用户名: 密码: 验证码:
高原水库坝基松散介质渗透—淤堵试验及机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
西藏高原高山宽谷河流区是当地重要的农业区,由于其分布有深厚粗大的强渗透性冲洪积层,因此在这类地区兴建水库工程时,坝基渗漏问题常常存在规模大、投入高、设计施工技术复杂、防渗效果差等问题。在对以往的资料进行查阅时,发现不同地区很多水库,在没有增加任何附加防渗处理的情况下,经过几年的运行,坝基土体出现渗透性降低、渗漏问题明显减弱等现象,且后期的水库蓄水位可以达到设计要求。对此现象,作者所在课题组做了初步的探索、研究,发现坝基渗漏减弱过程中有淤堵现象的发生,且此现象对坝基土体的渗透性有重要影响。为此结合国家自然科学基金面上项目“淤堵作用对高原水库坝基松散介质渗透性的影响及机理”(No.41072197),针对松散坝基土体的特殊性质,结合土质学、土力学、泥沙动力学、水动力学等多学科,利用自行研制的渗透-淤堵试验装置开展一系列室内渗透-淤堵模拟试验和现场渗透试验,并结合图像分析、分形分维计算及数值模拟等方法对渗透-淤堵现象进行细观分析,系统地研究高原水库坝基松散介质渗透-淤堵的整个过程。
     论文共分七章,第一章介绍了选题依据和研究意义,总结了工程中常见的淤堵现象、淤堵试验、研究方法、机理分析等方面的国内外研究现状及目前的研究不足,给出了论文的研究内容与技术路线,并提出了创新之处。第二章以卓玉水库上坝址线为研究对象,进行了野外实地调查取样,并开展了现场试坑双环注水试验。第三章以粗粒土为研究对象,开展渗透-淤堵试验。第四章以松散坝基土体为骨架颗粒开展了天然试样和击实试样的渗透-淤堵模拟试验。第五章以室内试验得出的结论,开展渗透-淤堵现象的细观分析与计算。第六章结合渗透-淤堵试验的宏观分析计算和细观分析计算,对渗透-淤堵机理进行分析,并利用数值模拟方法,建立了三维颗粒流渗透-淤堵数值模型,模拟了渗透-淤堵的全过程。第七章对论文进行总结,并提出今后的研究和改进建议。
     论文探讨了淤堵作用对坝基松散介质的减渗效应,明确了淤堵作用使土体渗透性降低的机理,提出坝基防渗设计的新理念与新思路。这将为解决高山宽谷河流坝基渗漏问题,实现人工淤堵减渗新方法奠定理论依据。限于作者理论水平和实践经验有限,难免会有错误和疏漏,不当之处敬请各位专家批评指正。
Alluvial-proluvial substances were distributed in the wide valley of Tibet plateau, whichwere thick and loose packed gravel layer as reservoir dam foundation. The permeability of layerwas critical for storage capacity and leakage of the reservoir, and also could affect the damnormal operation. In recent years, some small reservoirs in Shannan region of Tibet wereinvestigated. It found that the leakage was a more serious problem in early reservoir operation,but the amount of leakage was gradually reduced and the storage capacity was progressivelyrestored with the operation of reservoir storage. Therefore, mechanism of infiltration-cloggingand test for plateau loose dam foundation were carried out. It would be provide a theoreticalbasis for solving leakage problems of alpine gully river dam and artificial clogging infiltrationreduction. The research has important theoretical and practical value.
     In this paper, we focused on the thick and loose gravel layer of dam foundation in Zhuo Yureservoir. According to field investigation and field pit bicyclical water injection test,infiltration-clogging tests in the condition of different size range of coarse grained soil, naturalsoil and compacted soil were carried out. The infiltration-clogging process was researched frommacroscopic to microcosmic and also simulated by three-dimensional particle flow software.
     The primary results and conclusions as following:
     (1) Taking the alluvial fan edge along the upstream rivers of Zhuo Yu ditch as the researchobject, six locations were selected for sampling. And the dry density and soil particle sizedistribution curve are obtained. The local soil situ permeability was1.98×10-2cm/s through fieldpit bicyclical water injection test.
     (2) A series of indoor clogging tests was conducted on seven kinds of samples. The grainsize range of samples was from32mm to64mm,16mm to32mm,8mm to16mm,4mm to8mm,2mm to4mm,1mm to2mm and0.5mm to1mm separately. According to the monitoredfluid velocity and hydraulic gradient, and the result of sieving analysis at the end of test, theclogging can be divided into three types: surface clogging, internal blockage and unclogging.Then the internal blockage also can be divided into two types: internal partial pore blockage andsurface-internal clogging. The discrimination criterion of clogging types for gravel group soilwas obtained by “equivalent grain size criterion”. The effective porosity model of skeleton grainswas established. The clogging criterion based on “effective aperture of grain criterion” was that:when De/det(ratio of equivalent grain size of skeleton grains and equivalent grain size of addinggrains) less than1, clogging type was surface clogging; when De/detless than2and greater than1, clogging type was surface-internal clogging; when De/detless than4and greater than2, clogging type was internal partial pore blockage; when De/detgreater than4, clogging type wasunclogging. Characteristics aperture of six groups samples(16mm to32mm,8mm to16mm,4mm to8mm,2mm to4mm,1mm to2mm and0.5mm to1mm) were obtained by effectiveaperture of grain criterion, which is3.987mm、1.986mm、1.013mm、0.528mm、0.247mm、0.128mm separately. At the same time, the optimal range of clogging grain size are got, that is2.819-5.638mm,0.993-1.986mm,0.506-1.013mm,0.264-0.528mm,0.124-0.247mm,0.064-0.128mm separately. Compared with the range of clogging grain size corresponding to thephenomenon of obvious clogging in indoor test, the optimal range of clogging grain size wascalculated by effective aperture of grain criterion in the condition of the surface-internal cloggingtype was more consistent. It shows that using effective aperture of grain criterion can determinethe clogging types.
     (3) Three different gradations of natural soils and four same gradations but differentcompaction degree soils were tested. The optimal range of clogging grain size was calculated byeffective aperture of grain criterion. The tests of different compacted soil exhibited less seepageflow and lower permeability than tests of nature soil. And to reduce the seepage flow anddecrease permeability need by add clogging material.
     (4) Phenomenon of surface clogging, surface-internal clogging and internal partial poreblockage was analyzed on infiltration-clogging tests in the condition of different size range ofcoarse grained soil, natural soil and compacted soil. After the test, the natural soil and compactedsoil were sieved. Particle size range of three clogging phenomenon was statistics. The statisticalresults were consistent with the conclusions by effective aperture of grain criterion. Thegranularity fractal dimension value of skeleton grains and soil samples after tests were calculatedby the method of granularity fractal dimension. The value of soil samples after tests was muchmore than Skeleton grains’. It mean particle volume was increased and the effective pore volumewas decreased, namely, the clogging phenomenon. The value of first layer in natural soil washighest in four layers. It mean the mainly clogging type was surface-internal clogging. Forcompacted soil, the granularity fractal dimension values of first layer soil and entire soil wereincreasing with compaction times. The more times, the better clogging phenomenon appears.The most obvious clogging phenomenon appeared in the soil sample of105compaction times.
     (5) According to the field investigation and indoor physical simulation test, theinfiltration-clogging process of the loose dam foundation was split into three stages: particlesadjustment stage, seepage stabilization stage and seepage variation stage. And the seepagedeformation was divided into three types: seepage compaction, seepage failure and infiltrationclogging. Based on the mechanical characteristics of seepage deformation, the mechanism of thethree types of seepage deformation was analyzed. Particles movement in the pores was analyzed. When the particles along the throat were subject to a downward force, moving characteristic ofgrains appeared migrating, piping or suffosion erosion. When the particles along the throat weresubject to upward force, moving characteristic of grains appeared suspending. When the particlesalong the throat were subject to balance force,moving characteristic of grains appeared clogging.
     (6) Using three-dimensional particle flow code software, the whole process ofinfiltration-clogging was simulated. In numerical simulation, the velocity, position of singleparticle, porosity of specimens and permeability coefficient was monitored in the infiltrationclogging process. The results revealed that: clogging particle motion had randomness anduncertainty in infiltration clogging process; clogging particles changed the partial structures ofthe samples, and the porosity and permeability coefficients were also changed. When addingclogging materials, the porosity and permeability coefficient of specimens were graduallydecreases with time step for both natural soil and compacted soil. The numerical simulationresulted more consistent with the results of laboratory tests.
引文
[1]张国俊.淤堵作用对高原水库坝基土渗透性影响的试验研究[D].长春:吉林大学,2008.
    [2]赵健,周怀东,富国等.河北西大洋水库沉积物中多环芳烃的分布、来源及生态风险评价[J].湖泊科学,2011,23(5):701-707.
    [3]张景秀.坝基防渗与灌浆技术[M].北京:中国水利水电出版社,1992.
    [4]刘冲.淤堵作用对高原水库坝基土渗透性影响的试验研究[D].长春:吉林大学,2013.
    [5]朱彤,许振成,胡康萍等.人工湿地污水处理系统应用研究[J].环境科学研究,1994,4(5):17-22.
    [6] Tanner C.C., James P.S. Accumulation of organic solids in gravel-bed constructed wetlands [J]. Wat.Sci. Tech,1995,32(3):229-239.
    [7] USERA. Subsurface flow constructed wetlands and wastewater treatment [M]. Washington D. C.,USEPA832-R-93-008,1993.
    [8] Fisher P.J. Hydraulic characteristics of constructed wetlands at Richmond, NSW Australia [A]. In:Cooper P,F Findlater B C. Constructed Wetlands in Water Pollution Control [M]. Pergamon Press,oxford,1990.21-31.
    [9] Kadlec R H, Watson J T.Hydraukics and solids accumulation in a gravel bed treatment wetland [A].Constructed Wetlands for Water Quality Improvement [M]. Lewis Publisher [MI].1993,227-235.
    [10] Cooper P, Green B.Reed bed treatment system for sewage treatment in the United Kingdom—the first10years experience [J]. Wat. Sci.Tech.,1995,32(3):317-327.
    [11] Platzer C., Mauch K. Soil clogging in vertical flow reed beds-mechanism, parameters, consequencesand solutions [J]. Wat. Sci. Tech.,1997,35:175-181.
    [12] Labeer J, Haberl R, Perfer R, et al. Influence of substrate clogging on the treatment capacity of avertical-flow constructed wetland system [A]. In Proceeding of7th International Conference on WetlandSystems for Water Pollution Control [C]. Florida,2000.
    [13]詹德昊,吴振斌,张展等.堵塞对复合垂直流湿地水力特征的影响明[J].中国给水排水,2003,19(2):1-4.
    [14]詹德吴,吴振斌,徐光来.复合垂直流构建湿地中有机质积累与基质堵塞[J].中国环境科学,2003,23(5):457-461.
    [15]付贵萍,吴振斌,张晨等.构建湿地堵塞问题的研究明[J].环境科学.2004,25(3):144-149.
    [16] Brix H,Cooper P F. Constructed Wetlands for Wastewater Treatment in Europe [M]. Leiden: BackhuysPublisher,1998:95-118.
    [17] Cooper P. A review of the design and performance of vertical flow and hybrid reed bed treatmentsystems [J]. Wat. Sci. Tech.,1999,40(3):1-9.
    [18]李怀正,叶建锋,徐祖信.轮休措施对堵塞型垂直潜流人工湿地的影响[J].环境科学学报,2008,40(3):1555-1560.
    [19]朱伟,华国芬,赵联芳.人工湿地填料有机堵塞问题的化学溶脱法室内模拟[J].环境化学,2009,28(3):410-414.
    [20]马飞,蒋莉,熊洁羽,等.反冲洗措施改善垂直潜流人工湿地水力特性的研究[J].环境科学与技术,2011,34(7):46-49.
    [21]赵抱力,穆仲义,吴金祥译.人工补给地下水[M].北京:水利出版社,1980:32-33.
    [22] Huisman L, Olsthoorn T N. Artificial Groundwater Recharge [M]. London: Pitman Publishing Inc.,1983.
    [23] LluriaM R, GoreyTL, Mack R B. Hydrochemistry and chemical compositional changes of ground waterfrom a deep well recharge operation using river water subjected to limited on-sitetreatment[C]//Proceedings of5th Symposium on Artificial Recharge of Groundwater (USA).1991.
    [24] Peters JH. Artificial recharge and water supply in the Netherlands, state of the art and futuretrends[C]//Second International Symposium on Artificial Recharge of Groundwater(TISAR).Amsterdam: A A Balkema,1998.
    [25] Goss D W, Smith S J, Stewart B A, et al. Fate of suspended sediment during basin recharge[J], WaterResour. Res.1973,9(3):668-675.
    [26] Rice R C. Soil clogging during infiltration of secondary effluent [J]. Journal WPCF,1974,46,708-716.
    [27] Okubo T, Matsumoto J. Biological clogging of sand and changes of organic constituents during artificialrecharge [J]. Water Research,1983,17:813-821.
    [28] Vigneswaran S, Suazo RB. A detailed investigation of physical and biological clogging during artificialrecharge [J]. Water, Air, and Soil Pollution,1987,35(1-2):119-140.
    [29] Dillon P J, Pavelic P. Guidelines on the quality of storm water and treated wastewater for injection intoaquifers for storage and reuse[R]. Urban Water Research Assoc. of Aust. Research, Report,1996,No.109.
    [30] Dillon P J. Banking of storm water, reclaimed water and potable water in aquifers [J]. Proceedings ofIGWC,2002, Dindigul, India.
    [31]李璐,卢文喜,杜新强等.人工回灌过程中含水层堵塞试验研究[J].人民黄河.2010,32(6):77-78.
    [32]杜新强,冶雪艳,路莹等.地下水人工回灌堵塞问题研究进展[J].地球科学进展,2009,24(9):973-980.
    [33]王子佳.城市雨洪水地下回灌过程中悬浮物堵塞规律的实验研究[D].长春:吉林大学,2012.
    [34]范.比克.孙厚才译.荷兰淤堵水井的修复[J].工程地质杂志,1989,(22):23-25.
    [35] Mansur CI, Postol G, Sally JR. Performance of Relief Well Systems along Mississippi River Levees [J].Journal of Geotechnical and Geo-environmental Engineering,2000,126(8):727-738.
    [36]肖振舜,汪在芹.减压井灌淤堵机理的物理化学试验研究[J].水利学报,1994,3:19-25.
    [37]张家发,吴志广,许季军等.安庆江堤现有减压井运行效果初步分析[J].长江科学院院报,2000,17(4):38-40.
    [38]吴昌瑜,张伟,孙厚才.减压井淤堵机理研究现状[J].长江科学院院报,2005,22(2):60-62.
    [39] Corcoran BW, Bhatia SK. Evaluation of geotextile filter in a collection system at Fresh Kills landfill. In:Bhatia, S.S., Suits, L.D.(Eds.), Recent Developments in Geotextile Filters and Prefabricated DrainageGeocomposites. American Society for Testing and Materials, ASTM STP1281,1996, pp.182-195.
    [40] Mendonca MBd, Ehrlich M, Cammarota MC. Conditioning factors of iron ochre biofilm formation ongeotextile filters [J]. Canadian Geotechnical Journal,2003,40(6):1225-1234.
    [41] Haselbach LM, Valavala S, Montes F. Permeability predictions for sand-clogged Portland cementpervious concrete pavement systems. Journal of Environmental Management,2006,81(1):42-49.
    [42] Wu CS, Honga YS, Yanb YW, et al. Soil-nonwoven geotextile filtration behavior under contact withdrainage materials [J]. Geotextiles and Geomembranes,2006,24:1-10.
    [43] Faure YH, Baudoin A, Pierson P, et al. A contribution for predicting geotextile clogging during filtrationof suspended solids. Geotextiles and Geomembranes,2006,24:11-20.
    [44]孔丽丽,陈守义.武山尾矿坝无纺土工织物滤层化学淤堵问题初探[J].岩土工程学报,1999,21(4):444-449.
    [45]崔中兴,王志刚.土工织物滤层的P~K与淤堵试验研究[J].西北水资源与水工程,1995,6(3):36-45.
    [46]段祥宝,毛昶熙,吴文君.江边电排站渠底滤层淤堵破坏及加固研究[J].岩土工程学报,2000,22(1):123-126.
    [47]周蓉,刘逸新.土工织物淤堵程度的量化方法探讨[J].纺织学报,2001,22(2):118-120.
    [48]刘丽芳.防淤堵滤层新材料的开发与性能研究[D].上海:东华大学,2002.
    [49] Palmeira EM, Gardoni MG. Drainage and filtration properties of non-woven geotextiles underconfinement using different experimental techniques[J]. Geotextiles and Geomembranes,2002,20:97-115.
    [50]陈轮,童朝霞.拉应变对土工织物-非连续级配土淤堵特性的影响[J].水力发电学报,2003,2:97-102.
    [51]巨娟丽.土工无纺布工程特性试验研究[J].水利与建筑工程学报,2005,2(3):43-46.
    [52]付长生,赵坚,沈振中等.淤堵试验中“驼峰”形k~t曲线形成的影响因素分析[J].水利水电科技进展.2011,31(6):19-22.
    [53]唐琳,唐晓武,佘巍等.高柏松单向拉伸对土工织物反滤性能影响的试验研究[J].岩土工程学报.2013,35(4):785-788.
    [54]李伟,赵坚,沈振中.模拟土工织物反滤作用的颗粒流分析方法[J].水电能源科学.2013,31(4):106-110.
    [55] Berkman HE, Rabeni CF. Effect of siltation on stream fish communities [J]. Environmental Biology ofFishes,1987,18:285-294.
    [56] Raat AJP. Synopsis of biological data on the northern pike Esox lucius Lineaeus,1758[J]. FAO, Rome,1988, pp.178-190.
    [57] Rabeni CF, Smale MA. Effects of siltation on stream fishes and the potential mitigating role of thebuffering riparian zone [J]. Hydrobiologia,1995,303:211-219.
    [58] Battin TJ, Sengschmitt D. Linking Sediment Biofilms, Hydrodynamics, and River Bed Clogging:Evidence from a Large River [J]. Microbial Ecology,1999,37(3):185-196.
    [59] Bo T, Fenoglio S, Malacarne G, et al. Effects of clogging on stream macroinvertebrates: Anexperimental approach [J]. Limnologica-Ecology and Management of Inland Waters,2007,37(2):186-192.
    [60] Schultz G, Ruppel C. Constraints on hydraulic parameters and implications for groundwater flux acrossthe upland-estuary interface [J]. Journal of hydrology,2002,260:255-269.
    [61] Wett B, Jarosch H, Ingerle K. Flood induced infiltration affecting a bank filtrate well at the River Enns,Austria [J]. Journal of Hydrology,2002,266:222-234.
    [62] Martin-Rosales W, Leduc C. Dynamiques de vidange d.une mare temporaire au Sahel: l'.exemple deBanizoumbou (Sud-Ouest du Niger)[J]. Comptes Rendus Geoscience,2003,335:461-468.
    [63] Volkenborn N, Hedtkamp SIC, van Beusekom JEE, et al. Effects of bioturbation and bioirrigation bylugworms (Arenicola marina) on physical and chemical sediment properties and implications forintertidal habitat succession [J]. Estuarine, Coastal and Shelf Science,2007,74(1-2):331-34.
    [64] Schubert J. Hydraulic aspects of riverbank filtration) field studies [J]. Journal of Hydrology,2002,266:145-161.
    [65] Goldschneider AA, Haralampides KA, MacQuarrie KTB. River sediment and flow characteristics near abank filtration water supply: Implications for riverbed clogging [J]. Journal of Hydrology,2007,344(1-2):55-69.
    [66]韩其为,何明民.水库淤积与河床演变的(一维)数学模型[J].泥沙研究,1987,3:14-29.
    [67]冯普林,王灵灵,马雪妍,等.渭河临潼河段河床物质层理淤积结构分析[J].人民黄河,2012,34(2):22-25.
    [68]陈玲.茅洲河河床淤塞分析及治理对策研究[J].中国农村水利水电.2013,6:30-35.
    [69]侯志军,王德昌,和瑞勇.小浪底枢纽泄流孔口淤堵后冲刷试验研究[C].第十六届全国水动力学研讨会文集,2002.
    [70]陈怡勇.小浪底水利枢纽工程预防泥沙淤堵和磨蚀的工程措施[J].水利水电科技进展.2004,4(1):47-48,70.
    [71]殷保合.小浪底水库泥沙淤积问题初步探索[J].人民黄河.2010,32(9):20-21.
    [72]李立刚.黄河小浪底工程预防泥沙淤积的工程措施和减淤运用实践[J].红水河.2005,24(4):71-74.
    [73]安杰,宗全利,汤骅.低压输浑水管道临界不淤流速的试验研究[J].石河子大学学报(自然科学版),2012,30(1):83-86.
    [74]蔡明科,何武全,张英普等.浑水管道淤堵机理及防淤堵技术研究[J].灌溉排水学报,2006,24(3):27-29.
    [75]张英普,王玉宝,何武全,等.浑水管道输水灌溉系统防淤堵技术研究[J].西北农林科技大学学报(自然科学版),2010,38(12):230-234.
    [76]黄智全.无粘性粗粒土渗透淤堵作用室内模拟试验及机理研究[D].长春:吉林大学,2010.
    [77]徐文明.淤堵作用对西藏山南地区粗粒土坝基渗透性的影响及机理研究[D].长春:吉林大学,2013.
    [78]王媛媛.渗透淤堵作用对卓玉水库坝基渗透性及渗流影响的模拟研究[D].长春:吉林大学,2013.
    [79]赵抱力,穆仲义,吴金祥译.人工补给地下水[M].北京:水利出版社,1980:32-33.
    [80] Rodgers M, Mulqueen J, Healy M G. Surface clogging in an intermittent stratified sand filter [J]. SoilScience Society of America Journal,2004,68:1827-1832.
    [81] Ripley D P, Saleem Z A. Clogging in simulated glacial aquifers due to artificial recharge[J].WaterResourcesResearch,1973,9:1047-1057.
    [82] Goodrich J A, D W Phipps Jr, Gordon G Z, et al. Bottom plugging dynamics in recharge basin[C]//Proceedings of the1990National Conferences on Irrigation and Drainage. USA: Published by theASCE,1990:369-376.
    [83] Seki K, Miyazaki T, Nakano M. Effects of microorganisms on hydraulic conductivity decrease ininfiltration [J]. European journal of soil science,1998,49:231-236.
    [84] Rijnaarts HHM, Norde W, Bouwer EJ, et al. Bacterial Deposition in Porous Media Related to theClean Bed Collision Efficiency and to Substratum Blocking by Attached Cells [J].Environmental Science&Technology,1996,30(10):2869-2876.
    [85] Rijnaarts HHM, Norde W, Bouwer EJ, et al. Bacterial Deposition in Porous Media: Effects ofCell-Coating, Substratum Hydrophobicity, and Electrolyte Concentration [J]. Environmental Science&Technology,1996,30(10):2877-2883.
    [86] Rinck-Pfeiffer S, Ragusa S, Sztajnbok P, et al. Interrelationships between biological, chemical, andphysical processes as an analog to clogging in aquifer storage and recovery (ASR) wells [J]. WaterResearch,2000,34(7):2110-2118.
    [87] Van Cuyk S, Siegrist R, Logan A, et al. Hydraulic and purification behaviors and their interactionsduring wastewater treatment in soil infiltration systems [J]. Water Research,2001,35(4):953-964.
    [88] VanGulck JF, Rowe RK, Rittmann BE, et al. Predicting biogeochemical calcium precipitation inlandfill leachate collection systems [J]. Biodegradation,2003,14:331-346.
    [89] VanGulck JF. Biodegradation and clogging in gravel size material [D]. PhD Thesis, Queen’sUniversity, Kingston, Ontario, Canada,2003.
    [90] VanGulck JF, Rowe RK. Evolution of clog formation with time in columns permeated with syntheticlandfill leach ate [J]. Journal of Contaminant Hydrology,2004,75:115-139.
    [91] Islam J, Singhal N. A laboratory of landfill-leachate transport in soils [J]. Water Research,2004,38:2035-2042.
    [92] Fuchs S, Hahn HH, Roddewig J, et al. Biodegaradation and bioclogging in the unsaturated porous soilbeneath sewer leaks [J]. Acta hydrochimica et hydrobiologica,2004,32(4-5):277-286.
    [93] Streese J, Stegmann R. Microbial oxidation of methane from old landfills in biofilters [J]. WasteManagement,2003,23:573-580.
    [94] Delhoménie MC, Bibeau L, Gendron J, et al. A study of clogging in a biofilter treating toluene vapors[J]. Chemical Engineering Journal,2003,94(3):211-222.
    [95] Song CB, Park HS, Lee KW. Experimental study of filter clogging with monodisperse PSL particles [J].Powder Technology,2006,163(3):152-159.
    [96] Kristiansen R. Sand-filter trenches for purification of septic tank effluent: I. The clogging mechanismand soil physical environment [J]. Journal of environmental quality,1981,10:353-357.
    [97] Kelm U, Helle S. Acid leaching of malachite in synthetic mixtures of clay and zeolite-rich gangue. Anexperimental approach to improve the understanding of problems in heap leachingoperations. Applied Clay Science,2005,29:187-198.
    [98] De V. J.. Soil filtration of wastewater effluent and the mechanism of pore clogging [J]. Water PolluteControl,1972,44(2):565-573.
    [99]童巍,朱伟,阮爱东.垂直流人工湿地填料的淤堵机理初探[J].湖泊科学,2007,19(1):25-31.
    [100]武君.尾矿坝化学淤堵机理与过程模拟研究[D].上海:上海交通大学,2008.
    [101] Wu FC, Huang HT. Hydraulic resistance induced by deposition of sediment in porous medium [J].Journal of hydraulic engineering,2000,126(7):547-550.
    [102]张爱军,董为民,骆亚生.尾矿坝排水管的反滤、淤堵试验研究[J].防渗技术,2001,7(1):1-17
    [103] Rowe RK, McIsaac R. Clogging of Tire Shreds and Gravel Permeated with Landfill Leachate [J].Journal of Geotechnical and Geo-environmental Engineering,2005,131(6):682-693.
    [104] Wang Z, Banks C. An investigation into the microbial clogging potential of selected filter media as aresult of biodegradation of a high-strength sulphate-rich alkaline leachate [J].Biodegradation,2006,17(5):415-422.
    [105] Iwasaki T. Some notes on sand filtration [J]. Journal of American Water Works Association,1937,10:1591-1602.
    [106] Stein P C. A Study of the Theory of Rapid Sand Filtration of Water through Sand [D]. Massachusetts Insistute of Technology, USA,1940.
    [107] Mc Dowell-Boyer L M, Hunt J R, Sitar N. Particle transport through porous media [J]. Water ResourcesResearch,1986,22:1901-1921.
    [108] Pavelic P, Dillon P J, Barry K E, et al. Well clogging effects determined from mass balances andhydraulic response at a storm-water ASR site[C]//Peters J H, et al. eds. Third International Symposiumon Artificial Recharge of Groundwater (TISAR).1998:61-66.
    [109] Siriwardene N R, Deletic A, Fletcher T D. Clogging of stormwater gravel infiltration systems and filters:insights from a laboratory study [J]. Water Research,2007,41,1433-1440.
    [110]曹丽文,姜振泉,张静,练翠侠,洪雷.垃圾填埋场排水层淤堵实验特征[J].重庆大学学报(自然科学版),2007,(08):75-80.
    [111] Kaiser C. A Directed Percolation Model for Clogging in a Porous Medium with Small Inhomogeneities[J]. Transport in Porous Media,1997,26(2):133-146.
    [112] Thullner M, Zeyer J, Kinzelbach W. Influence of Microbial Growth on Hydraulic Properties of PoreNetworks [J]. Transport in Porous Media,2002,49:99-122.
    [113] Contal P, Simao J, Thomas D, et al. clogging of fibre filters by submicron droplets. Phenomena andinfluence of operating conditions. Aerosol Science,2004,35:263-278.
    [114] Skolasińska K. Clogging microstructures in the vadose zone-laboratory and field studies [J].Hydrogeology Journal,2006,14(6):1005-101.
    [115]上海市水文地质大队.地下水人工回灌[M].北京:地质出版社,1977.
    [116] Olsthoorn T. N.. The clogging of recharge wells, main subjects [C]. MKIWA-communications72.Working Group on Recharge Wells,1982:136.
    [117] CustodioE, Isamat J, Miralles J. Twenty-five years of groundwater recharge in Barcelona(Spain)[C]MDVWK Bulletin11. Artificial Groundwater Recharge,1982:171-192.
    [118] FrycklundC. Artificial groundwaters recharge state of the art [R].Report1992-04,1998:55.
    [119] Schippers JC, Verdouw J. The modified fouling index, a method of determining the foulingcharacteristics of water [J]. Desalination,1980,32:137-148.
    [120] RehgK J, PackmanA I, Ren J,etal. Effects of suspended sediment characteristics and bed sedimenttransport on streambed clogging [J]. Hydrological Processes,2005,19:413-427.
    [121]黄大英.淤堵对人工回灌效果影响的试验研究[J].北京水利科技,1993,(1):24-31.
    [122]田园,张原秀,孙雪峰.黄淮海平原地下水人工补给[M].北京:水利电力出版社,1990:126-127.
    [123] HarmesonRH, ThomasR L, EvansR L. Coarse media filtration for artificial recharge [J]. Journal of theAmerican Water Works Association,1968,60:1396-1403.
    [124] Molz F J, W iddowsonM A, Benefield LD. Simulation of microbial growth dynamics coupled tonutrient and oxygen transport in porous media [J].Water Resources Research,1986,22:1207-1216.
    [125] Herzig J P, LeclerDM, LeGoffP. Flow of suspensions through porous media: Application to deepfiltration [J]. Industrial and Engineering Chemistry,1970,62:8-35.
    [126] Yao K M, Holsibian M T, Melia C R O. Water and wastewater filtration: Concepts and applications [J].Environmental Science andTechnology,1971,5:1105.
    [127] Rajagopalan R, Tien C. Trajectory analysis of deep bed filtration with the sphere-in-cell porous mediamodel [J].American Institute of Chemical Engineering,1976,22:523-533.
    [128] Vigneswaran S, Chang J S. Mathematical modeling of the entire cycle of deep bed filtration [J]. Water,Air and Soil Pollution,1986,29:155-164.
    [129] Vigneswaran S, Tulachan R K. Mathematical modeling of transient behavior of deep bed infiltration [J].Water Resources,1988,22:1093.
    [130] Okubo T, Matsumoto J. Effect of infiltration rate on biological clogging and water quality changesduring artificial recharge [J]. Water Resources Research,1979,15:1536-1542.
    [131] Vigneswaran S, Suazo R B. Biological clogging during artificial recharge [J].Water, Air and SoilPollution,1987,(35):119-140.
    [132] Vandevivere P., Baveye P., D. Sanchez de Lozada, et al. Microbial clogging of saturated soils andaquifer materials: Evaluation of mathematical models [J].Water Resources Research,1995,31:2173-2180.
    [133] Siegrist R. L, Boyle W. C. Wastewater induced soil clogging development [J]. Journal of Environmentand Engineering,1987,113:550-566.
    [134] Taylor S. W., Jaffe P. R. Substrate and biomass transport in a porous media [J]. Water Resources,1990,26:2181-2194.
    [135] Omura T., Umita T., Nevov V., et al. Biological oxidation of ferrous iron in high acid mine drainage byfluidized bed reactor [J]. Water Science and Technology,1991,23:1447-1456.
    [136] Osei-Bonsu K. Clogging by Sediments in Injected Fluid Flowing Radically in a ConfinedAquifer[D].Adelaide: Flinders University of South Australia,1996:253.
    [137] Pavelic P, Mucha M, Dillon P, et al. Laboratory column study on the effect of ponding depth oninfiltration rate during SAT [C].5th International Symposium, Aquifer Recharge, Berlin,2005,6.
    [138] Li X, Wang X. Modeling of membrane fouling in a submerged membrane bioreactor [J]. Journal ofMembrane Science,2006,278(1-2):151-161.
    [139] Blaze Jewski R, Murat S. Soil clogging Phenomena in constructed wetlands with subsurface flow[J].Wat. Sci. Tech,1997,35:183-188.
    [140] Jones J.H., Taylor G.G. Septic tank effluent percolation through sands under1aboratory conditions [J].Soil Sci.1965,99(5):301-309.
    [141]雷明,李凌云.人工湿地土壤堵塞现象及机理探讨[J].工业水处理.2004,24(10):9-12.
    [142] Magnico P. Impact of dynamic processes on the coupling between fluid transport and precipitatedeposition [J]. Chemical Engineering Science,2000,55:4323-4338.
    [143]张爱军,朱珍德,程艳.深圳卫生填埋淤堵排放的灰色预测模型[J].河海大学学报,2002,30(3):106-109.
    [144]曹丽文,姜振泉,张静等.垃圾填埋场排水层渗透性变化特征实验研究[J].中国矿业大学学报,2007,36(4):467-472.
    [145]水电水利工程粗粒土试验规程(DL/T5356-2006)[M].中华人民共和国国家发展和改革委员会.2006.
    [146]土工试验方法标准(GB-T50123-1999)[M].中华人民共和国水利部.1999.
    [147]唐大雄,刘佑荣,张文殊,王清.工程岩土学(第二版)[M].长春:地质出版社,1999.
    [148]土工试验规程(SL273-1999)[M].中华人民共和国水利部,1999.
    [149]宏伟.地下工程不同土质分类方法标准对照分析.第2届全国工程安全与防护学术会议论文集(下册)[C]//.武汉:中国岩石力学与工程学会,2010:727-731.
    [150]邱贤德,阎宗岭,姚本军,陶世宏.堆石体渗透特性的试验研究[J].四川大学学报(工程科学版),2003,35(2):143-146.
    [151]刘杰.土石坝渗流控制理论基础及工程经验教训[M].北京:中国水利水电出版社,2006.
    [152]秦荣昱,王崇浩.河流推移质运动理论及应用[M].中国铁道出版社,1996.
    [153]王子佳,杜新强,冶雪艳,等.城市雨水地下回灌过程中悬浮物表面堵塞规律[J].吉林大学学报:地球科学版,2012,43(2):492-498.
    [154]明滋(Д.М.Минц),舒别尔特(С.А.Шуберт),惠遇甲,等.粒状材料水力学[M].北京:水利出版社,1957.
    [155]李识博,王常明,王钢城,等.粗粒土淤堵模式判别及最优淤堵粒径区间确定[J].水利学报.2013,44(10):79-86.
    [156]长春市水利勘测设计研究.西藏扎囊县卓玉水库可行性研究阶段工程地质勘察报告[M].2006.
    [157]张回江,徐懿.云南大城水库坝顶溢流面板堆石坝、粘土均质坝碾压试验分析[J].今日科苑.2009,4:163-165.
    [158]赵阳生.多孔介质多场耦合作用及其工程相应[M].科学出版社,2010.
    [159]李喜安,陈文军,邓亚虹,等.渗流潜蚀作用临界发生条件的推导[J].水土保持研究.2010,17(5):217-221.
    [160]刘杰,缪良娟.缓慢蓄水对大坝防渗体渗透加固作用的试验研究[J].人民黄河,1990,(5):29-33.
    [161] Itasca Consulting Group Inc. PFC Particle flow code in three dimensional optional features [M].Minneapolis:[s.n.],2005:8-9.
    [162] Itasca Consulting Group Inc.PFC3D Version4.0Particle Flow Code in3Dimensions Online ManualTable of Contents [M].2005.
    [163]马栋和.黄土公路边坡破面冲刷的水-土力学耦合机制及模型研究[D].长春:吉林大学,2012.
    [164]马建全.黑方台灌区台缘黄土滑坡稳定性研究[D].长春:吉林大学,2012.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700