用户名: 密码: 验证码:
茶多酚对阿尔茨海默病模型的神经保护作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
阿尔茨海默病(AD)是常见的具有年龄相关性的神经退行性疾病之一。其特点是在发病初期表现为轻微认知损伤,而后则会出现神经元变性,最终出现痴呆。2001年,全球已有2400万人患有阿尔茨海默病,这个数字预计将会在每20年翻一番,到2040年将会有8100万人患有该病。AD有两个主要的病理特征,即为在AD患者脑内,出现老年斑和神经纤维缠结,其中老年斑由β淀粉样蛋白组成,β淀粉样蛋白是由淀粉样前体蛋白(APP)剪切而得。而神经纤维缠结的主要成分是骨架蛋白tau蛋白的过磷酸化结构。随着研究的深入,研究者们提出了一些可能的发病机制,比如淀粉样蛋白聚集、沉积成老年斑的级联反应,tau蛋白过磷酸化形成纤维缠结,神经血管功能障碍以及其他的机制,例如细胞周期失调,炎性过程,氧化应激和线粒体功能障碍。
     最近一段时间,有关茶多酚对于衰老和脑老化的潜在治疗作用的研究越来越多。绿茶多酚在绿茶中含量丰富,它占茶叶干重的30%-40%。茶多酚主要有四种单体,即为表没食子儿茶素没食子酸酯(epigallocatechin-3-gallate,EGCG),表儿茶素(epicatechin,EC),表没食子儿茶素((-)-epigallocatechin,EGC)和表儿茶素没食子酸酯((-)-epicatechin-gallate, ECG)。研究发现,EGCG在茶叶中含量最高,并且其生物活性最强。临床和流行病学方面的研究结果结果表明,饮用茶可以降低很多患病风险,例如,癌症,心血管疾病和糖尿病。有一些研究者认为绿茶提取物具有神经保护,神经修复的作用,而从细胞培养到动物模型都得证实了这一观点。茶多酚被认为具有多功能神经保护作用,例如抗氧化性,自由基清除剂以及铁离子螯合剂等。此外,茶多酚还有另外一个值得注意的功能,即其具有抗淀粉样性变的能力,不仅能够保护神经元受到AB的神经毒性,还能够调节APP的剪切途径,减少AB的生成。所以可见,茶多酚对于研究AD的治疗很有价值。
     SAM系(快速老化小鼠)是一种较为理想的用以研究衰老相关的动物模型。该系小鼠包含有9个亚系的快速衰老小鼠(SAMP)和3个亚系的衰老抵抗小鼠(SAMR),SAMR系小鼠拥有更长的寿命,研究中作为SAMP系小鼠的正常衰老对照而存在。SAMP8小鼠是SAMP小鼠中的一系,SAMP8小鼠能够作为衰老模型,具有早发性学习和记忆功能障碍。此外,SAMP8还表现出很多AD发病早期的病理特征,如氧化应激的增强,AB的生成,tau蛋白磷酸化等等。因此,SAMP8小鼠对于研究早期和AD相关的神经退行性变是一种相当理想的动物模型。此外,有研究认为SAMP8小鼠的原代神经元和胶质细胞能够反应出一定衰老相关的变化,经过一段时间的培养后,其可表现出tau蛋白磷酸化水平的增强和快速凋亡的特性。本研究利用SAMP8原代海马神经元,培养13天,以此作为AD模型,以SAMR1原代海马神经元为对照,主要使用MTT,免疫组化,western blot, RT-PCR等方法,研究EGCG的神经保护作用,观察其对tau蛋白磷酸化的作用,并探讨可能机制。研究发现,适量的EGCG可以提高原代神经元的细胞活力,改善神经元的生长状态。EGCG可以通过激活PI3K/Akt信号途径,抑制GSK-3β的活性,减少神经元tau蛋白磷酸化水平。EGCG还可减少p35裂解为p25,以此抑制Cdk5的活性,减少tau蛋白磷酸化。EGCG可上调抗凋亡基因Bcl-2表达水平,抑制凋亡,保护细胞。
     本研究以SAMP8鼠为动物模型,将茶多酚混入饮水中进行给药,研究茶多酚对SAMP8小鼠的神经保护作用。主要使用Morris水迷宫,免疫组化,银染,半定量RT-PCR,免疫印记等方法,对SAMP8小鼠和SAMR1小鼠进行研究比较。结果发现,8月龄时SAMP8小鼠已经出现明显的空间学习认知障碍,茶多酚处理之后,小鼠的空间学习认知能力有了明显提高。免疫组化实验和westernblot实验发现,茶多酚处理后的皮层和海马区域,Aβ1-42的表达水平明显降低。银染实验发现皮层和海马的神经纤维缠结也得到改善。而且,茶多酚可以激活PI3K/Akt信号途径,从而抑制GSK-3B的活性。茶多酚还可以通过调节p25/p35的比例,通过抑制Cdk5的激酶活性,以此降低动物脑内tau蛋白磷酸化水平。茶多酚可通过上调抗凋亡基因Bcl-2的mRNA表达水平和蛋白表达水平,抑制凋亡保护细胞。可见,长期应用茶多酚可以能通过多种途径够减少tau蛋白磷酸化水平以及Aβ1-42蛋白生成,茶多酚神经保护作用的机制可由其激活PI3K/Akt信号转导通路来实现。
     本研究的结果为茶多酚的神经保护理论提供了一些新的证据,为预防和治疗AD提供了一些新的思路。
Alzheimer's disease (AD) is one of the most prevalent age-dependent neurodegenerative disorders. It is characterized by mild cognitive impairment at its onset followed by irreversible neuronal degeneration and dementia later. In2001, more than24million people had dementia. The number is expected to double every20years up to81million in2040because of the anticipated increase in life expectancy. AD is characterized by presence of two aberrant structures in the patients'brains, senile plaques and neurofibrillary tangles. Senile plaques are composed of beta amyloid peptide, a fragment of the amyloid peptide precursor, whereas the main component of neurofibrillary tangles is the cytoskeleton protein known as the tau protein, in hyperphosphorylated form. Several pathogenic mechanisms that underlie these changes have been studied, including A13aggregation and deposition with plaque development, tau hyperphosphorylation with tangle formation, neurovascular dysfunction, and other mechanisms such as cell-cycle abnormalities, inflammatory processes, oxidative stress, and mitochondrial dysfunction.
     Recently, there is growing interest in the potential beneficial effects of green tea polyphenols (GTP) on aging and aged brain. Green tea catechins, are especially concentrated in green tea. It accounts for30-40%of the dry weight of the leaves. The major polyphenolic components in GTP are epigallocatechin-3-gallate (EGCG), epicatechin (EC),(-)-epigallocatechin (EGC) and (-)-epicatechin-gallate(ECG). Among these components, EGCG is the abundant and most active component.There is abundant of evidence, which is mostly from the preclinical and epidemiological studies, suggesting that green tea consumption is associated with a reduced risk of severe human malignancies such as cancer, cardiovascular diseases, and diabetes. More recently, either the green tea extract or its isolated catechin constituents have been reported to display neuroprotective/neurorestorative properties. A lot of studies have demonstrated that GTP exhibit multifunctional neuroprotective-neurorescue activities in cell cultures and animal models, such as antioxidant actions, free radical scavenging and iron-chelating properties. Another noteworthy feature of GTP is that they possess anti-amyloidogenic effects, protecting neuron from A_-induced neurotoxicity and regulating APP processing in vitro and in vivo. GTP may be a novel neuroprotective strategy for AD.
     SAM(The senescence-accelerated mouse), is a well established animal model foraging. It is a group of related inbredstrains including nine strains of accelerated-prone, short-lived mice (SAMP), and three strains of accelerated senescence-resistant, long-lived mice (SAMR). Senescence-accelerated mouse prone-8(SAMP8), a substrain of SAMP, shows early onset of learning and memory deficits. What's more, senescence-accelerated mouse (SAMP8), which could act as a model of aging, displays many features that are known to occur early in the pathogenesis of AD such as increased oxidative stress, amyloid-β alterations, and tau phosphorylation. Therefore, SAMP8mice may be an excellent model for studying the earliest neurodegenerative changes associated with AD. And in addition, it was reported that hyperphosphorylation in some forms of tau, protein kinase GSK-3β and Cdk5activation, and increase in overall oxidative stress status in primary neurons and astrocytes of SAMP8. Therefore, we investigate the protective mechanisms of EGCG on SAMP8primary hippocampus neurons, which would be cultured for at least13days. MTT method, immunohistochemistry,RT-PCR, Western Blot were employed in this experiment. And it is revealed that, after incubated with EGCG, the growth appearance of primary neurons was improved. And EGCG could inhibit the activation of GSK-3βkinase via the PI3K/Akt pathway, subsequently resulting in less tau phosphorylation. Besides, EGCG could also decrease the activity of Cdk5through reducing p25/p35ratio which suppressed tau phosphorylation. EGCG could up-regulates the Bcl-2mRNA and protein expression, which would inhibit the cell apoptosis.
     Taken SAMP8mice as the AD animal model, we investigated the neuroprotective effect of GTP, with such method as Morris water maze(MWM), immunohistochemical staining, RT-PCR and western blot. Results show with long-term oral administration of GTP, that the spatial learning and memory of SAMP8in MWM were improved significantly. Immunohistochemical straining shows that the Aβ1-42positive cells in both cortex and hippocampus were reduced. It is also proved that NFTs observed with Bielschowsky method decreased after GTP treatment. And, long term GTP administration reduced the Aβ1-42level in cortex and hippocampus, inhibited the GSK-3Bactivity via PI3K/Akt pathway, decreased the Cdk5activity by modulating p25/p35ratio, subsequently reduced the tau phosphorylation. Bcl-2level was up-regulated after the GTP treatment. These results suggest that long-term GTP administration down-regulated Aβ1-42protein levels and tau phosphorylation with probable multiple pathways including PI3K/Akt pathway.
     The experimental results of present study support the neuroprotection of GTP and provide a new strategy of preventing and curing Alzheimer's Disease.
引文
[1]Moller H J, Graeber M B. The case described by Alois Alzheimer in 1911. Historical and conceptual perspectives based on the clinicalrecord and neurohistological sections[J]. Eur Arch Psychiatry Clin Neurosci,1998,248:111-122.
    [2]Ferri C P, Prince M, Brayne C, et al. Global prevalence of dementia a Delphi consensus study[J]. Lancet,2005,366:2112-2117.
    [3]Mayeux R. Epidemiology of neurodegeneration[J]. Annu Rev Neurosci,2003,26: 81-104.
    [4]Mortimer J A, Snowdon D A, Markesbery W R. Head circumference education and risk of dementia:findings from the Nun Study[J]. Clin Exp Neuropsychol,2003,25:671-679.
    [5]Jellinger K A. Head injury and dementia[J]. Curr Opin Neurol,2004,17: 719-723.
    [6]Luchsinger J A, Mayeux R. Dietary factors and Alzheimer's disease[J]. Lancet Neurol, 2004,3:579-587.
    [7]Gatz M, Reynolds C A, Fratiglioni L, et al. Role of genes and environments for explaining Alzheimer disease[J]. Arch Gen Psychiatry,2006,63:168-174.
    [8]Kaj Blennow, Mony deleon, Henrik Zetterberg. Alzheimer's disease[J]. Lacet,2006,368: 387-403.
    [9]Blessed G, Tomlinson B E, Roth M. The association between quantitative measures of dementia and of senile change in the cerebral grey matter of elderly subjects[J]. Br J Psychiatry,1968,114:797-811.
    [10]Masters C L, Simms G, Weinman N A, et al. Amyloid plaque core protein in Alzheimer disease and Down syndrome[J]. Proc Natl Acad Sci USA,1985,82:4245-4249.
    [11]Kang J, Lemaire H G, Unterbeck A, et al. The precursor of Alzheimer's disease amyloid A4 protein resembles a cell-surface receptor[J]. Nature,1987,325:733-736.
    [12]Haass C, Schlossmacher M G, Hung A Y, et al. Amyloid β-peptide is produced by cultured cells during normal metabolism[J]. Nature,1992,359:322-325.
    [13]Gandy S. The role of cerebral amyloid beta accumulation in common forms of Alzheimer disease[J]. Clin Invest,2005,115:1121-1129.
    [14]Vassar R, Bennett B D, Babu-Khan S, et al. Beta-secretase cleavage of Alzheimer's amyloid precursor protein by the transmembrane aspartic protease BACE[J]. Science,1999, 286:735-741.
    [15]Buxbaum J D, Liu K N, Luo Y, et al. Evidence that tumor necrosis factor alpha converting enzyme is involved in regulated alphasecretase cleavage of the Alzheimer amyloid protein precursor[J]. Biol Chem,1998,273:27765-27767.
    [16]Lammich S, Kojro E, Postina R, et al. Constitutive and regulated alpha-secretase cleavage of Alzheimer's amyloid precursor protein by a disintegrin metalloprotease[J]. Proc Natl Acad Sci USA,1999,96:3922-3927.
    [17]Carson J A, Turner A J. Beta-amyloid catabolism:roles for neprilysin (NEP) and other metallopeptidases[J]? Neurochem,2002,81:1-8.
    [18]Tanzi R E, Moir R D, Wagner S L. Clearance of Alzheimer's Abeta peptide:the many roads to perdition[J]. Neuron 2004,43:605-08.
    [19]Hardy J, Selkoe D J. The amyloid hypothesis of Alzheimer's disease:progress and problems on the road to therapeutics[J]. Science,2002,297:353-356.
    [20]Rovelet-Lecrux A, Hannequin D, Raux G, et al. APP locus duplication causes autosomal dominant early-onset Alzheimer disease with cerebral amyloid angiopathy[J]. Nat Genet, 2006,38:24-26.
    [21]Jarrett J T, Berger E P, Lansbury P T. The carboxy terminus of the beta amyloid protein is critical for the seeding of amyloid formation:implications for the pathogenesis of Alzheimer's disease[J]. Biochemistry,1993,32:4693-97.
    [22]Walsh D M, Selkoe D J. Deciphering the molecular basis of memory failure in Alzheimer's disease[J]. Neuron,2004,44:181-93.
    [23]Levy E, Prelli F, Franqione B. Studies on the first described Alzheimer s disease amyloid beta mutant, the Dutch variant[J]. Alzheimer's Dis,2006,9:329-339.
    [24]Zhang L, Zhao B, Yew D T,et al. Processing of Alzheimer's amyloid precursor protein during H2O2-induced apoptosis in human neuronal cells[J]. Biochem Biophys Res Commun, 1997,235(3):845-848.
    [25]Pike C J, Ramezan-Arab N, Cotman CW. Beta-amyloid neurotoxicity in vitro:vidence of oxidative stress but not protection by antioxidants[J]. Neurochem,1997,69(4):1601-1611.
    [26]Deimanaut B, Kumar Sinh S, Rademaker R, et al. Tau is centralin the genetic Alzheimer-frontotemporal dementia spectrum[J].Trends Genet,2005,21(12):664-672.
    [27]W eingartenM D, Lockwood A H, Hwo S Y, et al. A protein factor essential for microtubule assembly [J]. Proc Natl Acad Sci,1975,72(5):1858-1862.
    [28]Ram D, Jennifer L R, Yale E G, et al. Differential regulation of dynein and kinesin motorproteins by tau [J]. Science,2008,319 (5866):1086-1089.
    [29]Hanger D P, Anderton B H, Noble W. Tau phosphorylation:the therapeu tic challenge for neurodegenerative disease[J]. Trends MolM ed,2009,15(3):112-119.
    [30]Diniz B S, Forlenza O V. Do CSF total tau, phosphorylated tau, and β-am yloid42 help to predict progression of mild cognitive impairment to Alzheimer's disease? A system atic review and meta-analys is of the literature[J]. World J Biol Psychiatry,2008,9(3):172-182.
    [31]EwersM, BuergerK, Teipel SJ, et al. Multicenter assessment of CSF-phosphorylated tau for the predict ion of conversion of MCI[J]. Neurology,2007,69(24):2205-2212.
    [32]Liu F, Grundke, et al. Contributions of protein phosphatases PP1, PP2A, PP2B and PP5 to the regu lation of tau phosphorylat ion[J]. Eur J Neurosci,2005,22(8):1942-1950.
    [33]Mocanu M M, Nissen A, Eckerm annK, et al. The potential for β-stru cture in the repeat domain of tau protein determines aggregation, synapt icdecay, neuronalloss, and coassembly with endogenous Tau in inducible mouse models of tauopathy[J]. Neurosci,2008,28(3): 737-748.
    [34]Steinhilb M L, Dias-San tagata D, Fulga T A, et al. Tau phosphorylation sites work in concert to promote neurotoxicity in vivo[J]. MolBiolCell,2007,18(12):5060-5068.
    [35]Castellani R J, Nunomura A, LeeHG, et al. Phosphory lated tauToxic, protective, or none of the above[J]. Alzheimers Dis,2008,14(4):377-383.
    [36]Jellinger K A. Challenges in neuronal apoptosis[J]. Curr Alzheimer Res,2006,3 (4): 377-391.
    [37]Wang J Z, Grundke-IqbalI. Kinases and phosphatases and tau sites involved in Alzheimer neurofibrillary degeneration[J]. Eur J Neurosci,2007,25(1):59-68.
    [38]A lonso A C, Li B, Grundke-lqbal I, et al. Polym erization of hyperphosphorylated tau into filamen tselim inates its inhibitoryac tivity [J]. Proc Natl A cad SciUSA,2006,103 (23): 8864-8869.
    [39]Ash A D, Aliev G, Siedlak S L, et al. Microtubule reduction in Alzheimer's disease and aging is independent of tau filament form ation[J]. Am J Patho,2003,162 (5):1623-1627.
    [40]Lapointe N E, Morfini G, Pigino G, et al. The amino terminus of tau inhibits kinesin-dependent axonal transport:Implications for filament toxicity[J]. NeurosciRes,2009, 87(2):440-451.
    [41]Clavaguera F, Bolmont T, Crowther R A, et al. Transmission and spreading of tauopathy in transgenicmouse brain [J]. NatCellBiol,2009,11(7):909-913.
    [42]Townsend M, Mehta T, Selkoe D J. Soluble Abeta inhibits specific signal transduction cascades common to the insulin receptor pathway[J]. Biol Chem,2007,282, 33305-33312.
    [43]Magdesian M H, Carvalho M M, Mendes F A, et al. Amyloid-beta binds to the extracellularcysteine-rich domain of Frizzled and inhibits Wnt/beta-catenin signaling[J]. Biol Chem,2008,283,9359-9368.
    [44]Lauren J, Gimbel D A, Nygaard H B,et al. Cellular prion protein mediates impairment of synaptic plasticity by amyloid-beta oligomers[J]. Nature,2009,457:1128-1132
    [45]Perez M, Hernandez F, Lim F, et al. Chronic lithium treatment decreases mutant tau protein aggregation in a transgenic mouse model[J].Alzheimers Dis,2003,5:301-308.
    [46]Perez M, Rojo A I, Wandosell F, et al. Prion peptide induces neuronal cell death through a pathway involving glycogen synthase kinase [J].Biochem,2003,372:129-136.
    [47]Lee H K, Kumar P, Fu Q, et al. The insulin/Akt signaling pathway is targeted by intracellular beta-amyloid[J]. Mol Biol Cell,2009,20:1533-1544.
    [48]Baki L, Shioi J, Wen P, et al. PS1 activates PI3K thus inhibiting GSK-3 activity and tau overphosphorylation:effects of FAD mutations[J]. EMBO,2004,23:586-2596.
    [49]Takashima A, Murayama M, Murayama O, et al. Presenilin associates with glycogen synthase kinase-3beta and its substrate tau[J]. Proc Natl Acad Sci USA,1998,95:9637-9641.
    [50]Levy E, Prelli F, Franqione B. Studies on the first described Alzheimer's disease amyloid beta mutant, the Dutch variant [J]. Alzheimerps Dis,2006,9:329-339.
    [51]Smith M A, Perry G, Richey PL, et al. Oxidative damage in Alzheimer's disease[J]. Nature,1996,382 (6587):120-121.
    [52]Vila J, L loret A, OrtiR, et al. Molecular bases of the treatment of Alzheimer's disease with antioxidants:prevention of oxidative stress[J]. Mol Aspects Med,2004(3):119-126.
    [53]Boyd-Kimball D, Mohmmad Abdul H, Reed T, et al. Role of phenylalanine 20 in Alzheimer's amyloid beta-peptide(1-42)-induced oxidative stress and eurotoxicity[J]. Chem Res Toxicol,2004,17(12):1743-1749.
    [54]Marx KA, Quartz crystalm icrobalance:A useful tool for studying thinpolymer films and complex biomolecular systems at the solution2surface interface[J]. Biomacromo lecules,2003, 4(5):1099
    [55]Voinova M V, Jonson M, Kasem B.'M issing mass'effect in biosensor's QCM applications[J]. Biosensors and Bioelectronics,2002,17:835
    [56]D Le Guillou Buffello. Characterization of cell adhesion by the quartz crystalm icrobalance[J]. IEEE,2002,298
    [57]Charles RK, Kaumudi B, Joachim W, et al. Real-time impedance assay to follow the invasive activities of metastatic cells in culture[J]. Bio Techniques,2002,33:842
    [58]Reiss B, Janshoff A, Steinem C, et al. A dhesion k inetics of functionalized vesicles and mammalian cells:a comparative study[J]. L angmuir,2003,19, (5):1816
    [59]Xiao X Q, Zhang H Y. Superfine A attenuates amyloid beta-peptide fragment25-35 induced apoptosis in rat neurons via inhibiting reactive oxygen species formation and caspase-3 activation[J]. Neurosci Res,2002,67(1):30-36.
    [60]Burke. Inhibition of mitogen-activated protein kinase and stimulation of Akt kinasesignaling pathways:Two approaches with therapeutic potential in thetreatment of neurodegenerative disease[J]. Pharmacology and Therapeutics,2007,114:261-277.
    [61]Staal S P, Hartley JW, Rowe W P. Isolation of transforming murine leukemia viruses from mice with a high incidence of spontaneous lymphoma[J]. Proc Natl Acad Sci USA,1977, 74(7):3065-3067.
    [62]Bellacosa A, Testa J R, Staal S P, et al. A retroviral oncogene, akt, encoding a serine-threonine kinase containing an SH2-like region[J]. Science,1991,254:274-277.
    [63]Datta S R, Brunet A, Greenberg M E. Cellular survival:a play in three Akts[J]. (review)Genes&Dev,1999,13:2905-2927.
    [64]Nicholson K M, Anderson N G. The protein kinase B/Akt signaling pathway in human malignancy[J]. Cell Signal,2002,14(5):381-395.
    [65]Hemmings B A. Structure, regulation and function of PKB/Akt-a major therapeutic target[J]. Cell Mol Biol Lett,2003,8(2):527.
    [66]Burgering B M, Coffer P J. Protein kinase B(c-Akt)in Phosphatidylinositol-3-OH kinas signals transduction[J]. Nature,1995,17:599-602.
    [67]Franke T, Yang S, Chan T, et al. The protein kinase encoded by the Akt protooncogene is a target of the PDGF-activated phosphatidylinositol 3-kinase[J]. Cell,1995,81:727-736.
    [68]Kohn A D, Kovaeina K S, Roth R A. Insulin stimulates the kinase activity of RAC-PK, a pleckstrin homology domain containing ser/thr kinase[J]. EMBO,1995,14:4288-4295.
    [69]Cowburn A S, Cadwallader K A, Reed B J, et al. Role of PI3-kinase dependent Bad phosphorylation and altered transcription in cytokine-mediated neutrophil survival[J]. Blood, 2002,100:2607-2616.
    [70]Cechetto D F. Role of nuclear factor kappa B in neuropathological mechanisms[J]. Brain Res,2001,132:391-404.
    [71]Kogure K, Yamasaki Y, Matsuo Y, et al. Inflammation of the brain after ischemia[J]. Acta Neurochir Suppl(Wien),1996,66:40243.
    [72]Zong W X, Edelstein L C, Chen C, et al. The prosurvival Bcl-2 homolog Bfl-1/Al is a direct transcriptional target of NF-?B that blocks TNFa-induced apoptosis[J]. Genes Dev, 1999,13(4):382-387.
    [73]Jeong S J, Pise-Masison C A, Radonovich M F, et al.Activated Akt regulates NF-?B activation, p53 inhibition and cell survival in HTLV-1-transformed cells[J]. Oncogene,2005, 24(44):6719-6728.
    [74]Feng J, Tamaskkovic R, Yang Z, et al. Stabilization of Mdm-2 via decrease ubquitination is mediated by protein kinase B/Akt dependent phosphorylation[J]. Biol Chem, 2004,279(34):35530-35517.
    [75]Mayo L D, Donner D B. The PTEN, Mdm2, p53 tumor suppressor oncoprotein network. Trends Biochem Sci,2002,27(9):462-467.
    [76]Wee K B, Aguda B D. Akt versus p53 in a network of oncogenes and tumor suppressor genes regulating cell survival and death[J]. Biophys,2006,91(3):213-221
    [77]Grimes, Jope. The multifaceted roles of glycogen synthase kinase 3β in cellular signaling[J]. Prog Neurobiol,2001,65:391-426.
    [78]Lucas, Hernandez, Gomez-Ramos, et al. Avila, Decreased nuclear h-catenin, tau hyperphosphorylation andneurodegeneration in GSK-3β conditional transgenic mice[J]. EMBO,2001,20:27-39.
    [79]Huang H, Brien H. Targeting glycogen synthase kinase-3 in Alzheimer's disease[J]. Trug Discovery Today,2006,3(4):613-620.
    [80]Lewia J. Nurfibrillary tanglee, amyotrophy and progressive motor disrurbauce mice expressing mutant(P301L) tau protein[J]. Nature Genet,2000,25(4):402-405.
    [81]Pappolla M A, Chyan Y J, Poeggeler B. An assessment of the antioxidant and the antiamyloidugenic properties of melatonin:implications for Alzheimer's disease [J]. Neural Transm,2000,107(1):23-31.
    [82]Moran P M, Higgins L S, Cordell B, et al. Age-related learning deficits in transgenic mice exp ressing the 7512amino acid isoform of human beta-amyloid precursor protein[J]. ProcNatlAcad SciUSA,1995,92(12):5341-5345.
    [83]Games D, Adams D, Alessandrini R et all Alzheimer's type neuropathology in transgenicmice overexp ressingV717F beta- amyloid p recursor protein[J]. Nature,1995, 373(6514):523-527.
    [84]Gotz J, Schild A, Hoerndli F, et al. Amyloid-induced neurofibrillary tangle formation in Alzheimer's disease:insight from transgenic mouse and tissueculture models[J]. Dev Neurosci,2004,22(7):453-465.
    [85]Gotz J, Probst A, Spillantini M G, et al. Somatodendritic localization and hyperphosphorylation of tau protein in transgenic mice expressing the longest human brain tau isoform[J]. Embo J,1995,14(7):1304-1313.
    [86]Janus C D, Amelio S, Amitay O, et al. Spatial learning in transgenic mice expressing human presenilin 1 (PS1) transgenes[J]. NeurobiolAging,2000,21(4):541-549.
    [87]Ezra Y, Oron L, Moskovich L, et al. Apolipop rotein E4 decreases whereas apolipoprotem E3 increases the level of secreted amyloid precursor protein after closed head injury[J]. Neuroscience,2003,121(2):315-325.
    [88]周丽华,姚志彬,陈以慈,等.单侧弯窿伞损伤对老年大鼠空间记忆及海马胆碱能纤维的影响.中山医科大学学报.1997,17(:1)16.
    [89]张世仪,何利明,张敏磊.一种脑损伤致认知障碍的动物模型.中国康复医学杂志,1993,8(5):1996.
    [90]Ben Ari Y, Trembley E, Ollergen O P. The role of epileptic activity in hippocampal and remove cerebral lesions induced by bainic acid[J]. Brain Res,1980, (9):79-83.
    [91]Solroniew M V, Pearson R C A. Degene relation of cholinergic neurone in the basal nuclear fallowing bainic or N2melhyl2D2 aspirlic acid application to the erebral cortex in the rat [J]. Protein Res,1985;339(1):186-189.
    [92]Pavia J, Alberch J, Alvarez I, et al. Repeated administration of beta2amyboid (25-35) to rats decreases muscarinic receptor in cerebral cortex [J]. Neurosci Lett,2000,278(1-2): 69-72.
    [93]秦斌.淀粉样蛋白及Tau蛋白和Alzheimer病关系的研究[J].国外医学老年医学分册,1995,16(6):267-270.
    [94]Sally A F, rautschy A, ndrew Baird, et al. Effect of injected Alzheimer amyloid cores in rat brain[J]. Proc Natl Sci, USA,1991,88:8362-8366.
    [95]Nitta A, Nabeshima T. Experimental techniques for developing new drugs acting on dementia (10)-Alzheimer's discase aimal model induced by beta amyloid protein[J]. Nihon Shinkei Seish in Yajurigaku Zasshi,1996,16(3):85-90.
    [96]Nabeshima T. Trial to produce animal model of Slzheimer's disease by continuous infusion of beta amyloid protein into the rat cerebral ventricle[J]. Nihon Shinkei Seish in Yajurigaku Zasshi,1995,15(5):411-418.
    [97]Nabeshima T. Nerve gro th factor strategy and preparation of animalmode for Alzheimer type senile dementia[J]. Yakugaku2zasshi,1995,115(7):499-512.
    [98]Alvarez X A, Miguel Hidalgo J J, Fernandez-Novoa Let all Intrahippocampal injections of the beta amyloid 1-28 fragment induces behavioral deficits in rats[J]. Methods Find Exp Clin Phamacol,1997,19(7):471-479.
    [99]尹学均.铝与Alzheimer病[J].国外医学卫生学分册,1995,22(4):193-197.
    [100]秦红友.补肾中药对拟痴呆小鼠大脑组织中C2氨基丁酸和谷氨酸含量的影响[J].中医杂志,1998,39(8):409-491.
    [101]Paula M. Moran Paul C Moser etc. β-APP-751 TRANSGENIC MICE:DEFICITS IN LEARNING AND MEMORY. Alzheimer Disease:From Molecular, Biology to Therapy. 2001:149-150.
    [102]Jucker M, Waker L C, Kuo H, et al. Age-related fibrillard deposits in brains of C57BL/6 mice. A review of localization, staining characteristics, and strain specificity[J]. Mol Neurobiol,1994,9(1-3):124-33.
    [103]Nomura Y, Yamanaka Y, et al. Senescence-accelerated mouse Neurochemical studies on aging[J]. Ann N Y Acad,1996, (786):410-418.
    [104]Yoichi Chiba, Atsuyoshi Shimada, et al. The Senescence-accelerated Mouse (SAM):A Higher Oxidative Stress and Age-dependent Degenerative Diseases Model[J]. Neurochem Res,2008:1-9
    [105]Poon H F, Farr S A, Thongboonkerd V, et al. Proteomic analysis of specific brain proteins in aged SAMP8 mice treated with alpha-lipoic acid:imp lications for aging and age-related neurodegenerative disorders[J]. Neurochem Int,2005,46(2):159-168.
    [106]Okuma Y, Nomura Y. Senescence-accelerated mouse(SAM) as an animal model of senile dementia:pharmacological, neurochemical and molecular biological approach[J]. Jpn J Pharmacol,1998,78:399-404.
    [107]Nomura Y, Okuma Y. Age-related defects in lifespanand learning ability in SAMP8 mice[J]. Neurobiol Aging,1999,20:111-115.
    [108]Koji, Tomobe, Yasuyuki Nomura.Neurochemistry, Neuropathology, and Heredity in SAMP8:A Mouse Model of Senescence[J]. Neurochem Res,2009,34:660-669.
    [109]J M McDowd and F I Craik. Effects of aging and task difficulty on divided attention performance[J]. Exp Psychol Hum Percept Perform,1988,14:267-280.
    [110]R J Ohta, D A Walsh and I K Krauss. Spatial perspectivetaking ability in young and elderly adults[J]. Exp Aging Res,1981,7:45-63.
    [111]M J Sharps. Spatial memory in young and elderly adults:category structure of stimulus sets[J]. Psychol Aging,1991,6309-6312.
    [112]R J Weber, L T Brown and J K Weldon. Cognitive maps of environmental knowledge and preference in nursing home patients[J]. Exp Aging Res,1978,4:157-174.
    [113]L A Holcomb, M N Gordon, P Jantzen, et al. Behavioral changes in transgenic mice expressing both amyloid precursor protein and presenilin-1 mutations:lack of association with amyloid deposits[J]. Behav Genet,1999,29:177-185.
    [114]E A Maguire, E R Valentine, J M et al. Kapur, Routes to remembering:the brains behind superior memory[J]. Nat Neurosci,2003,6:90-95.
    [115]J F Flood and J E Morley. Learning and memory in the SAMP8 mouse[J]. Neurosci Biobehav Rev,1998,22:1-20.
    [116]H Cheng, J Yu, Z Jiang, et al. Acupuncture improves cognitive deficits and regulates the brain cell proliferation of SAMP8 mice[J]. Neurosci Lett,2008,432:111-116.
    [117]J F Flood, S A Farr, K Uezu, et al. Morley, Age-related changes in septal serotonergic, GABAergic and glutamatergic facilitation of retention in SAMP8 mice[J]. Mech Ageing Dev, 1998,10:5173-188.
    [118]S Ikegami, S Shumiya and H Kawamura. Age-related changes in radial-arm maze learning and basal forebrain cholinergic systems in senescence accelerated mice (SAM)[J]. Behav Brain Res,1992,51:15-22.
    [119]A Ohta, I Akiguchi, N Seriu,et al. Deterioration in learning and memory of fear conditioning in response to context in aged SAMP8 mice[J]. Neurobiol Aging,2001,22: 479-484.
    [120]T Kurokawa, S Asada, S Nishitani, et al. Hazeki, Age related changes in manganese superoxide dismutase activity in the cerebral cortex of senescence-accelerated prone and resistant mouse[J]. Neurosci Lett,2001,298:135-138.
    [121]E Sato, N Oda, N Ozaki, et al. Early and transient increase in oxidative stress in the cerebral cortex of senescence-accelerated mouse[J]. Mech Ageing Dev,1996,6105-6114.
    [122]Y Okatani, AWakatsuki, R J Reiter, et al. Melatonin reduces oxidative damage of neural lipids and proteins in senescence-accelerated mouse[J]. Neurobiol Aging,2002,23:639-644.
    [123]O Alvarez-Garcia,I Vega-Naredo, V Sierra, et al. Elevated oxidative stress in the brain of senescence-accelerated mice at 5 months of age[J]. Biogerontology,2006,743-752.
    [124]A L Petursdottir, S A Farr, J E Morley, et al. Lipid peroxidation in brain during aging in the senescence-accelerated mouse (SAM) [J]. Neurobiol Aging,2007,28:1170-1178.
    [125]M I Rodriguez, G Escames, L C Lopez, et al. Improved mitochondrial function and increased life span after chronic melatonin treatment in senescent prone mice[J]. Exp Gerontol,2008,43:749-756.
    [126]F Yasui, M Ishibashi, S Matsugo, et al. Brain lipid hydroperoxide level increases in senescence-accelerated mice at an early age[J]. Neurosci Lett,2003,350:66-68.
    [127]F X Sureda, J Gutierrez-Cuesta, M Romeu, et al. Changesin oxidative stress parameters and neurodegeneration markers in the brain of the senescence-accelerated mice SAMP-8[J]. Exp Gerontol,2006,41:360-367.
    [128]J P Brion. Immunological demonstration of tau protein in neurofibrillary tangles of Alzheimer's disease[J]. Alzheimers Dis,2006,9:177-185.
    [129]A D Cash, G Aliev, S L Siedlak, et al. Microtubule reduction in Alzheimer's disease and aging is independent of tau filament formation[J]. Am J Pathol,2003,162: 1623-1627.
    [130]K Iqbal and I Grundke-Iqbal. Discoveries of tau, abnormally hyperphosphorylated tau and others of neurofibrillary degeneration:a personal historical perspective[J]. Alzheimers Dis,2006,9:219-242.
    [131]Y Ihara. Neurofibrillary tangles/paired helical filaments[J], Alzheimers Dis,2006,9: 209-217.
    [132]J Avila. The influence of aging in one tauopathy:Alzheimer's disease[J]. Arch Immunol Ther Exp (Warsz),2004,52:410-413.
    [133]I Ferrer, T Gomez-Isla, B Puig, et al. Current advances on different kinases involved in tau phosphorylation, and implications in Alzheimer's disease and tauopathies[J]. Curr Alzheimer Res,2005,2:3-18.
    [134]K Iqbal, C Alonso Adel, S Chen,et al. Tau pathology in Alzheimer disease and other tauopathies[J]. Biochim Biophys Acta,2005,1739:198-210.
    [135]H Braak and E Braak. Staging of Alzheimer-related cortical destruction[J]. Int Psychogeriatr,1997,9(Suppl 1):257-261; discussion 269-272.
    [136]H Braak, E Braak, D Yilmazer, et al. Neurofibrillary tangles and neuropil threads as a cause of dementia in Parkinson's disease[J]. Neural Transm,1997, Suppl 51:49-55.
    [137]G F Busatto, G E Garrido, O P Almeida, et al. A voxel-based morphometry study of temporal lobe gray matter reductions in Alzheimer's disease[J]. Neurobiol Aging,2003,24221-24231.
    [138]D F Swaab, E J Dubelaar, M A Hofman, et al. Brain aging and Alzheimer's disease:use it or lose it[J]. Prog Brain Res,2002,138:343-373.
    [139]R J Castellani, H G Lee, X Zhu, et al. Neuropathology of Alzheimer disease: pathognomonic but not pathogenic[J]. Acta Neuropathol,2006, (Berl) 111:503-509.
    [140]H G Lee, G Perry, P I Moreira, M R Garrett,et al. Tau phosphorylation in Alzheimer's disease:pathogen or protector? [J]. Trends Mol Med,2005,11:164-169.
    [141]X Wei, Y Zhang and J Zhou. Alzheimer's disease-related gene expression in the brain of senescence accelerated mouse[J]. Neurosci Lett,1999,268:139-142.
    [142]B Caballero, I Vega-Naredo, V Sierra, et al. Favorable effects of a prolonged treatment with melatonin on the level of oxidative damage and neurodegeneration in senescence-accelerated mice[J]. Pineal Res,2008,45:302-311.
    [143]A M Canudas, J Gutierrez-Cuesta, M I Rodriguez, D Acuna-Castroviejo, F X Sureda, A Camins and M Pallas. Hyperphosphorylation of microtubule-associated protein tau in senescence-accelerated mouse (SAM)[J]. Mech Ageing Dev, 2005,126:1300-1304.
    [144]J Gutierrez-Cuesta, F X Sureda, M Romeu, A M Canudas, B Caballero, A Coto-Montes, A Camins and M Pallas. Chronic administration of melatonin reduces cerebral injury biomarkers in SAMP8 [J]. Pineal Res,2007,42:394-402.
    [145]M Hamdane, A V Sambo, P Delobel, S Begard, A Violleau, A Delacourte, P Bertrand, J Benavides and L Buee. Mitotic-like tau phosphorylation by p25-Cdk5 kinase complex [J]. Biol Chem,2003,278:34026-34034.
    [146]X Zhu, A K Raina, G Perry and M A Smith. Alzheimer's disease:the two-hit hypothesis[J]. Lancet Neurol,2004,3:219-226.
    [147]J Hardy. Alzheimer's disease:the amyloid cascade hypothesis:an update and reappraisal [J]. Alzheimers Dis,2006,9:151-153.
    [148]J A Hardy and G A Higgins. Alzheimer's disease:the amyloid cascade hypothesis[J]. Science,256:184-185.
    [149]HG Lee, X Zhu, R J Castellani, A Nunomura, G Perry and M A Smith. Amyloid-beta in Alzheimer disease:the null versus the alternate hypotheses [J].Pharmacol Exp Ther,2007, (321):823-829.
    [150]A Fukunari, A Kato, Y Sakai, T Yoshimoto, S Ishiura, K Suzuki and T Nakajima. Colocalization of prolyl endopeptidase and amyloid beta-peptide in brains of senescenceaccelerated mouse[J]. Neurosci Lett,1994, (176):201-204.
    [151]M Takemura, S Nakamura,I Akiguchi, M Ueno, N Oka, S Ishikawa, A Shimada, J Kimura and T Takeda. Beta/A4 proteinlike immunoreactive granular structures in the brain of senescence-accelerated mouse [J] Am Pathol,1993, (142):1887-1897.
    [151]V B Kumar, S A Farr, J F Flood, V Kamlesh, M Franko, W A Banks and J E Morley. Site-directed antisense oligonucleotide decreases the expression of amyloid precursor protein and reverses deficits in learning and memory in aged SAMP8 mice[J]. Peptides,2000, (21): 1769-1775.
    [153]J E Morley, V B Kumar, A E Bernardo, S A Farr, K Uezu, N Tumosa and J F Flood. Beta-amyloid precursor polypeptide in SAMP8 mice affects learning and memory[J]. Peptides,2000, (21):1761-1767.
    [154]Y Nomura, Y Yamanaka, Y Kitamura, T Arima, T Ohnuki, Y Oomura, K Sasaki, K Nagashima and Y Ihara. Senescence-accelerated mouse. Neurochemical studies on aging[J]. Ann N Y Acad Sci,1996, (786):410-418.
    [155]V B Kumar, K Vyas, M Franko, V Choudhary, C Buddhiraju, J Alvarez and J E Morley. Molecular cloning, expression, and regulation of hippocampal amyloid precursor protein of senescence accelerated mouse (SAMP8)[J]. Biochem Cell Biol,2001, (79):57-67.
    [156]X Wei, Y Zhang and J Zhou. Alzheimer's disease-related gene expression in the brain of senescence accelerated mouse[J]. Neurosci Lett,1999, (268):139-142.
    [157]X Wei, Y Zhang and J Zhou. Differential display and cloning of the hippocampal gene mRNas in senescence accelerated Mouse[J]. Neurosci Lett,1999, (275):17-20.
    [158]W A Banks, S A Farr, J E Morley, K M Wolf, V Geylis and M Steinitz. Anti-amyloid beta protein antibody passage across the blood-brain barrier in the SAMP8 mouse model of Alzheimer's disease:an age-related selective uptake with reversal of learning impairment[J]. Exp Neurol,2007, (206):248-256.
    [159JJ E Morley, S A Farr and J F Flood. Antibody to amyloid beta protein alleviates impaired acquisition, retention, and memory processing in SAMP8 mice[J]. Neurobiol Learn Mem,2002, (78):125-138.
    [160]J F Flood, F J Harris and J E Morley, Age-related changes in hippocampal drug facilitation of memory processing in SAMP8 mice[J]. Neurobiol Aging,1996, (17):15-24.28
    [161]M E Hasselmo and L M Giocomo, Cholinergic modulation of cortical function [J]. Mol Neurosci,2006, (30):133-135.
    [162]M Sastre, T Klockgether and M T Heneka, Contribution of inflammatory processes to Alzheimer's disease:molecular mechanisms[J]. Int Dev Neurosci,2006 (24),167-176.
    [163]T G Beach and E G McGeer, Lamina-specific arrangement of astrocytic gliosis and senile plaques in Alzheimer's disease visual cortex[J]. Brain Res,1988, (463):357-361.
    [164]M L Kashon, G W Ross, J P O'Callaghan, D B Miller, H Petrovitch, C M Burchfiel, D S Sharp, W R Markesbery, D G Davis, J Hardman, J Nelson and L R White. Associations of cortical astrogliosis with cognitive performance and dementia status [J]. Alzheimers Dis, 2004,(6),595-604:673-581.
    [165]J G Sheng, R E Mrak and W S Griffin. S100 beta protein expression in Alzheimer disease:potential role in the pathogenesis of neuritic plaques [J]. Neurosci Res,1994, (39): 398-404.
    [166]Y Wu, A Q Zhang and D T Yew, Age related changes of various markers of astrocytes in senescence-accelerated mice hippocampus[J]. Neurochem Int,2005, (46):565-574.
    [167]A LPetursdottir, S AFarr, J E Morley, W A Banks and G V Skuladottir. Lipid peroxidation in brain during aging in the senescence-accelerated mouse (SAM)[J].Neurobiol Aging,2007, (28):1170-1178.
    [168]Gutman R L R B. Rediscovering tea:An exploration of the scientific literature[J]. HerbalGram,1996, (37):33-48.
    [169]Wang Z Y, Huang M T, Lou Y R, Xie J G, Reuhl K R, Newmark H L, Ho C T, Yang C S, Conney A H. Inhibitory effects of black tea, green tea, decaffeinated black tea, and decaffeinated green tea on ultraviolet B light-induced skin carcinogenesis in 7,12-dimethylbenz[a]anthracene-initiated SKH-1 mice[J]. Cancer Res,1994, (54):3428-3455.
    [170]Yang C S, Wang Z Y. Tea and cancer [J]. Natl Cancer Inst,1993, (85):1038-1049.
    [171]Khokhar S, Magnusdottir SG. Total phenol, catechin, and caffeine contents of teas commonly consumed in the United kingdom [J]. Agric Food Chem,2002, (50):565-570.
    [172]Higdon J V, Frei B. Tea catechins and polyphenols:Health effects, metabolism, and antioxidant functions[J]. Crit Rev Food Sci Nutr,2003, (43):89-143.
    [173]Mandel S A, Avramovich-Tirosh Y, Reznichenko L, Zheng H, Weinreb O, Amit T, Youdim M B. Multifunctional activities of green tea catechins in neuroprotection[J]. Neurosignals,2005,(14):46-60.
    [174]Khan N, Mukhtar H. Tea polyphenols for health promotion[J]. Life Sci,2007, (81): 519-533.
    [175]Kuriyama S, Shimazu T, Ohmori K, Kikuchi N, Nakaya N, Nishino Y, Tsubono Y, Tsuji I. Green tea consumption and mortality due to cardiovascular disease, cancer, and all causes in Japan:The Ohsaki study[J]. AMA 2006, (296):1255-1265.
    [176]Li C, Allen A, Kwagh J, Doliba N M, Qin W, Najafi H, Collins H W, Matschinsky F M, Stanley C A, Smith T J. Green tea polyphenols modulate insulin secretion by inhibiting glutamate dehydrogenase[J]. Biol Chem,2006, (281):10214-10221.
    [177]Anderson RA, Polansky MM. Tea enhances insulin activity. J Agric Food Chem,2002, (50):7182-7186.
    [178]Waltner-Law M E, Wang X L, Law B K, Hall R K, Nawano M, Granner D K. Epigallocatechin gallate, a constituent of green tea, represses hepatic glucose production[J]. Biol Chem,2002, (277):34933-34940.
    [179]Silvia A. Mandel, Tamar Amit, Orly Weinreb. Simultaneous Manipulation of Multiple Brain Targets by GreenTea Catechins:A Potential Neuroprotective Strategyfor Alzheimer and Parkinson Diseases[J]. CNS Neuroscience & Therapeutics,2008, (14) 352-365.
    [180]Kuriyama S, Hozawa A, Ohmori K, Shimazu T, Matsui T, Ebihara S, Awata S, Nagatomi R, Arai H, Tsuji I. Green tea consumption and cognitive function:A cross-sectional study from the Tsurugaya Project 1 [J]. Am J Clin Nutr,2006,83:355-361.
    [181]Checkoway H, Powers K, Smith-Weller T, Franklin G M, Longstreth W T Jr, Swanson P D. Parkinson's disease risks associated with cigarette smoking, alcohol consumption, and caffeine intake[J]. Am J Epidemiol,2002, (155):732-738.
    [182]Hu G, Bidel S, Jousilahti P, Antikainen R, Tuomilehto J. Coffee and tea consumption and the risk of Parkinson's disease[J]. Mov Disord,2007, (22):2242-2248.
    [183]Van der Schyf C J, Gal S, Geldenhuys W J, Youdim M B. Multifunctional neuroprotective drugs targeting monoamine oxidase inhibition, iron chelation, adenosine receptors, and cholinergic and glutamatergic action for neurodegenerative diseases[J]. Expert Opin Investig Drugs,2006,15:873-886.
    [184]Levites Y, Youdim M B H, Maor G, Mandel S. Attenuation of 6-hydroxydopamine (6-OHDA)-induced nuclear factor-kappaB (NF-kappaB) activation and cell death by tea extracts in neuronal cultures[J]. Biochem Pharmacol,2002, (63):21-29.
    [185]Guo Q, Zhao B, Li M, Shen S, Xin W. Studies on protective mechanisms of four components of green tea polyphenols against lipid peroxidation in synaptosomes[J]. Biochim Biophys Acta,1996, (1304):210-222.
    [186]Nanjo F, Goto K, Seto R, Suzuki M, Sakai M, Hara Y. Scavenging effects of tea catechins and their derivatives on 1,1-diphenyl-2-picrylhydrazyl radical[J]. Free Radic Biol Med 1996, (21):895-902.
    [187]Levites Y, Weinreb O, Maor G, Youdim M B H, Mandel S. Green tea polyphenol (-)-epigallocatechin-3-gallate prevents N-methyl-4-phenyl-1,2,3,6-tetrahydropyridineinduced dopaminergic neurodegeneration [J]. Neurochem 2001,(78):1073-1082.
    [188]Haque A M, Hashimoto M, Katakura M, et al. Long-term admi-nistration of green tea catechins improves spatial cognition learning ability in rats. [J]Nutr,2006,136 (4): 1043-1047.
    [189]Brad A. Sutherland, Rosanna M A Rahman. Mechanisms of action of green tea catechins, with a focuson ischemia-induced neurodegeneration[J]. Journal of Nutritional Biochemistry,2006, (17):291-306
    [190]Kim H K,Kim M,Kin S et al. Effects of green tea polyphenol on cognitive and acetylcholinesterase activities [J]. Biosci Biotechnol Biochem,2004,68:1977-1979.
    [191]Okello EJ.Perry E K. Incitro anti-beta-secretase and dual anti-cholinesterase activities of Camellia sinensisL.(tea) relevant to treatment of dementia[J]. Phytother Res,2004, 18:624-627
    [192]Mandel S A, Avramovich Tirosh Y, Reznichenko L, et al. Multifunctional activities of green tea catechins in neuroprotection. Modulation of cell survival genes, iron-dependent oxidative stress and PKC signaling pathway[J]. Neurosi Qnals,2005,14(12):46-60.
    [193]Reznichenko L, Amit T, Zheng H, et al. Reduction of iron-regulated amyloid precursor protein and beta-amyloid peptide by (-)-epigallocatechin-3-gallate in cell cultures: implications for iron chelation in Alzheimer's disease[J]. Neurochem,2006,97(2):527-536.
    [194]Li C, Allen A, Kwagh J, Doliba N M, Qin W, Najafi H, Collins H W, Matschinsky F M, Stanley C A, Smith T J. Green tea polyphenols modulate insulin secretion by inhibiting glutamate dehydrogenase[J]. Biol Chem 2006,281:10214-10221.
    [195]Sun Young Lee, Jae Woong Lee, Heesoon Lee et al. Inhibitory effect of green tea extract on h-amyloid-induced PC 12 cell death by inhibition of the activation of NF-nB and ERK/p38 MAP kinase pathway through antioxidant mechanisms[J]. Molecular Brain Research,2005, (140) 45-54.
    [196]Choi Y T, Jung C H, Lee S R,etal. The green tea polyphenol (-)-epigallocatechin gallate attenuates beta-amyloid-induced neurotoxicity in cultured hippocampal neurons[J]. Life Sciences,2001, (70):603-614.
    [197]Levites Y, Amit T, Mandel S, Youdim M B. Neuroprotection and neurorescue against Abeta toxicity and PKC-dependent release of nonamyloidogenic soluble precursor protein by, green tea polyphenol(-)-epigallocatechin-3-gallate[J]. FASEB,2003,17(8):952-954.
    [198]Rezai-Zadeh K, Shytle D, Sun N, et al. Green tea epigallocatechin-3-gallate (EGCG) modulate amyloid precursor protein cleavage and reduces cerebral amyloidosis in Alzheimer transgenic mice[J]. Neuro sci,2005,25(38):8807-8814.
    [199]Demian F. Obregon, Kavon Rezai-Zadeh, Yun Bai. ADAM 10 Activation Is Required for Green Tea(-)-Epigallocatechin-3-gallate-induced a-Secretase Cleavage of Amyloid Precursor Protein[J]. the journal of biological chemistry,2006,281 (24):16419-16427.
    [200]Kavon Rezai-Zadeh, Gary W. Arendash, Huayan Hou. Green tea epigallocatechin-3-gallate (EGCG) reduces β-amyloid mediated cognitive impairment and modulates tau pathology in Alzheimer transgenic mice[J]. Brain research,2008, (1214) 177-187.
    [201]Jamie Winderbaum Fernandez, Kavon Rezai-Zadeh, Demian Obregon. EGCG functions through estrogen receptor-mediated activation of ADAM 10 in the promotion of non-amyloidogenic processing of APP[J]. FEBS Letters,2010, (584) 4259-4267.
    [202]Jae Woong Lee, Yong K young Lee,3Jung Ok BanGreen Tea (-)-Epigallocatechin-3-Gallate Inhibits b-Amyloid-Induced Cognitive Dysfunction through Modification of Secretase. Activity via Inhibition of ERK and NF-kB Pathways in Mice[J]. The Journal of Nutrition,2009,10:1-7.
    [203]Q. L I, H F ZHAO, Z F ZHANG, Z Long-term green tea catechin administration prevents spatial learning and memory impairmentin senescence-accelerated mouse prone-8 mice by decreasing a_1-42 oligomers and upregulating synaptic plasticity-related proteins in the hippocampus[J]. Neuroscience,2009,163(3):741-749.
    [204]Harvey R J, Skelton-Robinson M, Rossor M N. The prevalence and causes of dementia in people under the age of 65 years[J]. Neurol Neurosurg Psychiatry,2003, (74):1206-1209.
    [205]Yoichi Chiba,Atsuyoshi Shimada,Naoko Kumagai.The Senescence-accelerated Mouse (SAM):A Higher Oxidative Stress and Age-dependent Degenerative Diseases Model[J]. Neurochem,2008,16:23-32.
    [206]Marta Tajes, Javier Gutierrez-Cuesta, Jaume Folch.et al. Lithium Treatment Decreases Activities of Tau Kinases in a Murin Model of Senescence[J]. Neuropathol Exp Neurol,2008 67(6):612-623.
    [207]Silvia Garcia-Matas, Javier Gutierrez-Cuesta. Dysfunction of astrocytes in senescence-acceleratedmice SAMP8 reduces their neuroprotective capacity[J]. Aging Cell, 2008, (7):630-640.
    [208]Gassen,M;Youdim,M.B.H. Free radical scavengers:chemical concepts and clinical relevance.[J] Neural Transm 1999,(56):193-210.
    [209]MandelS, Reznichenko,YoudimM.Green tea polyphenol (-)-epigallocatechin -3-gallet protects rat PCl2 cells from apoptosis induced by serum withdrawl independent of PI3-Akt pathway[J].Neurotoxicity Rsearch 2003, (5)::419-424.
    [210]Nath R, Davis M, Probert AW, et al. Processing of cdk5 activator p35 to its truncated form (p25) by calpain in acutely injured neuronal cells[J]. Biochem Biophys Res Commun 2000,(274):16-21
    [211]He Y, Li H-L, Xie W-Y, Yang C-Z, Yu CHA, Wang Y. The presence of active Cdk5 associated with p35 in astrocytes and its important role in process elongation of scratched astrocyte[J]. Glia 2003,55:573-583.
    [212]Irizarry MC, Soriano F, McNamara M, Page KJ, Schenk D,Games D et al Abeta deposition is associated with neuropil changes, but not with overt neuronal loss in the human amyloid precursor protein V717F (PDAPP) transgenic mouse[J]. Neurosci,1997, 17(18):7053-7059.
    [213]Takeuchi A, Irizarry MC, Duff K, Saido TC, Hsiao Ashe K,Hasegawa M et al Age-related amyloid beta deposition in transgenic mice overexpressing both Alzheimer mutant presenilinl and amyloid beta precursor protein Swedish mutant is not associated with global neuronal loss[J]. Am J Pathol,2000,157(1):331-339.
    [214]Takashima, A., Noguchi, K., Sato, K., Hoshino, T. Imahori, K. Tau protein kinase I is essential for amyloid beta-protein-induced neurotoxicity[J]. Proc. Nat. Acad. Sci., 1993,(90):7789-7793.
    [215]Imahori, K.,Uchida, T. Physiology and pathology of tau protein kinases in relation to Alzheimer's disease[J]. J. Biochem.,1997, (121):179-188.
    [216]Alvarez, G., Munoz-Montano, J.R., Satrustegui, J., Avila, J., Bogonez, E., Diaz-Nido, J. Lithium protects cultured neurons againstm beta-amyloid-induced neurodegeneration[J]. FEBS Lett.,1999, (453):260-264.
    [217]G. W.ARENDASH, W.SCHLEIFK. REZAI-ZADEH E. K. JACKSON, et a.CAFFEINE PROTECTS ALZHEIMER'S MICE AGAINST COGNITIVE IMPAIRMENT AND REDUCES BRAIN AMYLOID PRODUCTION.Neuroscience,2006,142:941-952.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700