextiles and Geomembranes 1999,17(4):231-245.
    EN ISO 12 956,1999. Geotextiles and geotextile-related products-Determination of the characteristic opening size. European Committee for Standardization, Brussels, Belgium.
    Edwards M., Hsuan G. Permittivity of geotextiles with biaxial tensile loads.9th International Conference on Geosynthetics, Brazil,2010,1135-1140.
    Fourie A.B., Kuchena S.M. The influence of tensile stresses on the filtration characteristics of geotextiles. Geosynthetics International 1995,2(2):455-471.
    Faure Y.H., Gourc J.P., Gendrin P. Structural study of porometry and filtration opening size of geotextiles. Geosynthetics:microstructure and performance 1990,1076:102-119.
    Fischer G.R., Holtz R.D., Christopher B.R. A critical review of geotextile pore size measurement methods. Proceedings of the First International Conference Geofilters.1992: 83-89.
    Fischer, G.R., Holtz, R.D., Christopher B.R. Evaluating geotextile flow reduction potential using pore size distribution.Proceedings of Geofilters, Montreal, Canada,1996:247-256.
    Fischer G.R. et al. Characteristics of geotextile pore structure.Recent developments in geotextile filters and prefabricated drainage geocomposites, ASTM STP 1281, USA: ASTM,1996.
    Fourie A.B., Kuchena S.M. The influence of tensile stresses on the filtration characteristics of geotextiles. Geosynthetics International 1995,2(2):455-471.
    Fourie A.B., Addis P. The effect of in-plane tensile loads on the retention characteristics of geotextiles. ASTM geotechnical testing journal 1997,20(2):211-217.
    Fourie A.B., Addis P.C. The Effect of In-Plane Tensile Loads on the Retention Characteristics of Geotextiles. Geo Testing Journal 1997,20(2):211-217.
    Fourie A.B., Addis P.C. Changes in filtration opening size of woven geotextiles subjected to tensile loads. Geotextiles and Geomembranes 1999,17(5):331-340.
    Gardoni M.G., Palmeira E.M. Microstructure and pore characteristics of synthetic filters under confinement. Geotechnique 2002,52(6):405-418.
    Giroud J.P. Mathematical model of geomembrane stress-strain curves with a yield peak. Geotextiles and Geomembranes 1994,13:1-22.
    Giroud J.P., Monroe M., Charron R. Strain measurement in HDPE geomembrane tensile tests. Geotechnical Testing Journal 1994,17 (1),65-71.
    Giroud J.P. Granular filters and geotextile filters. Proceedings of Geofilters 1996,96: 565-680.
    Giroud J.P., Delmas P., Artieres O. Theoretical basis for the development of a two-layer geotextile filter. Proceedings of the Sixth International Conference on Geosynthetics 1998: 1037-1044.
    Giroud J.P.,吴昌瑜,丁金华.粒状滤层与土工织物滤层.全国第五届土工合成材料学术会议论文集,宜昌,2000:62-151.
    Giroud J.P. Poisson's ratio of unreinforced geomembranes and nonwoven geotextiles subjected to large strains. Geotextiles and Geomembranes 2004,22(4):297-305.
    Harris L.E. Sand-filled container system for coastal erosion protection. Proceedings of the Third International Surfing Reef Symposium, Raglan, New Zealand, pp.2003:348-350.
    Ho S.K., Rowe R.K. Effect of wall geometry on the behaviour of reinforced soil walls. Geotextiles and Geomembranes 1996,14(10):521-541.
    Hong Y.S., Wu C.S. Filtration behaviour of soil-nonwoven geotextile combinations subjected to various loads. Geotextiles and Geomembranes 2011,29(2):102-115.
    Huang C.C. Investigation of the local strains in a geosynthetic composite. Geotextiles and Geomembranes 1998,16(3):175-193.
    Kang T.J., Yu W.R. Drape simulation of woven fabric by using the finite-element method. Journal of the Textile Institute 1995,86(4):635-648.
    Kazimierowicz-Frankowska K. A case study of a geosynthetic reinforced wall with wrap-around facing. Geotextiles and Geomembranes 2005,23(1):107-115.
    Kenney T.C., Chahal R., Chiu E., et al. Controlling constriction sizes of granular filters. Canadian Geotechnical Journal 1985,22(1):32-43.
    Koerner R.M. Designing with Geosynthetics,4th edn. Prentice Hall, Englewood Cliffs, NJ, USA,1997,761pp.
    Koerner R.M. Designing with geosynthetics. Prentice Hall, New Jersey, USA,1998.
    Koerner G.R., Koerner R.M. Geotextile tube assessment using a hanging bag test. Geotextiles and Geomembranes 2006,24 (2),129-137.
    Kutay M.E., Aydilek A.H. Retention performance of geotextile containers confining geomaterials,Geosynthetics International 2004,11(2):100-113.
    Kyung H.M., Jung M.S. Beong B.H., et, al. A study on thermally bonded geotextile separator and properties of waste landfill application of PVA geotextilem HDPE geomembrane composites. Advanced Composite Materials2008,17(3):235-246.
    Leshchinsky D., Fowle J. Laboratory measurement of load-elongation relationship of high-strength geotextiles. Geotextiles and Geomembranes 1990,9(2):145-164.
    Leshchinsky D., Leshchinsky O., Ling H.I., Gilbert D.A. Geosynthetic tubes for confining pressurized slurries. Journal of Geotechnical Engineering 1996, ASCE 122(8).
    Liu H.B., Wang X.Y., Song E.X.. Reinforcement load and deformation mode of geosynthetic-reinforced soil walls subject to seismic loading during service life. Geotextiles and Geomembranes 2011,29(1):1-16.
    Lin Tang, Xiaowu Tang, Wei Liu. A case study of effect of horizontal drains on rainfall-induced landslide. Advanced Materials Research 2011,253:1834-1837.
    Lin Tang, Xiaowu Tang, Wei She. Quanfang Zhang. Opening size of woven geotextiles varied with tensile loads.5th Asian Regional Conference on Geosynthetics, December 13-15,2012, Bangkok, Thailand:1073-1076.
    Lombard G, Rollin A., Wolff C. Theoretical and experimental opening sizes of heat-bonded geotextiles. Textile Research Journal 1989,59:208-217.
    Merry S.M., Bray J.D. Geomembrane response in the wide strip tension test. Geosynthetics international 1996,3(4):517-536.
    Merry S.M., Bray J.D. Time dependent mechanical response of HDPE geomembranes. Journal of Geotechnical and Geoenvironmental Engineering 1997. ASCE 123(1):57-65.
    Mlynarek J., Lafleur J., Rollin A., Lombard G. Filtration opening size of geotextiles by hydrodynamic sieving. Geotechnical Testing Journal 1993,16(1):61-69.
    Moo-Young H.K. et al. Strain effects on the filtration properties of geotextiles. Geotechnical Special Publication:Filtration and Drainage in Geotechnical. Geoenvironmental Engineering 1998, Reston, VA, USA:ASCE,123-136.
    Moo-Young H.K., Gaffney D.A., Mo X. Testing procedures to assess the viability of dewatering with geotextile tubes. Geotextiles and Geomembranes 2002,20(5):289-304.
    Moraci N. A new design criterion for geotextile filters.Proceedings of Geofilters 1996, Montreal, Canada, pp.203-214.
    Muthukumaran A.E., Ilamparuthi K. Laboratory studies on geotextile filters as used in geotextile tube dewatering. Geotextiles and Geomembranes 2006,24(4):210-219.
    Otsu, N., A Threshold Selection Method from Gray-Level Histograms. IEEE Transactions on Systems, Man and Cybernetics 1979,9(1):62-66.
    Plaut R.H., Stephens T.C. Analysis of geotextile tubes containing slurry and consolidated material with frictional interface. Geotextiles and Geomembranes 2012,32:38-43.
    Palmeira E.M., Fannin R.J. Soil-geotextile compatibility in filtration. Geosynthetics:Stater of the Art-recent Developments. Proceedings of the Seventh International Conference on Geosynthetics,7-ICG, Held 22-27 September 2002, Nice, France.2002,3.
    Palmeira E.M., Fannin R.J., Vaid Y.P. A study on the behaviour of soil geotextile systems in filtration tests. Canadian geotechnical journal 1997,33(6):899-912.
    Palmeira E.M., Fannin R.J. A methodology for the evaluation of geotextile pore opening sizes under confining pressure. Geosynthetics International 1998,5(3):347-357.
    Palmeira E.M. Soil-geotextile compatibility in filtration.7th inter conf on geosynthetics. France:The Inter Geosynthetics Society (IGS) 2002,853-870.
    Rawal A., Agrahari S.K. Pore size characteristics of nonwoven structures under uniaxial tensile loading. Journal of Materials Science 2011,46(13):4487-4493.
    Rawal A., Priyadarshi A. Tensile behaviour of nonwoven structures:comparison with experimental restults. Journal of Materials Science 2010,45(24):6643-6652.
    Rawal A. Structural analysis of pore size distribution of nonwovens. Journal of the Textile Institute 2010,101(4):350-359.
    Rawal A., Saraswat H. Technical Note. Geotextiles and Geomembranes 2011,29:363-367.
    Rawal A., Rao P.V..K. Effect of Fiber Orientation on Pore Size Characteristics of Nonwowen Structures. Journal of Applied Polymer Scientists 2010,118:2668-2673.
    Robert M.K. Designing with geosynthetics. Prentice Hall, New Jersey, USA,1998.
    Rowe R.K., Myleville B.L.J. Implications of adopting an allowable geosynthetic strain in estimating stability. In:Proceedings of the Fourth International Conference on Geotextiles, Geomembranes and Related Products 1990,1:131-136.
    Shukla S.K,. Sivakugan N., Mahto S. A Simple Method for Estimating Poisson's Ratio of Geosynthetics at Zero Strain. ASTM geotechnical testing journal 2009,32(2):181-185.
    Silveira A. A method for determining the void size distribution curve for filter materials. GEOFILTERS'1992 International conference on filters and filtration phenomena in geotechnical engineering, Karlsrule, Germany 1993,71-73.
    Silveira A. An analysis of the problem of washing through in protextive filters.6th International Conference on Soil-Mechanics and Foundation Engineering, Montreal, Canada,1965,551-555.
    Skinner G.D., Rowe R.K. Design and behaviour of a geosynthetic reinforced retaining wall and bridge abutment on a yielding foundation.Geotextiles and Geomembranes 2005,23, 234-260.
    Weggel J.R., Dortch J. Analysis of fluid discharge from a hanging geotextile bag. Geotextiles and Geomembranes 2011,29(1):65-73.
    Won M.S., Kim Y.S. Internal deformation behavior of geosynthetic-reinforced soil walls. Geotextiles and Geomembranes 2007,25(1):10-22.
    Wu C.S., Yung-Shan Hong. Ruei-Hung Wang.The influence of uniaxial tensile strain on the pore size and filtration characteristics of geotextiles. Geotextiles and Geomembranes 2008,26(2):250-262
    Tang X.W., Tang L., She W., Gao B.S. Prediction of pore size characteristics of woven slit-film geotextiles subjected to tensile strains. Geotextiles and Geomembranes 2013,38: 43-80.
    Yuan Z., Swan R.H., Bachus R.C., Elias V. Soil confinement effect on stress-strain properties of geosynthetics. In:Sixth International Conference on Geosynthetics 1998,2:523-528.
    Zheng J.M. et al. Relationship between Uniaxial and Strip Biaxial Tensile Properties of Fabrics, Text Res J 2008,78(3):224-231.
    《土工合成材料工程应用手册》编写委员会.土工合成材料工程应用手册.第二版,中国建筑工业出版社,北京,2000.
    中华人民共和国水利部.土工合成材料测试规程(SL/T 23521999),中国水利水电出版社,北京,1999.
    中华人民共和国交通部.水运工程土工织物应用技术规程[JTJ/T239-1998].人民交通出版社,北京,1998.
    中华人民共和国铁道部.铁路土工合成材料应用技术规范(TB10118-2006).铁道出版社,北京,2006.
    包承纲.土工合成材料应用原理与工程实践.中国水利电力出版社,北京,2008.
    王钊.土工合成材料.机械工业出版社,北京,2005.
    王钊.国外土工合成材料的应用研究.现代知识出版社,香港,2002.
    王钊,陆士强.土工织物滤层淤堵标准的探讨.水利发电学报,1991(3):55-63.
    刘宗耀等,土工合成材料工程应用手册.中国建筑工业出版社,北京,1994,93-95.
    陈轮,童朝霞.拉应变对土工织物一非连续级配土淤堵特性的影响.水力发电学报,2003(2):97-102.
    陈轮,庄艳峰,许齐,王钊.极限保土状态下的反滤机制试验研究.岩土力学,2008,29(6):1455-1460.
    庄艳峰,王钊.土工织物的孔洞曲线和瓶颈曲线及其应用.水利水电科技进展,2002,22(4):34-35.
    庄艳峰,王钊.土工织物的孔径测试方法.长江科学院院报,2003,19(3):33-36.
    胡丹兵,陆士强,王钊.土工织物反滤层透水性实际准则.岩土工程学报,1994,16(3):93-102.
    李富强,王钊,陈轮.土工织物透排水特性研究.人民长江,2006,37(6):51-55.
    李富强,王钊,陈轮,薛永萍.用数字图像技术测定反滤材料孔径分布曲线.岩土工程学报,2007,29(6):857-860.
    唐琳,唐晓武,佘巍,高柏松.单向拉伸对土工织物反滤性能影响的试验研究.岩土工程学报,2013,35(4):785-788.
    佘巍,唐晓武,张泉芳.无纺织物单向受拉时孔径变化研究.土木工程学报.2011,44:9-12.
    佘巍,陈轮,王钊.无纺土工织物保土应用中的概率设计准则.岩土力学,2007,28(10):2052-2055.
    吴海民,束一鸣,曹明杰,姜晓桢,蒋善平.土工合成材料双向拉伸多功能试验机的研制及初步应用.岩土工程学报.2014,36(1):170-175.
    束一鸣.针刺织物用于粉土反滤的实践.水利学报,2002,11(11):95-99.
    林刚,束一鸣,吴海民.小断面土工织物脱水试验方法初探.水电能源科学,2009,27(5):156-158.
    吴凤彩,无纺土工织物孔径测量技术.岩土工程学报.2006,28(4):495-504.
    徐俊,土工织物一非稳定土体反滤系统中滤饼的研究.岩土工程技术.2005,19(5):233-240.
    丁志勇,王凌云.土工织物孔径试验方法研究.公路与汽运,2003(4):47-49.
    赵运书,用于筛法进行针刺无纺土工布筛分试验.土工合成材料会议论文集,300-305.
    王微等.筛分法测定土工织物等效孔径的试验研究.华东公路,2003(6):32-34.
    许兰杰,郭听.提高织物抗静电能力.四川丝绸,2007,3:27-29.
    高翼强,贺福敏.土工织物孔径的测试方法.产业用纺织品,1994(6):25-26.
    王殿武.土工织物防护丁程反滤准则试验研究.工程地质学报,2006(2):281-287.
    张强,王正林.MATLAB数字图像处理.电子工业出版社,北京,2009.
    佘巍.土工织物拉伸对反滤性能影响的研究.浙江大学,杭州,2012.
    杨艳.土工织物等效孔径测定方法的分析.天津大学,天津,2009.
    商欣萍.土工织物拉伸力学性能的应用研究.东华大学,上海,2004.
    刘伟超.土工织物管袋充填特性及计算理论研究.浙江大学,杭州,2012.
    王保田,徐志伟,张文慧等.土工织物渗透仪研制及试验成果.大坝观测与土工厕试,1999,23(1):37-39.
    范耕洁.大型充砂袋在海港工程中的应用问题.港口工程,1997(6):1-8.
    刘斯宏.松冈元土工袋加固地基新技术.岩土力学,2007,2S(8):1665-1670.
    刘斯宏,汪易森.土工袋加固地基原理及其工程应用.岩土工程技术,2007,21(5):221-225.
    吴迪,徐超.土工合成材料土中拉伸试验研究.西北地震学报,2011,33(B08):171-174.
    速宝玉,无纺土工织物在不同压力下孔径分布与透水性的研究.河海大学学报,1990,18(2):42-45.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700