用户名: 密码: 验证码:
胃肠道肿瘤仿真裸鼠移植瘤模型在新型抗VEGF靶向药物评价中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
背景:肿瘤动物模型一直以来是抗肿瘤药物临床前疗效预测和可能的毒性评价的有效工具。如果不能为每一种肿瘤找到一个与临床密切相关的肿瘤模型,那么将大大妨碍为某种特定的肿瘤类型找到一种具有普遍疗效的抗肿瘤药物。同样,如果不能为每一个肿瘤患者找到一个最能反映其个体特征的肿瘤模型,也就妨碍了为特定患者找到个体化的治疗药物。建立用于体内评价的代表每一种肿瘤类型的实验性动物模型将大大加快筛选有效的抗肿瘤药物的速度。这些动物模型还可以有效降低药物开发的费用和减少所需的患者来源的肿瘤组织。同样,个体化的肿瘤模型还有利于为每个肿瘤患者选择最有效的个体化治疗药物。近年来,越来越多的研究小组开始使用患者新鲜肿瘤组织来源(patient-derived human tumor tissue, PDTT)的裸鼠移植瘤模型。这种PDTT模型比传统的细胞系模型更能反映人类肿瘤的生物学特征,在细胞增殖、组织形态学特征和分子特征与来源肿瘤组织具有高度的一致性。由于PDTT模型比细胞系模型更能反映体内状况,因此被有效地应用于潜在抗肿瘤药物的快速筛选。
     PDTT模型具备四大应用前景:首先,这种模型可以作为抗肿瘤药物临床前筛选的工具。其次,这种模型可以用于评价、分析和筛选抗肿瘤治疗疗效和耐药的标志物。第三,PDTT模型的理想特征也为研究肿瘤原发瘤与转移瘤之间的异质性及这种异质性对抗肿瘤药物疗效的影响提供了一个有效的研究工具。第四,由于现有的个体化治疗方法的局限性,迫切需要一种新的方法来尽可能地实现肿瘤治疗的个体化。PDTT模型将是一个为每一位患者预测治疗药物疗效从而实现个体化治疗的理想工具。
     血管生成是肿瘤多步骤发生发展过程中的八大标志之一。血管内皮生长因子(vascular endothelial growth factor, VEGF)是目前已知的唯一一个贯穿整个肿瘤生长周期的血管生长因子。因此,VEGF被认为是抗肿瘤血管生成药物开发的理想靶标。通过抗VEGF达到抗肿瘤血管生成进而实现抗肿瘤治疗的目的在实体瘤的治疗中具有广阔的应用前景。FP3是一个靶向VEGF的全人源化的可溶性受体蛋白。它的结构包括了VEGFR1(Flt-1)的第二个胞外区域和VEGFR2(Flk-1, KDR)的第三、四个胞外区域,将这些区域与人免疫球蛋白1(IgG1)的Fc片段基因融合构建融合蛋白。前期研究发现FP3对VEGF诱导的人脐静脉内皮细胞(HUVECs)具有明显抑制增殖和迁移的作用;对VEGF诱导的大鼠动脉环出芽具有明显抑制作用。研究还发现FP3具有明显抑制非小细胞肺癌(NSCLC, A549)移植瘤生长的作用。并且发现,FP3具有明显的体内抗血管生成作用。但是FP3的确切抗肿瘤血管生成作用的机制目前尚未明了。而且,FP3对胃肠道肿瘤的抗血管生成作用和抗肿瘤作用,以及FP3联合化疗和其他靶向治疗的协同治疗价值亦未明确。
     第一部分:
     目的:(1)本研究为了建立胃癌患者新鲜肿瘤组织来源的裸鼠移植瘤模型(PDTT模型)用于为肿瘤患者筛选个体化的治疗药物和评价一个新型的抗肿瘤靶向药物,FP3。(2)本研究主要采用胃癌PDTT模型评价FP3的抗肿瘤血管生成的作用机制。研究主要观察FP3对肿瘤血管血管内皮细胞和外膜细胞的影响。
     方法:(1)胃癌患者新鲜肿瘤组织用于建立PDTT移植瘤模型。HE染色、免疫组织化学染色和蛋白质免疫印迹(Western blotting)等方法用于初步鉴定该模型在传代过程中的生物学稳定性。同时评价了该模型对西妥昔单抗、贝伐单抗和FP3的治疗敏感性。(2)应用胃癌PDTT模型采用荧光免疫组织化学方法评价了FP3对肿瘤血管细胞水平的作用。
     结果:(1)成功建立了胃癌患者PDTT模型,该模型在组织形态、蛋白表达方面显示出与患者新鲜肿瘤组织高度的一致性。药物敏感性试验表明西妥昔单抗、贝伐单抗和FP3均显示出对该模型的疗效,而西妥昔单抗与贝伐单抗及西妥昔单抗与FP3联合应用较单药应用具有明显疗效上的优势。(2)FP3治疗后明显影响了PDTT模型的肿瘤血管的生成,成熟血管内皮和新生血管内皮均受到明显影响,而对外膜细胞的影响不如内皮细胞,肿瘤血管经FP3作用后显示出更为“正常”的特征。
     结论:(1)本研究成功建立胃癌患者PDTT模型,并用于个体化抗肿瘤治疗药物的筛选。(2)本研究表明FP3对肿瘤血管的作用主要通过三个方面来实现,包括对成熟肿瘤血管的抑制作用、对新生肿瘤血管的抑制作用和对肿瘤血管的“正常化”作用。
     第二部分:
     目的:(1)本研究为了建立结肠癌患者新鲜肿瘤组织(结肠癌原发瘤、淋巴转移瘤和肝转移瘤)来源的裸鼠移植瘤模型(PDTT模型)用于评价一个新型的抗肿瘤靶向药物,FP3。(2)本研究为了评价FP3与卡培他滨联合治疗对结肠癌(结肠癌原发瘤、淋巴转移瘤和肝转移瘤)PDTT移植瘤模型的协同治疗价值。(3)本研究为了评价FP3与西妥昔单抗联合治疗对KRAS野生型结肠癌(结肠癌原发瘤、淋巴转移瘤和肝转移瘤)PDTT移植瘤模型的协同治疗价值。(4)本研究为了分析结肠癌原发瘤与转移瘤的异质性及这种异质性可能导致的抗VEGF和抗EGFR联合靶向治疗的疗效差异。
     方法:(1)结肠癌患者新鲜肿瘤组织(结肠癌原发瘤、淋巴转移瘤和肝转移瘤)用于建立PDTT移植瘤模型。HE染色、免疫组织化学染色、和蛋白质免疫印迹(Western blotting)、基因组cDNA芯片基因表达分析、焦磷酸测序、实时荧光定量PCR (qRT-PCR)等方法用于鉴定该模型在传代过程中的生物学稳定性。同时评价了该模型对西妥昔单抗、贝伐单抗和FP3的治疗敏感性。(2)本研究评价了FP3联合卡培他滨对结肠癌患者新鲜肿瘤组织(结肠癌原发瘤、淋巴转移瘤和肝转移瘤)PDTT移植瘤模型的治疗价值,以及联合应用对肿瘤生长、增殖相关因子的影响。(3)本研究评价了FP3联合西妥昔单抗对KRAS野生型结肠癌患者新鲜肿瘤组织(结肠癌原发瘤、淋巴转移瘤和肝转移瘤)PDTT移植瘤模型的治疗价值,以及联合应用对肿瘤生长、增殖相关因子的影响。(4)本研究采用免疫组织化学染色、和蛋白质免疫印迹(Western blotting)、基因组cDNA芯片基因表达分析、焦磷酸测序等方法评价了结肠癌原发瘤与淋巴转移瘤和肝转移瘤的异质性,并采用药敏试验评价了这种异质性对贝伐单抗和西妥昔单抗联合靶向治疗疗效的影响。
     结果:(1)成功建立了结肠癌(原发瘤、淋巴转移瘤和肝转移瘤)PDTT移植瘤模型,该模型在组织形态、蛋白表达、基因突变和基因表达谱方面显示出与患者新鲜肿瘤组织高度的一致性。(2)FP3联合卡培他滨比单药治疗对结肠癌(原发瘤、淋巴转移瘤和肝转移瘤)PDTT移植瘤模型肿瘤生长的抑制作用具有明显优势。(3)FP3联合西妥昔单抗比单药治疗对KRAS野生型结肠癌(原发瘤、淋巴转移瘤和肝转移瘤)PDTT移植瘤模型肿瘤生长的抑制作用具有明显优势。(4)在EGFR、VEGF、 Akt/pAkt、ERK/pERK、MAPK/pMAPK和mTOR/pmTOR表达及基因表达方面,结肠癌原发瘤与淋巴转移瘤和肝转移瘤存在着明显的异质性。研究表明这种异质性可能导致来源于这些肿瘤组织的PDTT模型可能存在对抗EGFR和抗VEGF治疗疗效的差异。
     结论:(1)本研究成功建立了结肠癌(原发瘤、淋巴转移瘤和肝转移瘤)PDTT移植瘤模型。该模型提供了一种评价新型抗肿瘤分子靶向药物的有效工具。(2)FP3与卡培他滨联合应用对结肠癌(原发瘤、淋巴转移瘤和肝转移瘤)PDTT移植瘤模型具有协同抗肿瘤作用。FP3和卡培他滨联合治疗可能是转移性结肠癌治疗的有效治疗方案。(3)FP3与西妥昔单抗联合应用对KRAS野生型结肠癌(原发瘤、淋巴转移瘤和肝转移瘤)PDTT移植瘤模型具有协同抗肿瘤作用。FP3和西妥昔单抗联合靶向治疗可能是KRAS野生型转移性结肠癌治疗的有效治疗方案。(4)结肠癌原发瘤与淋巴转移瘤和肝转移瘤存在明显的异质性,这种异质性可能影响其对抗VEGF和抗EGFR联合靶向治疗的疗效差异。
Background:Animal models have been used in "front-line" preclinical studies for predicting the efficacy and possible toxicities of anticancer drugs in cancer patients. The lack of general clinic-relevant tumor model for each kind of human cancer or model for a given cancer patient is a major impediment in seeking an general effective anticancer therapy for a certain kind of cancer or selecting the most appropriate therapy for an individual patient. Available in vivo experimental tumor models that are clinically representative of each major human cancer type would largely increase the success in identifying new active agents targetting sectionicular tumors. They can also accelerate the progress, reduce the cost and patient tumor tissue needed for anticancer drug development. Similarly, individualized models of human cancers would greatly facilitate selecting the best therapy for each individual patient as well. The increasingly used patient-derived human tumor tissue (PDTT) xenografts models implanted subcutaneously or in subrenal capsular in immunodeficient mice such as athymic nude mice or severe combined immune deficient (SCID) mice provided a more accurate reflection of human tumor biological characteristics than tumor cell lines. These xenografts models have become increasingly popular as evidence accrues that they are more accurately recapitulate features of patient tumors, such as maintaining the cell differentiation and morphology, the architecture, and molecular signatures of the original patient tumors. The unique feature of PDTT xenografts models is that the implanted tumor tissue still retains most of its normal architecture and function. This model more accurately reflects the in vivo situation than CCL thus could be functional for rapid screening of potential therapeutics.
     It is believed that PDTT xenografts models possess four general applications. Firstly, it can be used as an in vivo screening tool to test novel drugs with therapeutic potential in cancer treatment. Secondly, it can be used to evaluate key markers of response and resistance to drugs. The ideal characteristics of the PDTT xenograft model might also make it a candidate method to investigate heterogeneity in primary tumor and its corresponding metastases and to evaluate the effect of such heterogeneity on cancer therapy response. Finally, it can be applied to achieve individualized anticancer therapy regimens by preclinically assessing the sensitivity of tumors to registered anticancer agents in vivo. Because of the inherent limitations in the current approaches for personalized cancer therapy, the need for new techniques to realize this goal is urgent. PDTT xenograft model might be an ideal candidate method to help to predict tumor response to therapy and it can be applied to achieve personalized therapy regimens by pre-clinically assessing the therapy-sensitivity of tumors to registered anticancer agents in vivo.
     Angiogenesis is one of the eight hallmarks of cancer acquired during the multistep development of human tumors. Vascular endothelial growth factor (VEGF) is well established as a central mediator in this process. Furthermore, VEGF is the only angiogenic factor known to be present throughout the entire tumor lifecycle. Based on these evidences, VEGF is considered as a rational target for antiangiogenic drug development. Because anti-VEGF approaches act by blocking tumor-associated angiogenesis, which appears to be widely required by many different types of tumors, these approaches have been proved to be generally useful against a wide assortment of solid tumors. FP3is an engineered protein which contains the extracellular domain2of VEGF receptor1(Flt-1) and extracellular domain3and4of VEGF receptor2(Flk-1, KDR) fused to the Fc portion of human immunoglobulin G1. Previous studies indicated that FP3had promise as a local antiangiogenic treatment of human CNV (choroidal neovascularization)-related AMD (age-related macular degeneration). In subsequent studies, it was demonstrated that FP3has an inhibitory efficacy in VEGF-mediated proliferation, migration and tube formation of human umbilical vein endothelial cells, and in VEGF-mediated vessel sprouting of rat aortic ring in vitro. It was also demonstrated that FP3has an antitumor effect in a non-small cell lung cancer cell line (A549) xenograft model in nude mice. However, little is known of the cellular effects of FP3on tumor vessels and its antitumor effects on gastrointestinal tumors.
     Section I
     Purpose:(1) It was the aim of our study to establish a patient-derived tumor tissue (PDTT) xenograft model of gastric carcinoma useful for personalized cancer therapeutic regimen selection as well as testing of novel molecularly targeted agents.(2) In the present studies, we examined the cellular effects of FP3on blood vessels, mainly focused on the endothelial cells and pericytes of tumor vessels in a PDTT xenograft model of gastric carcinoma using large tumors with established vasculature.
     Methods:(1) A PDTT of primary gastric carcinoma was used to create the xenograft model. After11weeks, xenografts were harvested for serial transplantation. Hematoxylin and eosin staining, immunohistochemical staining and western blotting were used to determine the biological stability of the xenograft during serial transplantation compared with the original tumor tissue. Drug sensitivities of the xenograft to bevacizumab, FP3, and cetuximab were evaluated.(2) In this study, we further investigated the cellular effects of FP3on blood vessels in a PDTT xenograft model of gastric carcinoma using large tumors with established vasculature.
     Results:(1) A PDTT xenograft model of primary gastric carcinoma was successfully established. Early passages of the PDTT xenograft model of gastric carcinoma revealed a high degree of similarity with the original clinical tumor sample with regard to histology, immunohistochemistry as well as proteins expression. The PDTT xenograft model responded to all the drugs tested, and a higher response rate was observed in bevacizumab in combination with cetuximab-treated group as well as FP3in combination with cetuximab-treated group.(2) Treatment with FP3caused robust and early changes in endothelial cells and pericytes of vessels in the PDTT xenograft model. Vascular density decreased and vascular sprouting was suppressed with treatment of FP3. Pericytes did not degenerate to the same extent as endothelial cells, and those on surviving tumor vessels acquired a more normal phenotype.
     Conclusions:(1) A PDTT xenograft model of gastric carcinoma has been established. It provides an appropriate model for personalized cancer therapeutic regimen selection as well as testing of novel molecularly targeted agents.(2) Our results revealed that FP3has a direct and rapid antiangiogenic effect in tumor vessels, which was achieved mainly via regression of tumor vasculature, inhibition of new and recurrent vessel growth, and normalization of existing tumor vasculature.
     Section Ⅱ
     Purpose:(1) It was the aim of our study to establish PDTT xenograft models of colon carcinoma with lymphatic and hepatic metastasis useful for testing of a novel molecularly targeted agent, FP3.(2) Combining inhibition of VEGF by FP3and chemotherapy by capecitabine might act additive or synergistically.(3) Combining inhibition of VEGF by FP3and EGF signaling by cetuximab might act additive or synergistically.(4) The aim of this study is to investigate whether the heterogeneity in primary tumor and related metastases exists and whether such heterogeneity would result in different response to anti-EGFR and anti-VEGF therapies.
     Methods:(1) PDTT of primary colon carcinoma, lymphatic and hepatic metastases were used to create xenograft models. Hematoxylin and eosin staining, immunohistochemical staining, genome-wide gene expression analysis, pyrosequencing, qRT-PCR, and western blotting were used to determine the biological stability of the xenografts during serial transplantation compared with the original tumor tissues.(2) In this study, a series of PDTT xenograft models of primary colon carcinoma and lymphatic and hepatic metastases were established for assessment of the antitumor activity of FP3as a monotherapy and in combination with capecitabine. Tumorinoculated nude mice were treated with FP3, capecitabine, alone or in combination, after tumor growth was confirmed and volume and microvessel density in tumors were evaluated. Levels of VEGF, EGFR, and PCNA in the tumor were examined by immunohistonchamical staining, and levels of related cell signalling pathways proteins expression were examined by western blotting.(3) In this study, a series of PDTT xenograft models of primary colon carcinoma and lymphatic and hepatic metastases were established for assessment of the antitumor activity of FP3as a monotherapy and in combination with cetuximab. Tumorinoculated nude mice were treated with FP3, cetuximab, alone or in combination, after tumor growth was confirmed and volume and microvessel density in tumors were evaluated. Levels of VEGF, EGFR, and PCNA in the tumor were examined by immunohistonchamical staining, and levels of related cell signalling pathways proteins were examined by western blotting.(4) In this study, we compared the heterogeneity in primary colon cancer and its corresponding lymphatic and hepatic metastases, focusing on the cell signalling pathways proteins using the methods of immunohistochemical staining and western blotting, the gene status of KRAS using pyrosequencing, and genome-wide gene expression using GeneChip HGU133Plus2.0expression arrays. To investigate whether such heterogeneity would result in different response to anti-EGFR and anti-VEGF therapies, we further evaluate the therapy response of cetuximab in combination with bevacizumab in primary colon cancer and its corresponding lymphatic and hepatic metastases by establishing PDTT xenograft models based on the same tissue samples from above mentioned three tumor sites.
     Results:(1) Early passages of the PDTT xenograft models of primary colon carcinoma, lymphatic and hepatic metastases revealed a high degree of similarity with the original clinical tumor samples with regard to histology, immunohistochemistry, genes expression, mutation status, mRNA expression as well as proteins expression.(2) FP3and FP3in combination with capecitabine showed significant antitumor activity as a monotherapy in three xenograft models (primary colon carcinoma, lymphatic metastasis, and hepatic metastasis). The microvessel density in tumor tissues treated with FP3and FP3in combination with capecitabine was lower than that of the control. Antitumor activity of FP3in combination with capecitabine was significantly higher than that of each agent alone in three xenograft models (primary colon carcinoma, lymphatic metastasis, and hepatic metastasis).(3) FP3and FP3in combination with cetuximab showed significant antitumor activity as a monotherapy in three xenograft models (primary colon carcinoma, lymphatic metastasis, and hepatic metastasis). The microvessel density in tumor tissues treated with FP3and FP3in combination with cetuximab was lower than that of the control. Antitumor activity of FP3in combination with cetuximab was significantly higher than that of each agent alone in three xenograft models (primary colon carcinoma, lymphatic metastasis, and hepatic metastasis).(4) The expressions of EGFR, VEGF, Akt/pAkt, ERK/pERK, MAPK/pMAPK, and mTOR/pmTOR and the genome-wide gene expression were different in primary colon cancer and matched lymphatic and hepatic metastases. Our results demonstrate that primary colon cancer and its corresponding lymphatic and hepatic metastases have different response rate to anti-EGFR and anti-VEGF therapies.
     Conclusions:(1) In this study, PDTT xenograft models of colon carcinoma with lymphatic and hepatic metastasis have been successfully established. They provide appropriate models for testing of novel molecularly targeted agents.(2) This study indicated that addition of FP3to capecitabine significantly improved tumor growth inhibition in a series of PDTT xenograft models of primary colon carcinoma and lymphatic and hepatic metastases.(3) This study indicated that addition of FP3to cetuximab significantly improved tumor growth inhibition in a series of PDTT xenograft models of primary colon carcinoma and lymphatic and hepatic metastases with wide-type KRAS gene status. Combination anti-VEGF and anti-EGFR therapy may represent a novel therapeutic strategy for the management of colon carcinoma.(4) Our results indicate that the heterogeneity in primary colon cancer and its corresponding lymphatic and hepatic metastases would result in difference in response to double-inhibition of EGFR and VEGF. PDTT xenograft model could be an ideal in vivo tool to clear whether the primary tumors and corresponding metastases have different response to the same anticancer drugs.
引文
[1]Morton CL, Houghton PJ. Establishment of human tumor xenografts in immunodeficient mice. Nat Protoc.2007;2(2):247-50.
    [2]Voskoglou-Nomikos T, Pater JL, Seymour L. Clinical predictive value of the in vitro cell line, human xenograft, and mouse allograft preclinical cancer models. Clin Cancer Res.2003;9(11):4227-39.
    [3]Johnson JI, Decker S, Zaharevitz D, Rubinstein LV, Venditti JM, Schepartz S, Kalyandrug S, Christian M, Arbuck S, Hollingshead M, Sausville EA. Relationships between drug activity in NCI preclinical in vitro and in vivo models and early clinical trials. Br J Cancer.2001;84(10):1424-31.
    [4]Sausville EA, Burger AM. Contributions of human tumor xenografts to anticancer drug development. Cancer Res.2006;66(7):3351-4.
    [5]Bhowmick NA, Neilson EG, Moses HL. Stromal fibroblasts in cancer initiation and progression. Nature.2004 Nov 18;432(7015):332-7.
    [6]Boven E, Winograd B, Berger DP, Dumont MP, Braakhuis BJ, Fodstad O, Langdon S, Fiebig HH. Phase II preclinical drug screening in human tumor xenografts:a first European multicenter collaborative study. Cancer Res. 1992;52(21):5940-7.
    [7]Huynh H, Soo KC, Chow PK, Panasci L, Tran E. Xenografts of human hepatocellular carcinoma:a useful model for testing drugs. Clin Cancer Res. 2006;12(14Pt1):4306-14.
    [8]Rubio-Viqueira B, Jimeno A, Cusatis G, Zhang X, Iacobuzio-Donahue C, Karikari C, Shi C, Danenberg K, Danenberg PV, Kuramochi H, Tanaka K, Singh S, Salimi-Moosavi H, Bouraoud N, Amador ML, Altiok S, Kulesza P, Yeo C, Messersmith W, Eshleman J, Hruban RH, Maitra A, Hidalgo M. An in vivo platform for translational drug development in pancreatic cancer. Clin Cancer Res.2006; 12(15):4652-61.
    [9]Khoury MJ, Berg A, Coates R, Evans J, Teutsch SM, Bradley LA.The evidence dilemma in genomic medicine. Health Aff (Millwood).2008;27(6):1600-11.
    [10]Vogel CL, Cobleigh MA, Tripathy D, Gutheil JC, Harris LN, Fehrenbacher L, Slamon DJ, Murphy M, Novotny WF, Burchmore M, Shak S, Stewart SJ, Press M. Efficacy and safety of trastuzumab as a single agent in first-line treatment of HER2-overexpressing metastatic breast cancer. J Clin Oncol.2002;20(3):719-26.
    [11]Ross JS, Fletcher JA, Linette GP, Stec J, Clark E, Ayers M, Symmans WF, Pusztai L, Bloom KJ. The Her-2/neu gene and protein in breast cancer 2003: biomarker and target of therapy. Oncologist.2003;8(4):307-25.
    [12]Early Breast Cancer Trialists'Collaborative Group (EBCTCG). Effects of chemotherapy and hormonal therapy for early breast cancer on recurrence and 15-year survival:an overview of the randomised trials. Lancet.2005; 365(9472): 1687-717.
    [13]Allegra CJ, Jessup JM, Somerfield MR, Hamilton SR, Hammond EH, Hayes DF, McAllister PK, Morton RF, Schilsky RL. American Society of Clinical Oncology provisional clinical opinion:testing for KRAS gene mutations in patients with metastatic colorectal carcinoma to predict response to anti-epidermal growth factor receptor monoclonal antibody therapy. J Clin Oncol.2009;27(12):2091-6.
    [14]Pao W, Miller VA. Epidermal growth factor receptor mutations, small-molecule kinase inhibitors, and non-small-cell lung cancer:current knowledge and future directions. J Clin Oncol.2005;23(11):2556-68.
    [15]Eberhard DA, Johnson BE, Amler LC, Goddard AD, Heldens SL, Herbst RS, Ince WL, Janne PA, Januario T, Johnson DH, Klein P, Miller VA, Ostland MA, Ramies DA, Sebisanovic D, Stinson JA, Zhang YR, Seshagiri S, Hillan KJ. Mutations in the epidermal growth factor receptor and in KRAS are predictive and prognostic indicators in patients with non-small-cell lung cancer treated with chemotherapy alone and in combination with erlotinib. J Clin Oncol.2005; 23(25):5900-9.
    [16]Bell DW, Lynch TJ, Haserlat SM, Harris PL, Okimoto RA, Brannigan BW, Sgroi DC, Muir B, Riemenschneider MJ, Iacona RB, Krebs AD, Johnson DH, Giaccone G, Herbst RS, Manegold C, Fukuoka M, Kris MG, Baselga J, Ochs JS, Haber DA. Epidermal growth factor receptor mutations and gene amplification in non-small-cell lung cancer:molecular analysis of the IDEAL/INTACT gefitinib trials. J Clin Oncol.2005;23(31):8081-92.
    [17]Goetz MP, Rae JM, Suman VJ, Safgren SL, Ames MM, Visscher DW, Reynolds C, Couch FJ, Lingle WL, Flockhart DA, Desta Z, Perez EA, Ingle JN. Pharmacogenetics of tamoxifen biotransformation is associated with clinical outcomes of efficacy and hot flashes. J Clin Oncol.2005;23(36):9312-8.
    [18]Goetz MP, Suman VJ, Ingle JN, Nibbe AM, Visscher DW, Reynolds CA, Lingle WL, Erlander M, Ma XJ, Sgroi DC, Perez EA, Couch FJ. A two-gene expression ratio of homeobox 13 and interleukin-17B receptor for prediction of recurrence and survival in women receiving adjuvant tamoxifen. Clin Cancer Res.2006; 12(7 Pt 1):2080-7.
    [19]Jin Y, Desta Z, Stearns V, Ward B, Ho H, Lee KH, Skaar T, Storniolo AM, Li L, Araba A, Blanchard R, Nguyen A, Ullmer L, Hayden J, Lemler S, Weinshilboum RM, Rae JM, Hayes DF, Flockhart DA. CYP2D6 genotype, antidepressant use, and tamoxifen metabolism during adjuvant breast cancer treatment. J Natl Cancer Inst.2005;97(1):30-9.
    [20]Massarweh S, Osborne CK, Creighton CJ, Qin L, Tsimelzon A, Huang S, Weiss H, Rimawi M, Schiff R. Tamoxifen resistance in breast tumors is driven by growth factor receptor signaling with repression of classic estrogen receptor genomic function. Cancer Res.2008;68(3):826-33.
    [21]Overdevest JB, Theodorescu D, Lee JK. Utilizing the molecular gateway:the path to personalized cancer management. Clin Chem.2009;55(4):684-97.
    [22]van Schaik RH. CYP450 pharmacogenetics for personalizing cancer therapy. Drug Resist Updat.2008; 11 (3):77-98.
    [23]Ratain MJ. From bedside to bench to bedside to clinical practice:an odyssey with irinotecan. Clin Cancer Res.2006; 12(6):1658-60.
    [24]Maitland ML, Vasisht K, Ratain MJ. TPMT, UGT1A1 and DP YD:genotyping to ensure safer cancer therapy? Trends Pharmacol Sci.2006;27(8):432-7.
    [25]Iyer L, King CD, Whitington PF, Green MD, Roy SK, Tephly TR, Coffman BL, Ratain MJ. Genetic predisposition to the metabolism of irinotecan (CPT-11). Role of uridine diphosphate glucuronosyltransferase isoform 1A1 in the glucuronidation of its active metabolite (SN-38) in human liver microsomes. J Clin Invest.1998;101(4):847-54.
    [26]Schwab M, Zanger UM, Marx C, Schaeffeler E, Klein K, Dippon J, Kerb R, Blievernicht J, Fischer J, Hofmann U, Bokemeyer C, Eichelbaum M; German 5-FU Toxicity Study Group. Role of genetic and nongenetic factors for fluorouracil treatment-related severe toxicity:a prospective clinical trial by the German 5-FU Toxicity Study Group. J Clin Oncol. 2008;26(13):2131-8.
    [27]Wei X, Elizondo G, Sapone A, McLeod HL, Raunio H, Fernandez-Salguero P, Gonzalez FJ. Characterization of the human dihydropyrimidine dehydrogenase gene. Genomics.1998;51(3):391-400.
    [28]Van Kuilenburg AB, Meinsma R, Zoetekouw L, Van Gennip AH. Increased risk of grade IV neutropenia after administration of 5-fluorouracil due to a dihydropyrimidine dehydrogenase deficiency:high prevalence of the IVS14+1g>a mutation. Int J Cancer.2002;101(3):253-8.
    [29]Yen JL, McLeod HL. Should DPD analysis be required prior to prescribing fluoropyrimidines? Eur J Cancer.2007;43(6):1011-6.
    [30]Marsh S. Thymidylate synthase pharmacogenetics. Invest New Drugs.2005; 23(6):-533-7.
    [31]Etienne-Grimaldi MC, Francoual M, Formento JL, Milano G. Methylenetetrahydrofolate reductase (MTHFR) variants and fluorouracil-based treatments incolorectal cancer. Pharmacogenomics.2007;8(11):1561-6.
    [32]Sadee W, Dai Z. Pharmacogenetics/genomics and personalized medicine. Hum Mol Genet.2005;14(2):R207-14.
    [33]Petros WP, Evans WE. Pharmacogenomics in cancer therapy:is host genome variability important? Trends Pharmacol Sci.2004;25(9):457-64.
    [34]Yong WP, Innocenti F. Translation of pharmacogenetic knowledge into cancer therapeutics. Clin Adv Hematol Oncol.2007;5(9):698-706.
    [35]Stanulla M, Schaeffeler E, Flohr T, Cario G, Schrauder A, Zimmermann M, Welte K, Ludwig WD, Bartram CR, Zanger UM, Eichelbaum M, Schrappe M, Schwab M. Thiopurine methyltransferase (TPMT) genotype and early treatment response to mercaptopurine in childhood acute lymphoblastic leukemia. JAMA. 2005;293(12):1485-9.
    [36]McLeod HL, Siva C. The thiopurine S-methyltransferase gene locus implications for clinical pharmacogenomics. Pharmacogenomics.2002; 3(1): 89-98.
    [37]Schaeffeler E, Fischer C, Brockmeier D, Wernet D, Moerike K, Eichelbaum M, Zanger UM, Schwab M. Comprehensive analysis of thiopurine S-methyltransferase phenotype-genotype correlation in a large population of German-Caucasians and identification of novel TPMT variants. Pharmacogenetics.2004; 14(7):407-17.
    [38]van den Akker-van Marie ME, Gurwitz D, Detmar SB, Enzing CM, Hopkins MM, Gutierrez de Mesa E, Ibarreta D. Cost-effectiveness of pharmacogenomics in clinical practice:a case study of thiopurine methyltransferase genotyping in acute lymphoblastic leukemia in Europe. Pharmacogenomics.2006;7(5):783-92.
    [39]Hartford CM, Dolan ME. Identifying genetic variants that contribute to chemotherapy-induced cytotoxicity. Pharmacogenomics.2007;8(9):1159-68.
    [40]Zhou S. Clinical pharmacogenomics of thiopurine S-methyltransferase. Curr Clin Pharmacol.2006;1(1):119-28.
    [41]Davies SM. Pharmacogenetics, pharmacogenomics and personalized medicine: are we there yet? Hematology Am Soc Hematol Educ Program.2006:111-7.
    [42]Krause DS, Van Etten RA. Tyrosine kinases as targets for cancer therapy. N Engl J Med.2005;353(2):172-87.
    [43]Druker BJ. David A. Karnofsky Award lecture. Imatinib as a paradigm of targeted therapies. J Clin Oncol.2003;21(23 Suppl):239s-245s.
    [44]Druker BJ, Talpaz M, Resta DJ, Peng B, Buchdunger E, Ford JM, Lydon NB, Kantarjian H, Capdeville R, Ohno-Jones S, Sawyers CL. Efficacy and safety of a specific inhibitor of the BCR-ABL tyrosine kinase in chronic myeloid leukemia. N Engl J Med.2001;344(14):1031-7.
    [45]Bokemeyer C, Bondarenko I, Hartmann JT, De Braud FG, Volovat C, Nippgen J, Stroh C, Celik I, Koralewski P. KRAS status and efficacy of first-line treatment of patients with metastatic colorectal cancer (mCRC) with FOLFOX with or without cetuximab:The OPUS experience. J Clin Oncol 26:2008 (May 20 suppl; abstr 4000).
    [46]De Roock W, Piessevaux H, De Schutter J, Janssens M, De Hertogh G, Personeni N, Biesmans B, Van Laethem JL, Peeters M, Humblet Y, Van Cutsem E, Tejpar S. KRAS wild-type state predicts survival and is associated to early radiological response in metastatic colorectal cancer treated with cetuximab. Ann Oncol. 2008;19(3):508-15.
    [47]Jin KT, He KF, Li GL, Teng LS. Personalized cancer therapy using a patient-derived tumor tissue xenograft model:a translational field worthy of exploring further? Pers Med.2010;7(5):597-606.
    [48]Arnerlov C, Emdin SO, Cajander S, Bengtsson NO, Tavelin B, Roos G. Intratumoral variations in DNA ploidy and s-phase fraction in human breast cancer. Anal Cell Pathol.2001;23(1):21-8.
    [49]Glockner S, Buurman H, Kleeberger W, Lehmann U, Kreipe H. Marked intratumoral heterogeneity of c-myc and cyclinD1 but not of c-erbB2 amplification in breast cancer. Lab Invest.2002;82(10):1419-26.
    [50]Benetkiewicz M, Piotrowski A, Diaz De Stahl T, Jankowski M, Bala D, Hoffman J, Srutek E, Laskowski R, Zegarski W, Dumanski JP. Chromosome 22 array-CGH profiling of breast cancer delimited minimal common regions of genomic imbalances and revealed frequent intra-tumoral genetic heterogeneity. Int J Oncol.2006;29(4):935-45.
    [51]Hanna W, Nofech-Mozes S, Kahn HJ. Intratumoral heterogeneity of HER2/neu in breast cancer--a rare event. Breast J.2007; 13(2):122-9.
    [52]Brunelli M, Manfrin E, Martignoni G, Miller K, Remo A, Reghellin D, Bersani S, Gobbo S, Eccher A, Chilosi M, Bonetti F. Genotypic intratumoral heterogeneity in breast carcinoma with HER2/neu amplification:evaluation according to ASCO/CAP criteria. Am J Clin Pathol.2009;131(5):678-82.
    [53]Barry WT, Kernagis DN, Dressman HK, Griffis RJ, Hunter JD, Olson JA, Marks JR, Ginsburg GS, Marcom PK, Nevins JR, Geradts J, Datto MB. Intratumor heterogeneity and precision of microarray-based predictors of breast cancer biology and clinical outcome. J Clin Oncol.2010;28(13):2198-206.
    [54]Chen C, Peng J, Xia H, Wu Q, Zeng L, Xu H, Tang H, Zhang Z, Zhu X, Pang D, Li Y. Quantum-dot-based immunofluorescent imaging of HER2 and ER provides new insights into breast cancer heterogeneity. Nanotechnology.2010; 21(9): 095101.
    [55]Cottu PH, Asselah J, Lae M, Pierga JY, Dieras V, Mignot L, Sigal-Zafrani B, Vincent-Salomon A. Intratumoral heterogeneity of HER2/neu expression and its consequences for the management of advanced breast cancer. Ann Oncol. 2008;19(3):595-7.
    [56]Lyng MB, Laenkholm AV, Pallisgaard N, Vach W, Knoop A, Bak M, Ditzel HJ. Intratumor genetic heterogeneity of breast carcinomas as determined by fine needle aspiration and TaqMan low density array. Cell Oncol.2007;29(5):361-72.
    [57]Sayagues JM, Abad Mdel M, Melchor HB, Gutierrez ML, Gonzalez-Gonzalez M, Jensen E, Bengoechea O, Fonseca E, Orfao A, Munoz-Bellvis L. Intratumoural cytogenetic heterogeneity of sporadic colorectal carcinomas suggests several pathways to liver metastasis. J Pathol.2010;221(3):308-19.
    [58]Losi L, Baisse B, Bouzourene H, Benhattar J. Evolution of intratumoral genetic heterogeneity during colorectal cancer progression. Carcinogenesis.2005; 26(5): 916-22.
    [59]Shen L, Toyota M, Kondo Y, Lin E, Zhang L, Guo Y, Hernandez NS, Chen X, Ahmed S, Konishi K, Hamilton SR, Issa JP. Integrated genetic and epigenetic analysis identifies three different subclasses of colon cancer. Proc Natl Acad Sci U S A.2007; 104(47):18654-9.
    [60]Bartos JD, Stoler DL, Matsui S, Swede H, Willmott LJ, Sait SN, Petrelli NJ, Anderson GR. Genomic heterogeneity and instability in colorectal cancer: spectral karyotyping, glutathione transferase-M1 and ras. Mutat Res.2004; 568(2):283-92.
    [61]Half E, Broaddus R, Danenberg KD, Danenberg PV, Ayers GD, Sinicrope FA. HER-2 receptor expression, localization, and activation in colorectal cancer cell lines and human tumors. Int J Cancer.2004;108(4):540-8.
    [62]Garcia JM, Rodriguez R, Silva J, Munoz C, Dominguez G, Silva JM, Carcereny E, Provencio M, Espana P, Bonilla F. Intratumoral heterogeneity in microsatellite alterations in BRCA1 and PTEN regions in sporadic colorectal cancer. Ann Surg Oncol.2003; 10(8):876-81.
    [63]Beau-Faller M, Weber JC, Schneider A, Guerin E, Gasser B, Ducrocq X, Jaeck D, Wihlm JM, Quoix E, Gaub MP. Genetic heterogeneity in lung and colorectal carcinoma as revealed by microsatellite analysis in plasma or tumor tissue DNA. Cancer.2003;97(9):2308-17.
    [64]Whitehall VL, Wynter CV, Walsh MD, Simms LA, Purdie D, Pandeya N, Young J, Meltzer SJ, Leggett BA, Jass JR. Morphological and molecular heterogeneity within nonmicrosatellite instability-high colorectal cancer. Cancer Res. 2002;62(21):6011-4.
    [65]Lassmann S, Bauer M, Soong R, Schreglmann J, Tabiti K, Nahrig J, Ruger R, Hofler H, Werner M. Quantification of CK20 gene and protein expression in colorectal cancer by RT-PCR and immunohistochemistry reveals inter-and intratumour heterogeneity. J Pathol.2002; 198(2):198-206.
    [66]Maekawa M, Sugano K, Ushiama M, Fukayama N, Nomoto K, Kashiwabara H, Fujita S, Kakizoe T. Heterogeneity of DNA methylation status analyzed by bisulfite-PCR-SSCP and correlation with clinico-pathological characteristics in colorectal cancer. Clin Chem Lab Med.2001;39(2):121-8.
    [67]Kuwai T, Nakamura T, Kim SJ, Sasaki T, Kitadai Y, Langley RR, Fan D, Hamilton SR, Fidler IJ. Intratumoral heterogeneity for expression of tyrosine kinase growth factor receptors in human colon cancer surgical specimens and orthotopic tumors. Am J Pathol.2008;172(2):358-66.
    [68]Blackhall FH, Pintilie M, Wigle DA, Jurisica I, Liu N, Radulovich N, Johnston MR, Keshavjee S, Tsao MS. Stability and heterogeneity of expression profiles in lung cancer specimens harvested following surgical resection. Neoplasia. 2004;6(6):761-7.
    [69]Gomez de la Camara A, Lopez-Encuentra A, Ferrando P; Bronchogenic Carcinoma Cooperative Group of the Spanish Society of Pneumolody and Thoracic Surgery (GCCB-S). Heterogeneity of prognostic profiles in non-small cell lung cancer:too many variables but a few relevant. Eur J Epidemiol. 2005;20(11):907-14.
    [70]Perner S, Demichelis F, Beroukhim R, Schmidt FH, Mosquera JM, Setlur S, Tchinda J, Tomlins SA, Hofer MD, Pienta KG, Kuefer R, Vessella R, Sun XW, Meyerson M, Lee C, Sellers WR, Chinnaiyan AM, Rubin MA. TMPRSS2:ERG fusion-associated deletions provide insight into the heterogeneity of prostate cancer. Cancer Res.2006;66(17):8337-41.
    [71]Krause FS, Feil G, Bichler KH, Schrott KM, Akcetin ZY, Engehausen DG. Heterogeneity in prostate cancer:prostate specific antigen (PSA) and DNA cytophotometry. Anticancer Res.2005;25(3A):1783-5.
    [72]Chau CH, Figg WD. Molecular and phenotypic heterogeneity of metastatic prostate cancer. Cancer Biol Ther.2005;4(2):166-7.
    [73]Walsh PC. Heterogeneity of genetic alterations in prostate cancer:evidence of the complex nature of the disease. J Urol.2002; 168(4 Pt 1):1635-6.
    [74]Nwosu V, Carpten J, Trent JM, Sheridan R. Heterogeneity of genetic alterations in prostate cancer:evidence of the complex nature of the disease. Hum Mol Genet.2001;10(20):2313-8.
    [75]Cooke SL, Ng CK, Melnyk N, Garcia MJ, Hardcastle T, Temple J, Langdon S, Huntsman D, Brenton JD. Genomic analysis of genetic heterogeneity and evolution in high-grade serous ovarian carcinoma. Oncogene. 2010;29(35):4905-13.
    [76]Gershenson DM. The heterogeneity of epithelial ovarian cancer:getting it right. Cancer.2010;116(6):1400-2.
    [77]Bast RC Jr, Hennessy B, Mills GB. The biology of ovarian cancer:new opportunities for translation. Nat Rev Cancer.2009;9(6):415-28.
    [78]McAlpine JN, Eisenkop SM, Spirtos NM. Tumor heterogeneity in ovarian cancer as demonstrated by in vitro chemoresistance assays. Gynecol Oncol. 2008;110(3):360-4.
    [79]Woloszynska-Read A, Mhawech-Fauceglia P, Yu J, Odunsi K, Karpf AR. Intertumor and intratumor NY-ESO-1 expression heterogeneity is associated with promoter-specific and global DNA methylation status in ovarian cancer. Clin Cancer Res.2008;14(11):3283-90.
    [80]Jochumsen KM, Tan Q, Helund B, Kruse TA, Mogensen O. Gene expression in epithelial ovarian cancer:a study of intratumor heterogeneity. Int J Gynecol Cancer.2007;17(5):979-85.
    [81]Khalique L, Ayhan A, Weale ME, Jacobs IJ, Ramus SJ, Gayther SA. Genetic intra-tumour heterogeneity in epithelial ovarian cancer and its implications for molecular diagnosis of tumours. J Pathol.2007;211(3):286-95.
    [82]Pieretti M, Hopenhayn-Rich C, Khattar NH, Cao Y, Huang B, Tucker TC. Heterogeneity of ovarian cancer:relationships among histological group, stage of disease, tumor markers, patient characteristics, and survival. Cancer Invest. 2002;20(1):11-23.
    [83]Manahan KJ, Taylor DD, Gercel-Taylor C. Clonal heterogeneity of p53 mutations in ovarian cancer. Int J Oncol.2001;19(2):387-94.
    [84]Nakamura T, Kuwai T, Kitadai Y, Sasaki T, Fan D, Coombes KR, Kim SJ, Fidler IJ. Zonal heterogeneity for gene expression in human pancreatic carcinoma. Cancer Res.2007;67(16):7597-604.
    [85]Harada T, Okita K, Shiraishi K, Kusano N, Kondoh S, Sasaki K. Interglandular cytogenetic heterogeneity detected by comparative genomic hybridization in pancreatic cancer. Cancer Res.2002;62(3):835-9.
    [86]Osterheld MC, Caron L, Demierre M, Laurini R, Bosman FT. DNA-ploidy in advanced gastric carcinoma is less heterogeneous than in early gastric cancer. Cell Oncol.2004;26(1-2):21-9.
    [87]Awata H, Hirose K, Yamaguchi A. Heterogeneity of apoptosis and proliferative activity within superficial spreading type early gastric cancer. Oncol Rep. 2002;9(1):153-8.
    [88]Saito A, Shimoda T, Nakanishi Y, Ochiai A, Toda G. Histologic heterogeneity and mucin phenotypic expression in early gastric cancer. Pathol Int. 2001;51(3):165-71.
    [89]Kobayashi K, Kitayama Y, Igarashi H, Yoshino G, Kobayashi T, Kazui T, Sugimura H. Intratumor heterogeneity of centromere numerical abnormality in multiple primary gastric cancers:application of fluorescence in situ hybridization with intermittent microwave irradiation on paraffin-embedded tissue. Jpn J Cancer Res.2000;91(11):1134-41.
    [90]Donahue MJ, Blakeley JO, Zhou J, Pomper MG, Laterra J, van Zijl PC. Evaluation of human brain tumor heterogeneity using multiple T1-based MRI signal weighting approaches. Magn Reson Med.2008;59(2):336-44.
    [91]Ren ZP, Olofsson T, Qu M, Hesselager G, Soussi T, Kalimo H, Smits A, Nister M. Molecular genetic analysis of p53 intratumoral heterogeneity in human astrocytic brain tumors. J Neuropathol Exp Neurol.2007;66(10):944-54.
    [92]Wyss MT, Hofer S, Hefti M, Bartschi E, Uhlmann C, Treyer V, Roelcke U. Spatial heterogeneity of low-grade gliomas at the capillary level:a PET study on tumor blood flow and amino acid uptake. J Nucl Med.2007;48(7):1047-52.
    [93]Pauliah M, Saxena V, Haris M, Husain N, Rathore RK, Gupta RK. Improved T(1)-weighted dynamic contrast-enhanced MRI to probe microvascularity and heterogeneity of human glioma. Magn Reson Imaging.2007;25(9):1292-9.
    [94]Andersson U, Malmer B, Bergenheim AT, Brannstrom T, Henriksson R. Heterogeneity in the expression of markers for drug resistance in brain tumors. Clin Neuropathol.2004;23(1):21-7.
    [95]Walker C, du Plessis DG, Joyce KA, Machell Y, Thomson-Hehir J, A1 Haddad SA, Broome JC, Warnke PC. Phenotype versus genotype in gliomas displaying inter- or intratumoral histological heterogeneity. Clin Cancer Res. 2003;9(13):4841-51.
    [96]Staller P. Genetic heterogeneity and chromatin modifiers in renal clear cell carcinoma. Future Oncol.2010;6(6):897-900.
    [97]Gong Y, Booser DJ, Sneige N. Comparison of HER-2 status determined by fluorescence in situ hybridization in primary and metastatic breast carcinoma. Cancer.2005;103(9):1763-9.
    [98]Gancberg D, Di Leo A, Cardoso F, Rouas G, Pedrocchi M, Paesmans M, Verhest A, Bernard-Marty C, Piccart MJ, Larsimont D. Comparison of HER-2 status between primary breast cancer and corresponding distant metastatic sites. Ann Oncol.2002;13(7):1036-43.
    [99]Regitnig P, Schippinger W, Lindbauer M, Samonigg H, Lax SF. Change of HER-2/neu status in a subset of distant metastases from breast carcinomas. J Pathol.2004;203(4):918-26.
    [100]Bozzetti C, Personeni N, Nizzoli R, Guazzi A, Flora M, Bassano C, Negri F, Martella E, Naldi N, Franciosi V, Cascinu S. HER-2/neu amplification by fluorescence in situ hybridization in cytologic samples from distant metastatic sites of breast carcinoma. Cancer.2003;99(5):310-5.
    [101]Tanner M, Jarvinen P, Isola J. Amplification of HER-2/neu and topoisomerase Ⅱalpha in primary and metastatic breast cancer. Cancer Res.2001;61(14):5345-8.
    [102]Tapia C, Savic S, Wagner U, Schonegg R, Novotny H, Grilli B, Herzog M, Barascud AD, Zlobec I, Cathomas G, Terracciano L, Feichter G, Bubendorf L. HER2 gene status in primary breast cancers and matched distant metastases. Breast Cancer Res.2007;9(3):R31.
    [103]Akcakanat A, Sahin A, Shaye AN, Velasco MA, Meric-Bernstam F. Comparison of Akt/mTOR signaling in primary breast tumors and matched distant metastases. Cancer.2008;112(11):2352-8.
    [104]Wu JM, Fackler MJ, Halushka MK, Molavi DW, Taylor ME, Teo WW, Griffin C, Fetting J, Davidson NE, De Marzo AM, Hicks JL, Chitale D, Ladanyi M, Sukumar S, Argani P. Heterogeneity of breast cancer metastases:comparison of therapeutic target expression and promoter methylation between primary tumors and their multifocal metastases. Clin Cancer Res.2008;14(7):1938-46.
    [105]Baldus SE, Schaefer KL, Engers R, Hartleb D, Stoecklein NH, Gabbert HE. Prevalence and heterogeneity of KRAS, BRAF, and PIK3CA mutations in primary colorectal adenocarcinomas and their corresponding metastases. Clin Cancer Res.2010;16(3):790-9.
    [106]Molinari F, Martin V, Saletti P, De Dosso S, Spitale A, Camponovo A, Bordoni A, Crippa S, Mazzucchelli L, Frattini M. Differing deregulation of EGFR and downstream proteins in primary colorectal cancer and related metastatic sites may be clinically relevant. Br J Cancer.2009; 100(7):1087-94.
    [107]Scartozzi M, Bearzi I, Berardi R, Mandolesi A, Fabris G, Cascinu S. Epidermal growth factor receptor (EGFR) status in primary colorectal tumors does not correlate with EGFR expression in related metastatic sites:implications for treatment with EGFR-targeted monoclonal antibodies. J Clin Oncol. 2004;22(23):4772-8.
    [108]Scartozzi M, Bearzi I, Berardi R, Mandolesi A, Pierantoni C, Cascinu S. Epidermal growth factor receptor (EGFR) downstream signalling pathway in primary colorectal tumours and related metastatic sites:optimising EGFR-targeted treatment options. Br J Cancer.2007;97(1):92-7.
    [109]Sasatomi E, Finkelstein SD, Woods JD, Bakker A, Swalsky PA, Luketich JD, Fernando HC, Yousem SA. Comparison of accumulated allele loss between primary tumor and lymph node metastasis in stage Ⅱ non-small cell lung carcinoma:implications for the timing of lymph node metastasis and prognostic value. Cancer Res.2002;62(9):2681-9.
    [110]Park S, Holmes-Tisch AJ, Cho EY, Shim YM, Kim J, Kim HS, Lee J, Park YH, Ahn JS, Park K, Janne PA, Ahn MJ. Discordance of molecular biomarkers associated with epidermal growth factor receptor pathway between primary tumors and lymph node metastasis in non-small cell lung cancer. J Thorac Oncol. 2009;4(7):809-15.
    [111]Jin KT, He KF, Teng F, Han N, Li GL, Xu ZZ, Teng LS. Heterogeneity in primary tumors and corresponding metastases:could it provide us with any hints to personalize cancer therapy? Pers Med.2011;8(2):175-82.
    [112]Monaco SE, Nikiforova MN, Cieply K, Teot LA, Khalbuss WE, Dacic S. A comparison of EGFR and KRAS status in primary lung carcinoma and matched metastases. Hum Pathol.2010;41(1):94-102.
    [113]Loupakis F, Pollina L, Stasi I, Ruzzo A, Scartozzi M, Santini D, Masi G, Graziano F, Cremolini C, Rulli E, Canestrari E, Funel N, Schiavon G, Petrini I, Magnani M, Tonini G, Campani D, Floriani I, Cascinu S, Falcone A. PTEN expression and KRAS mutations on primary tumors and metastases in the prediction of benefit from cetuximab plus irinotecan for patients with metastatic colorectal cancer. J Clin Oncol.2009;27(16):2622-9.
    [114]Hanahan D, Weinberg RA. Hallmarks of cancer:the next generation. Cell. 2011;144(5):646-74.
    [115]Rafii S, Lyden D, Benezra R, Hattori K, Heissig B. Vascular and haematopoietic stem cells:novel targets for anti-angiogenesis therapy? Nat Rev Cancer. 2002;2(11):826-35.
    [116]Shibuya M. Structure and function of VEGF/VEGF-receptor system involved in angiogenesis. Cell Struct Funct.2001;26(1):25-35.
    [117]Ferrara N. Vascular endothelial growth factor:basic science and clinical progress. EndocrRev.2004;25(4):581-611.
    [118]Hicklin DJ, Ellis LM. Role of the vascular endothelial growth factor pathway in tumor growth and angiogenesis. J Clin Oncol.2005;23(5):1011-27.
    [119]Ferrara N, Gerber HP, LeCouter J. The biology of VEGF and its receptors. Nat Med.2003;9(6):669-76.
    [120]Teng LS, Jin KT, He KF, Wang HH, Cao J, Yu DC. Advances in combination of antiangiogenic agents targeting VEGF-binding and conventional chemotherapy and radiation for cancer treatment. J Chin Med Assoc.2010;73(6):281-8.
    [121]Teng LS, Jin KT, He KF, Zhang J, Wang HH, Cao J. Clinical applications of VEGF-trap (aflibercept) in cancer treatment. J Chin Med Assoc. 2010;73(9):449-56.
    [122]Hurwitz H, Fehrenbacher L, Novotny W, Cartwright T, Hainsworth J, Heim W, Berlin J, Baron A, Griffing S, Holmgren E, Ferrara N, Fyfe G, Rogers B, Ross R, Kabbinavar F. Bevacizumab plus irinotecan, fluorouracil, and leucovorin for metastatic colorectal cancer. N Engl J Med.2004;350(23):2335-42.
    [123]Reck M, von Pawel J, Zatloukal P, Ramlau R, Gorbounova V, Hirsh V, Leigh1 N, Mezger J, Archer V, Moore N, Manegold C. Phase Ⅲ trial of cisplatin plus gemcitabine with either placebo or bevacizumab as first-line therapy for nonsquamous non-small-cell lung cancer:AVAil. J Clin Oncol. 2009;27(8):1227-34.
    [124]Yang JC, Haworth L, Sherry RM, Hwu P, Schwartzentruber DJ, Topalian SL, Steinberg SM, Chen HX, Rosenberg SA. A randomized trial of bevacizumab, an anti-vascular endothelial growth factor antibody, for metastatic renal cancer. N Engl J Med.2003;349(5):427-34.
    [125]Yang JC. Bevacizumab for patients with metastatic renal cancer:an update. Clin Cancer Res.2004;10(18 Pt 2):6367S-70S.
    [126]McMahon G. VEGF receptor signaling in tumor angiogenesis. Oncologist. 2000;5 Suppl 1:3-10.
    [127]Bergers G, Benjamin LE. Tumorigenesis and the angiogenic switch. Nat Rev Cancer.2003;3(6):401-10.
    [128]Giaccone G The potential of antiangiogenic therapy in non-small cell lung cancer. Clin Cancer Res.2007; 13(7):1961-70.
    [129]Jin K, He K, Teng F, Li G, Wang H, Han N, Xu Z, Cao J, Wu J, Yu D, Teng L. FP3:a novel VEGF blocker with antiangiogenic effects in vitro and antitumour effects in vivo. Clin Transl Oncol.2011;13(12):878-84.
    [130]Jin K, He K, Han N, Li G, Wang H, Xu Z, Jiang H, Zhang J, Teng L. Establishment of a PDTT xenograft model of gastric carcinoma and its application in personalized therapeutic regimen selection. Hepatogastroenterology.2011;58(110-111):1814-22.
    [131]Inai T, Mancuso M, Hashizume H, Baffert F, Haskell A, Baluk P, Hu-Lowe DD, Shalinsky DR, Thurston G, Yancopoulos GD, McDonald DM. Inhibition of vascular endothelial growth factor (VEGF) signaling in cancer causes loss of endothelial fenestrations, regression of tumor vessels, and appearance of basement membrane ghosts. Am J Pathol.2004;165(1):35-52.
    [132]Willett CG, Boucher Y, di Tomaso E, Duda DG, Munn LL, Tong RT, Chung DC, Sahani DV, Kalva SP, Kozin SV, Mino M, Cohen KS, Scadden DT, Hartford AC, Fischman AJ, Clark JW, Ryan DP, Zhu AX, Blaszkowsky LS, Chen HX, Shellito PC, Lauwers GY, Jain RK. Direct evidence that the VEGF-specific antibody bevacizumab has antivascular effects in human rectal cancer. Nat Med. 2004; 10(2):145-7.
    [133]Baffert F, Le T, Sennino B, Thurston G, Kuo CJ, Hu-Lowe D, McDonald DM. Cellular changes in normal blood capillaries undergoing regression after inhibition of VEGF signaling. Am J Physiol Heart Circ Physiol. 2006;290(2):H547-59.
    [134]Byrne AT, Ross L, Holash J, Nakanishi M, Hu L, Hofmann JI, Yancopoulos GD, Jaffe RB. Vascular endothelial growth factor-trap decreases tumor burden, inhibits ascites, and causes dramatic vascular remodeling in an ovarian cancer model. Clin Cancer Res.2003;9(15):5721-8.
    [135]Marangoni E, Vincent-Salomon A, Auger N, Degeorges A, Assayag F, de Cremoux P, de Plater L, Guyader C, De Pinieux G, Judde JG, Rebucci M, Tran-Perennou C, Sastre-Garau X, Sigal-Zafrani B, Delattre O, Dieras V, Poupon MR A new model of patient tumor-derived breast cancer xenografts for preclinical assays. Clin Cancer Res.2007; 13(13):3989-98.
    [136]Beckhove P, Schutz F, Diel IJ, Solomayer EF, Bastert G, Foerster J, Feuerer M, Bai L, Sinn HP, Umansky V, Schirrmacher V. Efficient engraftment of human primary breast cancer transplants in nonconditioned NOD/Scid mice. Int J Cancer.2003;105(4):444-53.
    [137]Loukopoulos P, Kanetaka K, Takamura M, Shibata T, Sakamoto M, Hirohashi S. Orthotopic transplantation models of pancreatic adenocarcinoma derived from cell lines and primary tumors and displaying varying metastatic activity. Pancreas.2004 Oct;29(3):193-203.
    [138]Jin K, Teng L, Shen Y, He K, Xu Z, Li G. Patient-derived human tumour tissue xenografts in immunodeficient mice:a systematic review. Clin Transl Oncol. 2010;12(7):473-80.
    [139]Angevin E, Glukhova L, Pavon C, Chassevent A, Terrier-Lacombe MJ, Goguel AF, Bougaran J, Ardouin P, Court BH, Perrin JL, Vallancien G, Triebel F, Escudier B. Human renal cell carcinoma xenografts in SCID mice: tumorigenicity correlates with a poor clinical prognosis. Lab Invest. 199979(7):879-88.
    [140]Fichtner I, Rolff J, Soong R, Hoffmann J, Hammer S, Sommer A, Becker M, Merk J. Establishment of patient-derived non-small cell lung cancer xenografts as models for the identification of predictive biomarkers. Clin Cancer Res. 2008;14(20):6456-68.
    [141]Hammer S, Sommer A, Fichtner I, Becker M, Rolff J, Merk J, Klar U, Hoffmann J. Comparative profiling of the novel epothilone, sagopilone, in xenografts derived from primary non-small cell lung cancer. Clin Cancer Res. 2010;16(5):1452-65.
    [142]Rajeshkumar NV, Tan AC, De Oliveira E, Womack C, Wombwell H, Morgan S, Warren MV, Walker J, Green TP, Jimeno A, Messersmith WA, Hidalgo M. Antitumor effects and biomarkers of activity of AZD0530, a Src inhibitor, in pancreatic cancer. Clin Cancer Res.2009;15(12):4138-46.
    [143]Langdon SP, Hendriks HR, Braakhuis BJ, Pratesi G, Berger DP, Fodstad O, Fiebig HH, Boven E. Preclinical phase II studies in human tumor xenografts:a European multicenter follow-up study. Ann Oncol.1994;5(5):415-22.
    [144]Huynh H, Chow PK, Palanisamy N, Salto-Tellez M, Goh BC, Lee CK, Somani A, Lee HS, Kalpana R, Yu K, Tan PH, Wu J, Soong R, Lee MH, Hor H, Soo KC, Toh HC, Tan P. Bevacizumab and rapamycin induce growth suppression in mouse models of hepatocellular carcinoma. J Hepatol.2008;49(1):52-60.
    [145]Huynh H, Chow PK, Ooi LL, Soo KC. A possible role for insulin-like growth factor-binding protein-3 autocrine/paracrine loops in controlling hepatocellular carcinoma cell proliferation. Cell Growth Differ.2002; 13(3):115-22.
    [146]Wang Y, Xue H, Cutz JC, Bayani J, Mawji NR, Chen WG, Goetz LJ, Hayward SW, Sadar MD, Gilks CB, Gout PW, Squire JA, Cunha GR, Wang YZ. An orthotopic metastatic prostate cancer model in SCID mice via grafting of a transplantable human prostate tumor line. Lab Invest.2005;85(11):1392-404.
    [147]Perez-Soler R, Kemp B, Wu QP, Mao L, Gomez J, Zeleniuch-Jacquotte A, Yee H, Lee JS, Jagirdar J, Ling YH. Response and determinants of sensitivity to paclitaxel in human non-small cell lung cancer tumors heterotransplanted in nude mice. Clin Cancer Res.20006(12):4932-8.
    [148]Paku S, Paweletz N. First steps of tumor-related angiogenesis. Lab Invest. 1991;65(3):334-46.
    [149]Holash J, Maisonpierre PC, Compton D, Bo land P, Alexander CR, Zagzag D, Yancopoulos GD, Wiegand SJ. Vessel cooption, regression, and growth in tumors mediated by angiopoietins and VEGF. Science.1999;284(5422):1994-8.
    [150]Dome B, Paku S, Somlai B, Timar J. Vascularization of cutaneous melanoma involves vessel co-option and has clinical significance. J Pathol. 2002;197(3):355-62.
    [151]Vermeulen PB, Colpaert C, Salgado R, Royers R, Hellemans H, Van Den Heuvel E, Goovaerts G, Dirix LY, Van Marck E. Liver metastases from colorectal adenocarcinomas grow in three patterns with different angiogenesis and desmoplasia. J Pathol.2001;195(3):336-42.
    [152]Paku S, Kopper L, Nagy P. Development of the vasculature in "pushing-type" liver metastases of an experimental colorectal cancer. Int J Cancer. 2005;115(6):893-902.
    [153]Kurz H, Burri PH, Djonov VG. Angiogenesis and vascular remodeling by intussusception:from form to function. News Physiol Sci.2003; 18:65-70.
    [154]Osawa M, Masuda M, Kusano K, Fujiwara K. Evidence for a role of platelet endothelial cell adhesion molecule-1 in endothelial cell mechanosignal transduction:is it a mechanoresponsive molecule? J Cell Biol. 2002;158(4):773-85.
    [155]Sundberg C, Nagy JA, Brown LF, Feng D, Eckelhoefer IA, Manseau EJ, Dvorak AM, Dvorak HF. Glomeruloid microvascular proliferation follows adenoviral vascular permeability factor/vascular endothelial growth factor-164 gene delivery. Am J Pathol.2001;158(3):1145-60.
    [156]Eguchi M, Masuda H, Asahara T. Endothelial progenitor cells for postnatal vasculogenesis. Clin ExpNephrol.2007;11(1):18-25.
    [157]Maniotis AJ, Folberg R, Hess A, Seftor EA, Gardner LM, Pe'er J, Trent JM, Meltzer PS, Hendrix MJ. Vascular channel formation by human melanoma cells in vivo and in vitro:vasculogenic mimicry. Am J Pathol.1999;155(3):739-52.
    [158]Hendrix MJ, Seftor EA, Hess AR, Seftor RE. Vasculogenic mimicry and tumour-cell plasticity:lessons from melanoma. Nat Rev Cancer. 2003;3(6):411-21.
    [159]Zhang M, Zhang J, Yan M, Li H, Yang C, Yu D. Recombinant anti-vascular endothelial growth factor fusion protein efficiently suppresses choridal neovasularization in monkeys. Mol Vis.2008;14:37-49.
    [160]Zhang M, Yu D, Yang C, Xia Q, Li W, Liu B, Li H. The pharmacology study of a new recombinant human VEGF receptor-fc fusion protein on experimental choroidal neovascularization. Pharm Res.2009;26(1):204-10.
    [161]Zhang M, Zhang J, Yan M, Luo D, Zhu W, Kaiser PK, Yu DC; KH902 Phase 1 Study Group. A phase 1 study of KH902, a vascular endothelial growth factor receptor decoy, for exudative age-related macular degeneration. Ophthalmology. 2011;118(4):672-8.
    [162]Mancuso MR, Davis R, Norberg SM, O'Brien S, Sennino B, Nakahara T, Yao VJ, Inai T, Brooks P, Freimark B, Shalinsky DR, Hu-Lowe DD, McDonald DM. Rapid vascular regrowth in tumors after reversal of VEGF inhibition. J Clin Invest.2006; 116(10):2610-21.
    [163]Morikawa S, Baluk P, Kaidoh T, Haskell A, Jain RK, McDonald DM. Abnormalities in pericytes on blood vessels and endothelial sprouts in tumors. Am J Pathol.2002; 160(3):985-1000.
    [164]Baluk P, Morikawa S, Haskell A, Mancuso M, McDonald DM. Abnormalities of basement membrane on blood vessels and endothelial sprouts in tumors. Am J Pathol.2003; 163(5):1801-15.
    [165]Jain RK. Normalizing tumor vasculature with anti-angiogenic therapy:a new paradigm for combination therapy. Nat Med.2001;7(9):987-9.
    [166]Jain RK. Normalization of tumor vasculature:an emerging concept in antiangiogenic therapy. Science.2005;307(5706):58-62.
    [167]Li Z, Jin K, Lan H, Teng L. Heterogeneity in primary colorectal cancer and its corresponding metastases:a potential reason of EGFR-targeted therapy failure? Hepatogastroenterology.2011;58(106):411-6.
    [168]Ogino S, Kawasaki T, Brahmandam M, Yan L, Cantor M, Namgyal C, Mino-Kenudson M, Lauwers GY, Loda M, Fuchs CS. Sensitive sequencing method for KRAS mutation detection by Pyrosequencing. J Mol Diagn. 2005;7(3):413-21.
    [169]Gibson UE, Heid CA, Williams PM. A novel method for real time quantitative RT-PCR. Genome Res.1996;6(10):995-1001.
    [170]Schneider S, Uchida K, Brabender J, Baldus SE, Yochim J, Danenberg KD, Salonga D, Chen P, Tsao-Wei D, Groshen S, Hoelscher AH, Schneider PM, Danenberg PV. Downregulation of TS, DPD, ERCC1, GST-Pi, EGFR, and HER2 gene expression after neoadjuvant three-modality treatment in patients with esophageal cancer. J Am Coll Surg.2005;200(3):336-44.
    [171]Huang J, Frischer JS, Serur A, Kadenhe A, Yokoi A, McCrudden KW, New T, O'Toole K, Zabski S, Rudge JS, Holash J, Yancopoulos GD, Yamashiro DJ, Kandel JJ. Regression of established tumors and metastases by potent vascular endothelial growth factor blockade. Proc Natl Acad Sci U S A. 2003;100(13):7785-90.
    [172]Baffert F, Thurston G, Rochon-Duck M, Le T, Brekken R, McDonald DM. Age-related changes in vascular endothelial growth factor dependency and angiopoietin-1-induced plasticity of adult blood vessels. Circ Res. 2004;94(7):984-92.
    [173]Ishikawa T, Utoh M, Sawada N, Nishida M, Fukase Y, Sekiguchi F, Ishitsuka H. Tumor selective delivery of 5-fluorouracil by capecitabine, a new oral fluoropyrimidine carbamate, in human cancer xenografts. Biochem Pharmacol. 1998;55(7):1091-7.
    [174]Miwa M, Ura M, Nishida M, Sawada N, Ishikawa T, Mori K, Shimma N, Umeda I, Ishitsuka H. Design of a novel oral fluoropyrimidine carbamate, capecitabine, which generates 5-fluorouracil selectively in tumours by enzymes concentrated in human liver and cancer tissue. Eur J Cancer.1998;34(8):1274-81.
    [175]Schiiller J, Cassidy J, Dumont E, Roos B, Durston S, Banken L, Utoh M, Mori K, Weidekamm E, Reigner B. Preferential activation of capecitabine in tumor following oral administration to colorectal cancer patients. Cancer Chemother Pharmacol.2000;45(4):291-7.
    [176]Ishikawa T, Sekiguchi F, Fukase Y, Sawada N, Ishitsuka H. Positive correlation between the efficacy of capecitabine and doxifluridine and the ratio of thymidine phosphorylase to dihydropyrimidine dehydrogenase activities in tumors in human cancer xenografts. Cancer Res.1998;58(4):685-90.
    [177]Ishitsuka H. Capecitabine:preclinical pharmacology studies. Invest New Drugs. 2000;18(4):343-54.
    [178]Ninomiya I, Terada I, Yoshizumi T, Takino T, Nagai N, Morita A, Fushida S, Nishimura G, Fujimura T, Ohta T, Miwa K. Anti-metastatic effect of capecitabine on human colon cancer xenografts in nude mouse rectum. Int J Cancer. 2004;112(1):135-42.
    [179]Van Cutsem E, Twelves C, Cassidy J, Allman D, Bajetta E, Boyer M, Bugat R, Findlay M, Frings S, Jahn M, McKendrick J, Osterwalder B, Perez-Manga G, Rosso R, Rougier P, Schmiegel WH, Seitz JF, Thompson P, Vieitez JM, Weitzel C, Harper P; Xeloda Colorectal Cancer Study Group. Oral capecitabine compared with intravenous fluorouracil plus leucovorin in patients with metastatic colorectal cancer:results of a large phase III study. J Clin Oncol. 2001;19(21):4097-106.
    [180]Hoff PM, Ansari R, Batist G, Cox J, Kocha W, Kuperminc M, Maroun J, Walde D, Weaver C, Harrison E, Burger HU, Osterwalder B, Wong AO, Wong R. Comparison of oral capecitabine versus intravenous fluorouracil plus leucovorin as first-line treatment in 605 patients with metastatic colorectal cancer:results of a randomized phase III study. J Clin Oncol.2001;19(8):2282-92.
    [181]Twelves C, Wong A, Nowacki MP, Abt M, Burris H 3rd, Carrato A, Cassidy J, Cervantes A, Fagerberg J, Georgoulias V, Husseini F, Jodrell D, Koralewski P, Kroning H, Maroun J, Marschner N, McKendrick J, Pawlicki M, Rosso R, Schuller J, Seitz JF, Stabuc B, Tujakowski J, Van Hazel G, Zaluski J, Scheithauer W. Capecitabine as adjuvant treatment for stage III colon cancer. N Engl J Med. 2005;352(26):2696-704.
    [182]Nishida M, Hino A, Mori K, Matsumoto T, Yoshikubo T, Ishitsuka H. Preparation of anti-human thymidine phosphorylase monoclonal antibodies useful for detecting the enzyme levels in tumor tissues. Biol Pharm Bull. 1996;19(11):1407-11.
    [183]Jin K, Li G, Cui B, Zhang J, Lan H, Han N, Xie B, Cao F, He K, Wang H, Xu Z, Teng L, Zhu T. Assessment of a novel VEGF targeted agent using patient-derived tumor tissue xenograft models of colon carcinoma with lymphatic and hepatic metastases. PLoS One.2011;6(12):e28384.
    [184]Sawada N, Ishikawa T, Fukase Y, Nishida M, Yoshikubo T, Ishitsuka H. Induction of thymidine phosphorylase activity and enhancement of capecitabine efficacy by taxol/taxotere in human cancer xenografts. Clin Cancer Res. 1998;4(4):1013-9.
    [185]Endo M, Shinbori N, Fukase Y, Sawada N, Ishikawa T, Ishitsuka H, Tanaka Y. Induction of thymidine phosphorylase expression and enhancement of efficacy of capecitabine or 5'-deoxy-5-fluorouridine by cyclophosphamide in mammary tumor models. Int J Cancer.1999;83(1):127-34.
    [186]Sawada N, Kondoh K, Mori K. Enhancement of capecitabine efficacy by oxaliplatin in human colorectal and gastric cancer xenografts. Oncol Rep. 2007;18(4):775-8.
    [187]Grothey A, Sargent D. Overall survival of patients with advanced colorectal cancer correlates with availability of fluorouracil, irinotecan, and oxaliplatin regardless of whether doublet or single-agent therapy is used first line. J Clin Oncol.2005;23(36):9441-2.
    [188]Koopman M, Antonini NF, Douma J, Wals J, Honkoop AH, Erdkamp FL, de Jong RS, Rodenburg CJ, Vreugdenhil G, Loosveld OJ, van Bochove A, Sinnige HA, Creemers GJ, Tesselaar ME, Slee PH, Werter MJ, Mol L, Dalesio O, Punt CJ. Sequential versus combination chemotherapy with capecitabine, irinotecan, and oxaliplatin in advanced colorectal cancer (CAIRO):a phase III randomised controlled trial. Lancet.2007;370(9582):135-42.
    [189]Guichard S, Hennebelle I, Bugat R, Canal P. Cellular interactions of 5-fluorouracil and the camptothecin analogue CPT-11 (irinotecan) in a human colorectal carcinoma cell line. Biochem Pharmacol.1998;55(5):667-76.
    [190]Inoue Y, Tanaka K, Hiro J, Yoshiyama S, Toiyama Y, Eguchi T, Miki C, Kusunoki M. In vitro synergistic antitumor activity of a combination of 5-fluorouracil and irinotecan in human colon cancer. Int J Oncol. 2006;28(2):479-86.
    [191]Tanaka K, Inoue Y, Hiro J, Yoshiyama S, Toiyama Y, Eguchi T, Miki C, Kusunoki M. Schedule-dependent cytotoxicity of 5-fluorouracil and irinotecan in p53 mutant human colon cancer. J Exp Clin Cancer Res.2007;26(2):241-51.
    [192]Rothenberg ML, Eckardt JR, Kuhn JG, Burris HA 3rd, Nelson J, Hilsenbeck SG, Rodriguez GI, Thurman AM, Smith LS, Eckhardt SG, Weiss GR, Elfring GL, Rinaldi DA, Schaaf LJ, Von Hoff DD. Phase Ⅱ trial of irinotecan in patients with progressive or rapidly recurrent colorectal cancer. J Clin Oncol. 1996; 14(4):1128-35.
    [193]Cunningham D, Pyrhonen S, James RD, Punt CJ, Hickish TF, Heikkila R, Johannesen TB, Starkhammar H, Topham CA, Awad L, Jacques C, Herait P. Randomised trial of irinotecan plus supportive care versus supportive care alone after fluorouracil failure for patients with metastatic colorectal cancer. Lancet. 1998;352(9138):1413-8.
    [194]Saltz LB, Cox JV, Blanke C, Rosen LS, Fehrenbacher L, Moore MJ, Maroun JA, Ackland SP, Locker PK, Pirotta N, Elfring GL, Miller LL. Irinotecan plus fluorouracil and leucovorin for metastatic colorectal cancer. Irinotecan Study Group. N Engl J Med.2000;343(13):905-14.
    [195]Warren RS, Yuan H, Matli MR, Gillett NA, Ferrara N. Regulation by vascular endothelial growth factor of human colon cancer tumorigenesis in a mouse model of experimental liver metastasis. J Clin Invest.1995;95(4):1789-97.
    [196]Ferrara N. The role of vascular endothelial growth factor in pathological angiogenesis. Breast Cancer Res Treat.1995;36(2):127-37.
    [197]Folkman J. Seminars in Medicine of the Beth Israel Hospital, Boston. Clinical applications of research on angiogenesis. N Engl J Med.1995;333(26):1757-63.
    [198]Gasparini G, Harris AL. Clinical importance of the determination of tumor angiogenesis in breast carcinoma:much more than a new prognostic tool. J Clin Oncol.1995;13(3):765-82.
    [199]Giantonio BJ, Levy DE, O'dwyer PJ, Meropol NJ, Catalano PJ, Benson AB 3rd; Eastern Cooperative Oncology Group. A phase Ⅱ study of high-dose bevacizumab in combination with irinotecan,5-fluorouracil, leucovorin, as initial therapy for advanced colorectal cancer:results from the Eastern Cooperative Oncology Group study E2200. Ann Oncol.2006;17(9):1399-403.
    [200]Cunningham D, Humblet Y, Siena S, Khayat D, Bleiberg H, Santoro A, Bets D, Mueser M, Harstrick A, Verslype C, Chau Ⅰ, Van Cutsem E. Cetuximab monotherapy and cetuximab plus irinotecan in irinotecan-refractory metastatic colorectal cancer. N Engl J Med.2004;351(4):337-45.
    [201]Saltz LB, Meropol NJ, Loehrer PJ Sr, Needle MN, Kopit J, Mayer RJ. Phase Ⅱ trial of cetuximab in patients with refractory colorectal cancer that expresses the epidermal growth factor receptor. J Clin Oncol.2004;22(7):1201-8.
    [202]Amado RG, Wolf M, Peeters M, Van Cutsem E, Siena S, Freeman DJ, Juan T, Sikorski R, Suggs S, Radinsky R, Patterson SD, Chang DD. Wild-type KRAS is required for panitumumab efficacy in patients with metastatic colorectal cancer. J Clin Oncol.2008;26(10):1626-34.
    [203]Cappuzzo F, Varella-Garcia M, Finocchiaro G, Skokan M, Gajapathy S, Carnaghi C, Rimassa L, Rossi E, Ligorio C, Di Tommaso L, Holmes AJ, Toschi L, Tallini G, Destro A, Roncalli M, Santoro A, Janne PA. Primary resistance to cetuximab therapy in EGFR FISH-positive colorectal cancer patients. Br J Cancer. 2008;99(1):83-9.
    [204]Moroni M, Veronese S, Benvenuti S, Marrapese G, Sartore-Bianchi A, Di Nicolantonio F, Gambacorta M, Siena S, Bardelli A. Gene copy number for epidermal growth factor receptor (EGFR) and clinical response to antiEGFR treatment in colorectal cancer:a cohort study. Lancet Oncol.2005;6(5):279-86.
    [205]Benvenuti S, Sartore-Bianchi A, Di Nicolantonio F, Zanon C, Moroni M, Veronese S, Siena S, Bardelli A. Oncogenic activation of the RAS/RAF signaling pathway impairs the response of metastatic colorectal cancers to anti-epidermal growth factor receptor antibody therapies. Cancer Res.2007;67(6):2643-8.
    [206]Foekens JA, Peters HA, Grebenchtchikov N, Look MP, Meijer-van Gelder ME, Geurts-Moespot A, van der Kwast TH, Sweep CG, Klijn JG. High tumor levels of vascular endothelial growth factor predict poor response to systemic therapy in advanced breast cancer. Cancer Res.2001;61(14):5407-14.
    [207]Gasparini G, Toi M, Gion M, Verderio P, Dittadi R, Hanatani M, Matsubara I, Vinante O, Bonoldi E, Boracchi P, Gatti C, Suzuki H, Tominaga T. Prognostic significance of vascular endothelial growth factor protein in node-negative breast carcinoma. J Natl Cancer Inst.1997;89(2):139-47.
    [208]Konecny GE, Meng YG, Untch M, Wang HJ, Bauerfeind I, Epstein M, Stieber P, Vernes JM, Gutierrez J, Hong K, Beryt M, Hepp H, Slamon DJ, Pegram MD. Association between HER-2/neu and vascular endothelial growth factor expression predicts clinical outcome in primary breast cancer patients. Clin Cancer Res.2004;10(5):1706-16.
    [209]Linderholm B, Grankvist K, Wilking N, Johansson M, Tavelin B, Henriksson R. Correlation of vascular endothelial growth factor content with recurrences, survival, and first relapse site in primary node-positive breast carcinoma after adjuvant treatment. J Clin Oncol.2000; 18(7):1423-31.
    [210]Gasparini G, Toi M, Miceli R, Vermeulen PB, Dittadi R, Biganzoli E, Morabito A, Fanelli M, Gatti C, Suzuki H, Tominaga T, Dirix LY, Gion M. Clinical relevance of vascular endothelial growth factor and thymidine phosphorylase in patients with node-positive breast cancer treated with either adjuvant chemotherapy or hormone therapy. Cancer J Sci Am.1999;5(2):101-11.
    [211]Verschraegen CF, Arias-Pulido H, Lee SJ, Movva S, Cerilli LA, Eberhardt S, Schmit B, Quinn R, Muller CY, Rabinowitz I, Purdy M, Snyder D, Bocklage T. Phase IB study of the combination of docetaxel, gemcitabine, and bevacizumab in patients with advanced or recurrent soft tissue sarcoma:the Axtell regimen. Ann Oncol.2011 Jul 11. [Epub ahead of print]
    [1]Fichtner I, Slisow W, Gill J, Becker M, Elbe B, Hillebrand T, Bibby M. Anticancer drug response and expression of molecular markers in early-passage xenotransplanted colon carcinomas. Eur J Cancer.2004;40(2):298-307.
    [2]Morton CL, Houghton PJ. Establishment of human tumor xenografts in immunodeficient mice. Nat Protoc.2007;2(2):247-50.
    [3]Voskoglou-Nomikos T, Pater JL, Seymour L. Clinical predictive value of the in vitro cell line, human xenograft, and mouse allograft preclinical cancer models. Clin Cancer Res.2003;9(11):4227-39.
    [4]Johnson JI, Decker S, Zaharevitz D, Rubinstein LV, Venditti JM, Schepartz S, Kalyandrug S, Christian M, Arbuck S, Hollingshead M, Sausville EA. Relationships between drug activity in NCI preclinical in vitro and in vivo models and early clinical trials. Br J Cancer.2001;84(10):1424-31.
    [5]Sausville EA, Burger AM. Contributions of human tumor xenografts to anticancer drug development. Cancer Res.2006;66(7):3351-4.
    [6]Bhowmick NA, Neilson EG, Moses HL. Stromal fibroblasts in cancer initiation and progression. Nature.2004;432(7015):332-7.
    [7]Shimosato Y, Kameya T, Nagai K, Hirohashi S, Koide T, Hayashi H, Nomura T. Transplantation of human tumors in nude mice. J Natl Cancer Inst. 1976;56(6):1251-60.
    [8]Fichtner I, Rolff J, Soong R, Hoffmann J, Hammer S, Sommer A, Becker M, Merk J. Establishment of patient-derived non-small cell lung cancer xenografts as models for the identification of predictive biomarkers. Clin Cancer Res. 2008;14(20):6456-68.
    [9]Rubio-Viqueira B, Jimeno A, Cusatis G, Zhang X, Iacobuzio-Donahue C, Karikari C, Shi C, Danenberg K, Danenberg PV, Kuramochi H, Tanaka K, Singh S, Salimi-Moosavi H, Bouraoud N, Amador ML, Altiok S, Kulesza P, Yeo C, Messersmith W, Eshleman J, Hruban RH, Maitra A, Hidalgo M. An in vivo platform for translational drug development in pancreatic cancer. Clin Cancer Res.2006; 12(15):4652-61.
    [10]Perez-Soler R, Kemp B, Wu QP, Mao L, Gomez J, Zeleniuch-Jacquotte A, Yee H, Lee JS, Jagirdar J, Ling YH. Response and determinants of sensitivity to paclitaxel in human non-small cell lung cancer tumors heterotransplanted in nude mice. Clin Cancer Res.2000;6(12):4932-8.
    [11]Huynh H, Soo KC, Chow PK, Panasci L, Tran E. Xenografts of human hepatocellular carcinoma:a useful model for testing drugs. Clin Cancer Res. 2006;12(14Pt1):4306-14.
    [12]Wang Y, Xue H, Cutz JC, Bayani J, Mawji NR, Chen WG, Goetz LJ, Hayward SW, Sadar MD, Gilks CB, Gout PW, Squire JA, Cunha GR, Wang YZ. An orthotopic metastatic prostate cancer model in SCID mice via grafting of a transplantable human prostate tumor line. Lab Invest.2005;85(11):1392-404.
    [13]Shu Q, Wong KK, Su JM, Adesina AM, Yu LT, Tsang YT, Antalffy BC, Baxter P, Perlaky L, Yang J, Dauser RC, Chintagumpala M, Blaney SM, Lau CC, Li XN. Direct orthotopic transplantation of fresh surgical specimen preserves CD 133+ tumor cells in clinically relevant mouse models of medulloblastoma and glioma. Stem Cells.2008;26(6):1414-24.
    [14]Cutz JC, Guan J, Bayani J, Yoshimoto M, Xue H, Sutcliffe M, English J, Flint J, LeRiche J, Yee J, Squire JA, Gout PW, Lam S, Wang YZ. Establishment in severe combined immunodeficiency mice of subrenal capsule xenografts and transplantable tumor lines from a variety of primary human lung cancers: potential models for studying tumor progression-related changes. Clin Cancer Res.2006; 12(13):4043-54.
    [15]Kim MP, Evans DB, Wang H, Abbruzzese JL, Fleming JB, Gallick GE. Generation of orthotopic and heterotopic human pancreatic cancer xenografts in immunodeficient mice. Nat Protoc.2009;4(11):1670-80.
    [16]Visonneau S, Cesano A, Torosian MH, Santoli D. Cell therapy of a highly invasive human breast carcinoma implanted in immunodeficient (SCID) mice. Clin Cancer Res.1997;3(9):1491-500.
    [17]Marangoni E, Vincent-Salomon A, Auger N, Degeorges A, Assayag F, de Cremoux P, de Plater L, Guyader C, De Pinieux G, Judde JG, Rebucci M, Tran-Perennou C, Sastre-Garau X, Sigal-Zafrani B, Delattre O, Dieras V, Poupon MR A new model of patient tumor-derived breast cancer xenografts for preclinical assays. Clin Cancer Res.2007;13(13):3989-98.
    [18]Beckhove P, Schutz F, Diel IJ, Solomayer EF, Bastert G, Foerster J, Feuerer M, Bai L, Sinn HP, Umansky V, Schirrmacher V. Efficient engraftment of human primary breast cancer transplants in nonconditioned NOD/Scid mice. Int J Cancer.2003;105(4):444-53.
    [19]Priolo C, Agostini M, Vena N, Ligon AH, Fiorentino M, Shin E, Farsetti A, Pontecorvi A, Sicinska E, Loda M. Establishment and genomic characterization of mouse xenografts of human primary prostate tumors. Am J Pathol. 2010;176(4):1901-13.
    [20]Zhao XM, Quan GB, Zhou GB, Hou YP, Zhu SE. Conventional freezing, straw, and open-pulled straw vitrification of mouse two pronuclear (2-PN) stage embryos. Anim Biotechnol.2007;18(3):203-12.
    [21]Seki S, Mazur P. Effect of warming rate on the survival of vitrified mouse oocytes and on the recrystallization of intracellular ice. Biol Reprod. 2008;79(4):727-37.
    [22]Martinez-Madrid B, Donnez J. Cryopreservation of intact human ovary with its vascular pedicle--or cryopreservation of hemiovaries? Hum Reprod. 2007;22(6):1795-6.
    [23]Bedaiwy MA, Falcone T. Ovarian tissue banking for cancer patients:reduction of post-transplantation ischaemic injury:intact ovary freezing and transplantation. Hum Reprod.2004;19(6):1242-4.
    [24]van Kempen LC, Ruiter DJ, van Muijen GN, Coussens LM. The tumor microenvironment:a critical determinant of neoplastic evolution. Eur J Cell Biol. 2003;82(11):539-48.
    [25]Giovanella BC, Stehlin JS Jr, Shepard RC, Williams LJ Jr. Correlation between response to chemotherapy of human tumors in patients and in nude mice. Cancer. 1983;52(7):1146-52.
    [26]Sakakibara T, Xu Y, Bumpers HL, Chen FA, Bankert RB, Arredondo MA, Edge SB, Repasky EA. Growth and metastasis of surgical specimens of human breast carcinomas in SCID mice. Cancer J Sci Am.1996;2(5):291-300.
    [27]Loukopoulos P, Kanetaka K, Takamura M, Shibata T, Sakamoto M, Hirohashi S. Orthotopic transplantation models of pancreatic adenocarcinoma derived from cell lines and primary tumors and displaying varying metastatic activity. Pancreas.2004;29(3):193-203.
    [28]Kolfschoten GM, Pinedo HM, Scheffer PG, Schluper HM, Erkelens CA, Boven E. Development of a panel of 15 human ovarian cancer xenografts for drug screening and determination of the role of the glutathione detoxification system. Gynecol Oncol.2000;76(3):362-8.
    [29]Press JZ, Kenyon JA, Xue H, Miller MA, De Luca A, Miller DM, Huntsman DG, Gilks CB, McAlpine JN, Wang YZ. Xenografts of primary human gynecological tumors grown under the renal capsule of NOD/SCID mice show genetic stability during serial transplantation and respond to cytotoxic chemotherapy. Gynecol Oncol.2008;110(2):256-64.
    [30]Lee CH, Xue H, Sutcliffe M, Gout PW, Huntsman DG, Miller DM, Gilks CB, Wang YZ. Establishment of subrenal capsule xenografts of primary human ovarian tumors in SCID mice:potential models. Gynecol Oncol. 2005;96(1):48-55.
    [31]Xu Y, Silver DF, Yang NP, Oflazoglu E, Hempling RE, Piver MS, Repasky EA. Characterization of human ovarian carcinomas in a SCID mouse model. Gynecol Oncol.1999;72(2):161-70.
    [32]Angevin E, Glukhova L, Pavon C, Chassevent A, Terrier-Lacombe MJ, Goguel AF, Bougaran J, Ardouin P, Court BH, Perrin JL, Vallancien G, Triebel F, Escudier B. Human renal cell carcinoma xenografts in SCID mice: tumorigenicity correlates with a poor clinical prognosis. Lab Invest. 1999;79(7):879-88.
    [33]Verschraegen CF, Hu W, Du Y, Mendoza J, Early J, Deavers M, Freedman RS, Bast RC Jr, Kudelka AP, Kavanagh JJ, Giovanella BC. Establishment and characterization of cancer cell cultures and xenografts derived from primary or metastatic Mullerian cancers. Clin Cancer Res.2003;9(2):845-52.
    [34]Schmidt KF, Ziu M, Schmidt NO, Vaghasia P, Cargioli TG, Doshi S, Albert MS, Black PM, Carroll RS, Sun Y. Volume reconstruction techniques improve the correlation between histological and in vivo tumor volume measurements in mouse models of human gliomas. J Neurooncol.2004;68(3):207-15.
    [35]Verstijnen CP, Arends JW, Moerkerk P, Schutte B, van der Linden E, Kuypers-Engelen B, Bosman FT. Culturing and xenografting of primary colorectal carcinoma cells:comparison of in vitro, and in vivo model and primary tumor. Anticancer Res.1988;8(6):1193-200.
    [36]Whiteford CC, Bilke S, Greer BT, Chen Q, Braunschweig TA, Cenacchi N, Wei JS, Smith MA, Houghton P, Morton C, Reynolds CP, Lock R, Gorlick R, Khanna C, Thiele CJ, Takikita M, Catchpoole D, Hewitt SM, Khan J. Credentialing preclinical pediatric xenograft models using gene expression and tissue microarray analysis. Cancer Res.2007;67(1):32-40.
    [37]Wei JS, Greer BT, Westermann F, Steinberg SM, Son CG, Chen QR, Whiteford CC, Bilke S, Krasnoselsky AL, Cenacchi N, Catchpoole D, Berthold F, Schwab M, Khan J. Prediction of clinical outcome using gene expression profiling and artificial neural networks for patients with neuroblastoma. Cancer Res. 2004;64(19):6883-91.
    [38]Son CG, Bilke S, Davis S, Greer BT, Wei JS, Whiteford CC, Chen QR, Cenacchi N, Khan J. Database of mRNA gene expression profiles of multiple human organs. Genome Res.2005;15(3):443-50.
    [39]Khanna C, Khan J, Nguyen P, Prehn J, Caylor J, Yeung C, Trepel J, Meltzer P, Helman L. Metastasis-associated differences in gene expression in a murine model of osteosarcoma. Cancer Res.2001;61(9):3750-9.
    [40]Hammer S, Sommer A, Fichtner I, Becker M, Rolff J, Merk J, Klar U, Hoffmann J. Comparative profiling of the novel epothilone, sagopilone, in xenografts derived from primary non-small cell lung cancer. Clin Cancer Res. 2010;16(5):1452-65.
    [41]Rajeshkumar NV, Tan AC, De Oliveira E, Womack C, Wombwell H, Morgan S, Warren MV, Walker J, Green TP, Jimeno A, Messersmith WA, Hidalgo M. Antitumor effects and biomarkers of activity of AZD0530, a Src inhibitor, in pancreatic cancer. Clin Cancer Res.2009;15(12):4138-46.
    [42]Maris JM, Courtright J, Houghton PJ, Morton CL, Gorlick R, Kolb EA, Lock R, Tajbakhsh M, Reynolds CP, Keir ST, Wu J, Smith MA. Initial testing of the VEGFR inhibitor AZD2171 by the pediatric preclinical testing program. Pediatr Blood Cancer.2008;50(3):581-7.
    [43]Langdon SP, Hendriks HR, Braakhuis BJ, Pratesi G, Berger DP, Fodstad O, Fiebig HH, Boven E. Preclinical phase Ⅱ studies in human tumor xenografts:a European multicenter follow-up study. Ann Oncol.1994;5(5):415-22.
    [44]Huynh H, Chow PK, Palanisamy N, Salto-Tellez M, Goh BC, Lee CK, Somani A, Lee HS, Kalpana R, Yu K, Tan PH, Wu J, Soong R, Lee MH, Hor H, Soo KC, Toh HC, Tan P. Bevacizumab and rapamycin induce growth suppression in mouse models of hepatocellular carcinoma. J Hepatol.2008;49(1):52-60.
    [45]Wang Z, Zhou J, Fan J, Qiu SJ, Yu Y, Huang XW, Tang ZY. Effect of rapamycin alone and in combination with sorafenib in an orthotopic model of human hepatocellular carcinoma. Clin Cancer Res.2008; 14(16):5124-30.
    [46]Houghton PJ, Morton CL, Tucker C, Payne D, Favours E, Cole C, Gorlick R, Kolb EA, Zhang W, Lock R, Carol H, Tajbakhsh M, Reynolds CP, Maris JM, Courtright J, Keir ST, Friedman HS, Stopford C, Zeidner J, Wu J, Liu T, Billups CA, Khan J, Ansher S, Zhang J, Smith MA. The pediatric preclinical testing program:description of models and early testing results. Pediatr Blood Cancer. 2007;49(7):928-40.
    [47]Boven E, Winograd B, Berger DP, Dumont MP, Braakhuis BJ, Fodstad O, Langdon S, Fiebig HH. Phase Ⅱ preclinical drug screening in human tumor xenografts:a first European multicenter collaborative study. Cancer Res. 1992;52(21):5940-7.
    [48]Kelland LR. Of mice and men:values and liabilities of the athymic nude mouse model in anticancer drug development. Eur J Cancer.2004;40(6):827-36.
    [49]Visonneau S, Cesano A, Torosian MH, Miller EJ, Santoli D. Growth characteristics and metastatic properties of human breast cancer xenografts in immunodeficient mice. Am J Pathol.1998; 152(5):1299-311.
    [50]Clarke R. Animal models of breast cancer:their diversity and role in biomedical research. Breast Cancer Res Treat.1996;39(1):1-6.
    [51]Fingert HJ, Chen Z, Mizrahi N, Gajewski WH, Bamberg MP, Kradin RL. Rapid growth of human cancer cells in a mouse model with fibrin clot subrenal capsule assay. Cancer Res.1987;47(14):3824-9.
    [52]Hoehn W, Schroeder FH, Reimann JF, Joebsis AC, Hermanek P. Human prostatic adenocarcinoma:some characteristics of a serially transplantable line in nude mice (PC 82). Prostate.1980;1(1):95-104.
    [53]Cespedes MV, Casanova I, Parreno M, Mangues R. Mouse models in oncogenesis and cancer therapy. Clin Transl Oncol.2006;8(5):318-29.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700