用户名: 密码: 验证码:
柞蚕微孢子虫检测及感染柞蚕中肠转录组及蛋白质组学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
柞蚕(Antheraea pernyi Guérin-Méneville,1855)为鳞翅目大蚕蛾科的泌丝昆虫,是中国特有的生物资源,我国年产柞蚕茧约7×10~4t,占世界野蚕丝总产量的90%以上。柞蚕微孢子虫病是柞蚕生产上主要病害之一,致病病原物为柞蚕微孢子虫(Nosemapernyi),该病在我国柞蚕产区均有分布,近年来由于柞蚕微孢子虫病的发生及蔓延给柞蚕生产带来了严重的经济损失,已成为严重制约柞蚕产业发展的重要因素之一。因此,开展柞蚕微孢子虫病的侵染机制、病害的诊断检测及防治技术等研究对于保障柞蚕产业的健康发展具有重要意义。
     本研究利用Percoll密度梯度离心技术分离纯化了柞蚕微孢子虫,通过感染微孢子虫的柞蚕幼虫血淋巴蛋白质SDS-PAGE电泳及质谱分析鉴定差异蛋白条带,分别采用RNA-Seq技术及iTRAQ技术对感染柞蚕微孢子虫的柞蚕幼虫中肠组织的转录组及定量蛋白质组学研究,分析了健康及患病样品的差异基因及差异蛋白,以期从柞蚕微孢子虫与柞蚕互作方面探讨柞蚕微孢子虫病的发病机制及微孢子虫侵染过程中的关键基因与蛋白,并进行柞蚕微孢子虫病检测技术研究。研究结果如下:
     1.明确了柞蚕微孢子虫孢子的分离纯化技术,采用差速离心法进行柞蚕微孢子虫孢子的粗提,进而利用Percoll不连续密度梯度(Percoll浓度分别为25%、50%、75%、100%),15000r·min~(-1)离心30min,纯化效果可达到孢子纯净度95%以上。
     2.分别采用间接竞争ELISA检测法、胶体金免疫层析检测法、PCR技术3种方法进行了柞蚕微孢子虫病检测研究。(1)PCR检测技术:筛选了适合柞蚕微孢子虫及柞蚕基因组DNA的提取方法—斑迹抽提法,针对微孢子虫SSU rRNA序列设计的3对引物均具有较好的柞蚕微孢子虫检测特异性,并选择引物N1/N2验证了检测灵敏度,最低检测量仅需要柞蚕微孢子虫DNA0.47ng,灵敏性较高。(2)间接竞争ELISA检测法:制备柞蚕微孢子虫多克隆抗体,效价为1:10~4、浓度为3mg·mL~(-1),该方法检测灵敏度为1.6×105个·mL~(-1)孢子。(3)胶体金检测法:采用双抗夹心法与竞争法2种方法制备的胶体金试纸条检测时间均为10min,检测灵敏度为0.8×107个·mL孢子,且与柞蚕血淋巴无交叉反应,特异性较强,其中,双抗夹心法试纸条颜色明显、清晰、易于判定,更具有实用价值。
     3.柞蚕5龄雌幼虫感染微孢子虫96h和144h后血淋巴蛋白质分别出现分子质量约28kD(AP28)和44kD(AP44)的2条蛋白条带相对于对照组染色加深的现象,对2个蛋白条带质谱分析共鉴定117个不重复蛋白,其中2个样品同时鉴定蛋白12个,AP28单独鉴定蛋白52个,AP44单独鉴定蛋白53个。AP28和AP44鉴定蛋白中参与到柞蚕免疫系统及刺激应答生物过程的无重复蛋白共有29个,其中AP28中包括:热激蛋白、泛素样蛋白、泛素结合酶E2、保幼激素环氧水解酶、微管结合蛋白、溶菌酶、ADP-核糖基化因子、防御蛋白、肽聚糖识别蛋白等15个;AP44中包括:蛋白酶、DRK、酚氧化酶原、真核翻译起始因子、类免疫球蛋白等10个;二者共有:热激蛋白21.4、抗菌肽等4个。
     4.采用RNA-Seq技术研究了健康(SM1)和患柞蚕微孢子虫病(SM2)柞蚕中肠组织转录组,并对差异表达基因进行了统计分析。SM1和SM2样本得到的重叠群Contig数分别为56211和60126,平均长度为280nt和256nt,Unigene的数量分别为27496和30801,平均长度为485nt和406nt,将来自同一个物种的SM1和SM2的Unigene进行合并去冗余后得到所有Unigene的量为28000,平均长度为564nt,N50为722nt。对去冗余后的所有Unigene功能注释,16056个Unigenes注释到NCBI nr数据库;与COG数据库比对后共注释到11351个Unigenes,涉及25种功能;GO分析表明,21303个Unigenes被注释到50个GO条目中,其中有6947个基因与细胞组分相关,4081个基因发挥分子功能,10275个基因参与不同的生物学过程;10351个Unigenes共注释到242个代谢通路,其中代谢类通路最多,共1707个、占总量的16.49%。
     按照FDR≤0.001且|log2Ratio|≥1条件,对SM2相对于SM1表达差异的Unigene进行筛选,得到差异表达基因8515个,其中上调基因为7150个,下调基因为1365个。差异表达基因的GO分析显示共有5704个DEGs注释到42个GO条目。DEGs的GO-CellularComponent显著富集分析表明,共有624个DEGs富集到细胞组成154个条目中,其中142个DEGs显著富集于4个条目(Q-value≤0.05),包括星状体、细胞骨架、纺锤体、细胞骨架组分;DEGs的GO-MolecularFunction显著富集分析显示,共有1047个差异基因富集于223个条目,分子功能富集于酶调节活性及结合功能,其中106个DEGs显著富集于6个条目(Q-value≤0.05),包括内肽酶抑制因子活性、内肽酶调节因子活性、肽酶抑制因子活性、肽酶调节因子活性、酶抑制因子活性、细胞骨架蛋白结合;DEGs的GO-BiologicalProcess富集分析显示,共有819个差异基因富集于873个条目,209个差异基因显著富集于11个生物过程条目(Q-value≤0.05),分别参与细胞生长调控、轴突导向、蛋白复合体亚基结构、神经元分化过程中细胞形态、大分子复合物解体、胞内大分子复合物解体、蛋白质复合物解体、胞内蛋白质复合物解体、微管解聚、微管聚合或解聚、蛋白解聚。DEGs的Pathway富集分析表明,共有3092个DEGs富集于231个代谢通路,其中2390个DGEs显著富集于34个代谢通路(Q-value≤0.05),主要参与到营养物质代谢与吸收、神经系统互作、病害及与免疫系统相关等通路。
     5.以柞蚕转录组数据作为参考序列,利用iTRAQ技术对健康(M1)及患柞蚕微孢子虫病(M2)柞蚕中肠组织蛋白质进行了定量蛋白质组学研究,共鉴定蛋白质1987个。鉴定蛋白被注释到46个GO条目,注释到细胞组分本体中共有3642个蛋白,1779个蛋白发挥分子功能,包括11种功能分类,共有5003个蛋白质参与到25个生物学过程,其中与柞蚕病理及抗病生物过程相关的蛋白包括死亡63个、免疫系统过程38个、代谢过程800个、刺激应答289个;1474个柞蚕蛋白被COG功能分为23类,数量最多的是预测仅有全局功能,并有7个蛋白注释为防御机制功能,25个未知功能蛋白,同时发现功能序列在蛋白质组及转录组水平方面表达具有明显的差异;通过对柞蚕蛋白质Pathway分析发现共有1505条蛋白注释到241个代谢通路中,其代谢通路的蛋白最多,与转录组结果相符。
     通过SM2相对于SM1蛋白表达相对定量比较,共发者表达差异蛋白203个,其中上调蛋白112个,下调蛋白91个。差异蛋白大量被注释到鳞翅目昆虫,其中上调蛋白52.68%、下调蛋白68.13%。差异蛋白GO富集分析表明,在细胞组分本体共有94个差异蛋白被富集到细胞组成73个条目,显著富集于胞外基质组分、胞外基质、胞外区组分、蛋白胞外基质、核糖核蛋白复合体、基膜、胞外区、肌节、横纹肌细丝、肌原纤维、连接丝体组分及连接丝体等组分(P-value≤0.05);在分子功能本体共有118个差异蛋白被富集到67个分子功能条目,显著富集于结构分子活性、模式结合、多糖结合、糖类结合、糖胺聚糖结合、连接酶、碳碳键形成等分子功能条目(P-value≤0.05),并首次在柞蚕上发现2个具有糖胺聚糖等结合功能蛋白,蛋白ID分别为Unigene14322_All及Unigene3787_All;在生物学过程本体共有98个差异蛋白被富集到256个生物学过程条目,显著富集于分支链家族氨基酸代谢过程、基因表达、剪接体组装、大分子代谢过程负调控、戊糖代谢过程、肌肉系统过程及核小体组构等生物过程中(P-value≤0.05)。差异蛋白Pathway富集分析表明,共有154个差异蛋白富集于136个代谢通路,显著富集于胞外基质与受体互作通路、代谢通路、半乳糖代谢、甘油磷酸脂代谢、半胱氨酸和蛋氨酸代谢、α-亚麻酸代谢、赖氨酸生物合成、糖类消化和吸收、核糖体、淀粉和蔗糖代谢、剪接体、疟疾、扩张性及肥厚性心肌病等14个代谢通路,其中在胞外基质与受体间互作通路中,发现蛋白ID为Unigene21115_All、Unigene4217_All、Unigene22755_All、Unigene14322_All、 Unigene842_All、 Unigene7641_All、 Unigene10826_All、Unigene14191_All的发生了上调,Unigene3787_All发生了下调,这其中包含2个糖胺聚糖结合功能蛋白,即Unigene14322_All(2.42倍)及Unigene3787_All(0.387倍),表明柞蚕细胞胞外区是柞蚕微孢子虫侵染宿主过程中重要的区域。通过对差异蛋白及与其对应转录本的关联及聚类分析,发现差异蛋白及与其对应的转录本之间关联性为0.2404,聚类结果显示共有44个Unigenes反向相关,43个Unigenes正向相关。
Candidate: Jiang Yiren Supervisor: Prof. Duan Yuxi Prof. Qin Li
     The Chinese oak silkworm (Antheraea pernyiGuérin-Méneville,1855) which belongs toLepidoptera: Saturniidae, is the most well known wild silkmoths for insect food and silkproduction. In China, annual output of tussah cocoon is about7×10~4t, the percentage of thatwith total output of wild silk in world is nearly90%, and the income from tussah rearing hasbecome the main economic source in most sericultural areas. But owing to great harm of themicrosporidiosis, some people engaged in sericulture have to give up tussah rearing. Nosemapernyi is the lethal pathogen of microsporidiosis in A. pernyi. Microsporidiosis has specificnegative effects on A. pernyi and is widely distributed in the main sericultural areas of China,there are much serious economic loss in the process of the rearing of A. pernyi in China everyyear. Now, the spread of this disease alarmed the sericulture, thus studies on the diseasebecame the focus of everyone's attention. Therefore, it’s very important to study thepathogensis, detection, and drug for prevention and treatment about microsporidiosis fordevelopment of A. pernyi.
     This paper has studied the method of separate and purify the spores of N. pernyi using thecombined method of differential centrifugation and Percoll density gradient centrifugation,and identify the different protein straps of hemolymph from the female5thinstar larvae usingSDS-PAGE combined with LC-MS/MS. For clarifying the pathogensis of microspordiosis,finding the key genes or proteins in response to pathogen infection, and providing effectivetargets for detection and drug of microspordiosis, transcriptomics and quantitative proteomicsof midgut from the5thinstar larvae of healthy tussah and tussah infection by N. pernyi havebeen studied using RNA-Seq and iTRAQ, and the different expressions of mRNA and proteinfrom two samples have been quantified to discuss the interaction between A. pernyi and N.pernyi. Meanwhile, the detection methods for N. pernyi were studied, for establishing amethod to detect N. pernyi. The results were as follows:
     1.The method of separate and purify the spores of N. pernyi has been ascertained. Thespores of N. pernyi can be purified by the combined method of differential centrifugation andPercoll density gradient centrifugation. The purity of spores centrifuged at15000r·min~(-1)for 30min in discontinuous density gradient25%,50%,75%,100%can reach to more than95%.
     2.The three methods were used to detect the pathogen of microsporidiosis using thespores of N. pernyi as material.(1) PCR-based method for detection of N. pernyi: First, themethod of DNA extraction which adapts to both spores of N. pernyi and A. pernyi wasdetermined as Banji. Second, three sets of primers were designed by the reported conservedregions of microsporidian SSU rRNA, the specific DNA sequence was amplified from N.pernyi by PCR, and there is no PCR products in A. pernyi. Third, the primer pair N1/N2wasselected to investigate the sensitivity of detection of N. pernyi, the result showed thatprimer N1/N2generated an amplicon of600bp when the content of DNA from N. pernyispores was at least0.47ng. It was observed that PCR diagnosis of N. pernyi using the specificprimers provideds increased specificity and sensitivity.(2) Indirect competitive ELISA fordetection of N. pernyi: The polyclonal antibody against Nosema pernyi was prepared byimmunizing rabbits using the suspension containing spores of N. pernyi, titre andconcentration of antibody was1:10~4and3mg·mL~(-1), the sensitivity of this method was1.6×105spores·mL~(-1).(3) Gold Immunochromatographic Assay (GICA) for detection of N.pernyi: The colloidal gold test strips were prepared by the double antibody sandwich methodand the competition method. The working time of two test strips was both about10minutes,and the sensitivity of this method was0.8×107spores·mL~(-1). The methods were simple, highspecificity and no cross-reaction with the hemolymph of A. pernyi. Moreover, the doubleantibody sandwich method is worth of further study, because its result was clearer and morereliable than that of the competition method.
     3.The protein straps whose molecular weight are about44kD and28kD in haemolymphof the female larvae fed with the spores of N. pernyi increased higher than that of the controlfrom96hours and144hours respectively. The two protein straps was identified byLC-MS/MS for achieve more comprehensive proteome profiles.117non-redundant proteinswere identified,52proteins belong to AP28alone,53proteins belong to AP44alone, and12proteins belong to both them.29proteins involved in the immune system and response tostimulus process have been annotated from all the identified proteins from both AP28andAP44. There were heat shock protein [Antheraea yamamai], ubiquitin-like protein[Antheraea yamamai], ubiquitin-conjugating enzyme E2isoform1[Bombyx mori],ubiquitin-conjugating enzyme E2I [Bombyx mori];ubiquitin conjugating enzyme E2[Bombyxmori], juvenile hormone epoxide hydrolase [Manduca sexta], microtubule-associated proteinRP/EB family member3[Bombyx mori], lysozyme-like protein1[Antheraea mylitta], lysozyme precursor [Antheraea assama], ADP-ribosylation factor [Bombyx mori], putativedefense protein [Antheraea mylitta], RecName:Full=Putative defense protein2; Short=DFP-2;Flags:Precursor, peptidoglycan recognition protein-like protein [Antheraea mylitta],peptidoglycan recognition protein A [Samia cynthia ricini] and peptidoglycan recognitionprotein-like protein [Antheraea pernyi] in AP28alone. There were proteasome beta3subunit[Bombyx mori], proteasome zeta subunit [Bombyx mori], proteasome subunit alpha type6-A[Bombyx mori], DRK [Bombyx mori], tyrosine3-monooxygenase protein zeta polypeptide[Bombyx mori], RGS-GAIP interacting protein GIPC [Bombyx mori], prophenoloxidase[Manduca sexta], eukaryotic translation initiation factor6[Bombyx mori], hemolin[Antheraea pernyi] and loquacious [Bombyx mori] in AP44alone. And there were heat shockprotein hsp21.4[Bombyx mori], prophenoloxidase subunit2[Bombyx mori], attacin-likeprotein [Antheraea pernyi] and basic attacin [Antheraea pernyi] belonging to both them.
     4.De novo transcriptomic analysis of midgut tissues from healthy tussah larvae (SM1)and tussah larvae infected by N. pernyi (SM2) has been studied by RNA sequencing(RNA-seq), and the differentially expressed genes (DEGs) between the two samples wereanalyzed.56211contigs (average length=280nt) and60126contigs (average length=256nt)were assemblied in SM1reads and SM2reads respectively,27496unigenes (averagelength=485nt) and30801unigenes (average length=406nt) were obtained by assemblingfrom SM1and SM2respectively.28000All-unigenes (N50=722nt) with a mean size of564nt were originated from SM1clean reads and SM2clean reads combined, and16056unigenes from All-unigenes were annotated to NCBI non-redundant (nr) nucleotide database.There were11351unigenes identified form All-unigenes with25COG categories by clusterof orthologous group (COGs) classification. Based on homologous genes,21303unigenesfrom All-unigenes were categorized into50Gene ontology (GO) terms consisting of threedomains: celluar componet (6947unigenes), molecular function (4081unigenes) andbiological process (10275unigenes). Pathway analysis revealed that there are10351unigenes associated with242pathways, and16.49%of them (1707unigenes) were annotatedto metabolic pathway.
     A threshold value of FDR≤0.001and an absolute value of log2Ratio≥1were used to judgethe significance of the differences in gene expression. Based on these criteria,8515unigeneswere differentially expressed between SM1and SM2, including7150unigenes that wereup-regulated and1365unigenes that were down-regulated in SM2tissues. GO analysis ofdifferential expression genes (DEGs) showed that5704DEGs were annotated to42GO terms. GO-CellularComponent enrichment analysis showed that624DEGs were enriched to154terms, and142DEGs were significantly enriched to4GO terms (Q-value≤0.05),including aster, cytoskeleton, spindle and cytoskeletal part; GO-MolecularFunctionenrichment analysis showed that1047DEGs were enriched to223terms, mainly involved inenzyme regulator activity and binding, and106DEGs were significantly enriched to6GOterms (Q-value≤0.05), including endopeptidase inhibitor activity, endopeptidase regulatoractivity, peptidase inhibitor activity, peptidase regulator activity, enzyme inhibitor activity,cytoskeletal protein binding; GO-BiologicalProcess enrichment analysis showed that819DEGs were enriched to873terms, and209DEGs were significantly enriched to11GO terms(Q-value≤0.05), including regulation of cell, axon guidance, protein complex subunitorganization, cell morphogensis involved in neuron differentiation, macromolecular complexdisassembly, cellular macromolecular complex disassembly, protein complex disassembly,cellular protein complex disassembly, microtubule depolymerization, microtubulepolymerization or depolymerization and protein depolymerization. Pathway enrichmentanalysis revealed that there are3092DEGs enriched to231pathways, and there were2390DEGs significantly enriched to34pathways takeing the Q-vlaue≤0.05as a threshold, mainlyinvolved in protein metabolic, disease, immune system and so on.
     5.Quantitative protemic analysis of midgut tissues from healthy tussah larvae (M1) andtussah larvae infected by N. pernyi (M2) has been studied by isobaric tag for relative andabsolute quantitation (iTRAQ) using the A. pernyi transcriptome as reference, and thesamples were correspondingly same as transcriptomic analysis. There were1987proteinsidentified in this study. The proteins were categorized into46GO terms consisting of threedomains: celluar componet (3642proteins), molecular function (1779proteins) including11functional categories and biological process (5003proteins) including some process involvedin pathology and resistence of A. pernyi, such as death (63proteins), immune system progress(38proteins), metabolic progress (800proteins), response to stimulus (289proteins).1474proteins were identified to23COG categories with COG classification, the cluster of generalfunctional prediction only occupied the highest number (246proteins,16.69%),7proteinsinvolved in defense mechanisms, and25proteins are function unknown. There weresignificant expression difference in functional sequences between transcriptome andproteome. Pathway analysis revealed that there were1505proteins associated with241pathways, and28.7percent of them (432proteins) were annotated to metabolic pathway, theresult was same as transcriptome.
     203differentially expressed proteins were identified by relative quantitative analysis ofprotein expression of SM2to SM1. There were112up-regulated proteins and91down-regulated proteins in the differentially expressed proteins.52.68percent ofup-regulated and68.13percent of down-regulated proteins shared high homology with thoseof Lepidoptera insects. When processing GO enrichment analysis,94differntial expressionproteins were enriched to73GO terms in celluar component, and significantly enrichment toextracellular matrix part, extracellular matrix, extracellular region part, proteinaceousextracellular matrix, ribonucleoprotein complex, basement membrance, extracellular region,sarcomere, striated muscle thin filament, myofibril, contractile fiber part and contractile fiber(P-value≤0.05); In molecular founction,118differential expression proteins were enriched to67terms mainly associated with structural molecule activity and binding, and significantlyenrichment to pattern binding, polysaccharide binding, carbohydrate binding, structuremolecular activity, glycosaminoglycan binding and ligase activity, forming carbon-carbonbond (P-value≤0.05), moreover,2proteins associated with glycosaminoglycan bindingfunction were first discovered in A. pernyi, protein ID of them was Unigene14322_All andUnigene3787_All respectively. In biological process,98differtntial expression proteins wereenriched to256terms, and significantly enrichment to branched chain family amino acidmetabolic process, gene expression, spliceosome assembly, positive regulation ofmacromolecule metabolic process, pentose metabolic process, muscle system process andnucleosome organization (P-value≤0.05). Pathway enrichment analysis revealed that there are154proteins enriched to136pathways, and takeing the P-vlaue≤0.05as a threshold,14pathways were siginificantly enrichment, including ECM-receptor interaction, Galactosemetabolism, Ribosome, Starch and sucrose metabolism, Lysine biosynthesis, Metabolicpathways, Carbohydrate digestion and absorption, Glycerophospholipid metabolism, Malaria,Dilated cardiomyopathy, Hypertrophic cardiomyopathy (HCM), Cysteine and methioninemetabolism, alpha-Linolenic acid metabolism, Spliceosome.9proteins were significantlyenriched to ECM-receptor interaction pathway, including8up-regualted proteins (Protein ID:Unigene21115_All, Unigene4217_All, Unigene22755_All, Unigene14322_All,Unigene842_All, Unigene7641_All, Unigene10826_All and Unigene14191_All) and1down-regulated protein (Priotein ID: Unigene3787_All). Unigene14322_All (2.42times) andUnigene3787_All (0.387times) were the2proteins associated with glycosaminoglycanbinding function, it showed that extracellular region of cell from A. pernyi was the mainregion where N. pernyi infected A. pernyi. A high correction of differential expressed proteins and corresponding transcripts was not noted (γ=0.2404), presumably there waspost-transcriptional regulation. There were44unigenes involved in positive associationexpression in differential expression proteins and transcripts and43unigenes involved inpositive association expression in differential expression proteins and transcripts.
引文
1.蔡平钟,徐兴耀,黄自然,等.1997.PCR技术鉴别家蚕微孢子虫的研究[J].蚕业科学,23(4):207-210.
    2.陈建国,胡萃,金伟,等.1988.家蚕微孢子虫单克隆抗体的研制及其在检测上的初步应用[J].蚕业科学,14(3):168-170.
    3.陈建平,赵萍,董照明,等.2012.参与家蚕免疫反应的clip丝氨酸蛋白酶家族基因分析[J].38(2):0241-0248.
    4.陈秀,黄可威,沈中元,等.1996.家蚕微粒子病的PCR诊断技术研究[J].蚕业科学,22(4):229-234.
    5.陈祖佩,崔红娟,万永继,潘敏慧.1995.家蚕3种微孢子虫孢子表面抗原特性的研究[J].西南农业学报.8(3):57-60.
    6.崔红娟,万永继,周泽扬,鲁成.1999.家蚕微孢子虫(Nosema bombycis)表面蛋白提取法研究[J].西南业大学学报.21(4):367-369.
    7.邓真华,姜义仁,秦利,等.2010.柞蚕微粒子病研究现状及展望[J].中国蚕业,1:5-8.
    8.丁杰,宿桂梅,问锦曾.1992.中国柞蚕微粒子病病原的研究[J].蚕业科学,18(2):88-90.
    9.丁杰,宿桂梅,问锦曾.1994.中国柞蚕微粒子病病原的研究续报[J].蚕业科学,20(3):161-165.
    10.丁杰,宿桂梅,张禹,等.1998.柞蚕微粒子虫对柞蚕幼虫组织细胞的侵染及增殖规律研究[J].辽宁农业科学,4:6-10.
    11.董志伟,王琰.2002.抗体工程[M].北京:科学出版社.
    12.高坤,邓祥元,郭锡杰.2010.免疫系统中丝氨酸蛋白酶的研究进展[J].免疫学杂志,26(11):1003-1007.
    13.高永珍,黄可威,常智杰.2001.家蚕病原性微孢子虫极丝蛋白的研究[J].蚕业科学,27(2):128-130.
    14.龚舒聪,孙远挺,盛思佳,等.2008.家蚕微孢子虫感染家蚕对其中肠和血液蛋白酶活性影响[J].蚕桑通报,39(3):11-16.
    15.郭春燕,詹克慧.2010.蛋白质组学技术研究进展及应用[J].云南农业大学学报,25(4):583-591.
    16.郭广清.2010.家蚕微孢子虫检测及微粒子病预报研究—家蚕微孢子虫单克隆抗体的制备及其应用初探[D].重庆:西南大学.
    17.郭锡杰,黄可威,沈中元.1994.不同来源微粒子孢子间血清学关系的比较研究[J].蚕业科学,20(3):154-157.
    18.郭锡杰,朱峰,黄可威,等.1996.微粒子感染家蚕对肠液蛋白酶及中肠碱性磷酸酶活性的影响[J].蚕业科学,22(2):123-124.
    19.郭锡杰.1995.家蚕病原性微孢子虫表面蛋白的选择分离与总蛋白比较分析[J].蚕业科学.21(4):238-241.
    20.何永强,吴姗,鲁兴萌,等.2012.家蚕微孢子虫荧光定量PCR检测方法及诊断试剂盒[J].蚕业科学,37(2):260-265.
    21.季春广,王秉义,刘忠春.2010.蛾期检查柞蚕微粒子病应注意的几个问题[J].特种经济动植物,4:18.
    22.李冬梅.2002.防治柞蚕微粒子病有效药剂筛选试验初报[J].黑龙江农业,3:34.
    23.李凤娟,李亚洁,李文利.2010.昆虫免疫防御分子Hemolin的研究进展[J].生命科学研究,16(1):90-94.
    24.李健男,王爱荣,王林美,等.2005.柞蚕微孢子虫(Nosema pernyi)对柞蚕卵巢初代培养细胞的侵染与增殖[J].沈阳农业大学学报,36(4):451-453.
    25.李健男,吴玉林,王式媛.1995.柞蚕微孢子虫在柞蚕体内增殖的组织病理学研究[J].沈阳农业大学学报,26(2):188-192.
    26.李健男.1988.柞蚕微粒子病血清学诊断的研究-玻片凝集法及SPA法[J].沈阳农业大学学报,19(1):38-42.
    27.李明,缪泽鸿,丁健.2008.蛋白酶体及其抑制剂的研究进展[J].中国药理学通报,24(5):565-568.
    28.李士云,吴克佐,张双全,等.1987.柞蚕蛹血淋巴中凝集素的分离鉴定[J].昆虫学报,30(1):1-7.
    29.李晓梅,任珍珍,陈永,等.2009.昆虫泛素基因和功能研究进展[J].生物技术通报,增刊:62-66.
    30.李彦卓,王勇,王伯阳,等.2011.柞蚕滞育蛹与非滞育蛹蛋白质表达差异初步分析[J].蚕业科学,37(4):666-670.
    31.李艳红,刘含登,吴正理,等.2007.家蚕微孢子虫单克隆抗体的制备及鉴定[J].蚕业科学,33(1):138-141.
    32.李艳红,谢俪,潘国庆,等.2006.家蚕微孢子虫抗体免疫荧光检测方法的建立及应用[J].西南农业大学学报(自然科学版),28(6):990-993.
    33.李志强,陈国生,王茂先,等.2003.昆虫体液免疫的分子生物学[J].生命的化学,23(5):348-351.
    34.历红达,李喜升.2003.论柞蚕微粒子病的显微镜补正检查[J].中国蚕业,5:47.
    35.廖模祥,刘吉平,郝娟,等.2011.2种野外昆虫来源微孢子虫的超微结构及生活史观察[J].蚕业科学,37(1):134-137.
    36.刘碧郎,李玉欣,亓希武等.2011.家蚕丝氨酸蛋白酶基因BmHP21的克隆及表达分析.蚕业科学,37(3):0419-0424.
    37.刘含登.2011.家蚕微孢子虫(Nosema bombycis)基因组学研究—核糖体蛋白基因及rDNA序列特征分析[D].西南大学.
    38.刘吉平,曹阳,Smith JE,等.2004.模拟感染家蚕微粒子病的蚕卵、蚕蛾PCR检测的初步研究[J].蚕业科学,30(4):367-370.
    39.刘吉平,卢铿明,徐兴耀,等.1995.单抗免疫金银染色法诊断家蚕微孢子虫的研究[J].广东蚕业,29(3):30-35.
    40.刘吉平,汤宇杰,王玉强,等.2009.柞蚕感染微孢子虫前后的酪氨酸活力变化的研究[A].中国蚕学会第六届家蚕和柞蚕遗传育种学术研讨会论文集[C],319-324.
    41.刘吉平,曾玲.2006.微孢子虫的生物多样性研究的述评[J].昆虫知识,43(2):153-158
    42.刘吉平,曾玲.2007. Calcofluor White M2R荧光染色法识别家蚕微孢子虫[J].昆虫学报,50(11):1185-1186.
    43.刘培刚,李卫国,王永强.2010.家蚕蛋白质组学研究进展.浙江农业学报,22(1):124-129.
    44.刘淑敏,高玉章,宋有忠,等.1992.应用微波防治柞蚕微粒子病的研究[J].辽宁农业科学,5:14-17.
    45.刘彦群,姜德福.2008.柞蚕功能基因研究进展[J].34(3):568-574.
    46.刘艳艳,迟旭娟,谈建中,等.2008.家蚕蚁蚕蛋白质组的质谱鉴定与数据库构建[J].蚕业科学,34(4):676-683.
    47.龙綮新,柯昭喜,王询.1995.微孢子虫孢子表面蛋白电泳分析及其在种类鉴定上应用的初步研究[J].昆虫天敌.17(1):27-32.
    48.芦琨.2009.家蚕微粒子病免疫学快速检测试纸条的研究[D].重庆:西南大学.
    49.鲁兴萌,蔡顺风,邱海洪,等.2011.蚕病检测中免疫学技术的研究与应用[J].蚕桑通报,42(3):1-4.
    50.吕要斌,梁广文,曾玲.2002.家蚕的一种微孢子虫对小菜蛾的致病力测定[J].植物保护学报,29(4):320-324.
    51.马彩霞,刘惠霞,沙忠利,等.2002.昆虫体内储存蛋白的研究进展[J].昆虫知识,39(6):416-420.
    52.马文石,韩建华,李凤芹,等.2002.柞蚕卵(蚁蚕)微粒子病检查方法的研究[J].北方蚕业,23(95):38-39.
    53.宁媛媛,尤民生,王成树.2009.昆虫免疫识别与病原物免疫逃避机理研究进展[J].昆虫学报,52(2):567-575.
    54.潘中华,贡成良,郑小坚,等.2007.家蚕微孢子DNA的PCR检测灵敏度研究[J].常熟理工学院学报(自然科学版),21(4):51-54.
    55.祁云霞,刘永斌,荣威恒.2011.转录组研究新技术:RNA-Seq及其应用[J].遗传,33(11):1191-1202.
    56.钱小红,贺福初.2003.蛋白质组学:理论与方法[M].北京:科学出版社,8-10
    57.秦利,姜德富,石生林,等.柞蚕蚕种学[M].北京:北京师范大学出版社,2011.6.
    58.秦利,王学英,李健男,等.中国柞蚕学[M].北京:中国科学文化出版社,2003.5.
    59.秦启联,苗麟,宋宪军,等.2002.快速有效地检测昆虫微粒子病[A].昆虫学创新与发展—中国昆虫学会2002年学术年会论文集[C].北京:中国科学技术出版社,177-181.
    60.邱宝利,徐兴耀,牟志美,等.2002.核酸分子杂交技术鉴别和检测家蚕微孢子虫的研究[J].山东农业大学学报(自然科学版),33(1):14-18.
    61.屈贤铭,李士云,吴克佐,等.1985.大肠杆菌及聚肌胞核苷酸对柞蚕、家蚕蛹诱导产生溶菌酶、抗菌肽及凝集素的动力学[J].昆虫学报,28(1):1-7.
    62.屈贤铭,祁国荣,黄自然.1984.注射大肠杆菌或超声波诱导家蚕及蓖麻蚕产生抗菌物质的比较研究[J].昆虫学报,27(3):275-279.
    63.冉红凡,潘文亮,冯书亮,等.2003.影响微孢子虫对棉铃虫幼虫致病力的因子[J].中国生物防治,19(4):162-165.
    64.沈子璋,许啸声,李稻.2006.泛素—蛋白酶体及其抑制剂[J].现代肿瘤医学,11:1454-1457.
    65.施健,廖专,李兆申.2004.黏蛋白基因表达与胰腺癌早期诊断.临床消化病杂志,16(2):86-88.
    66.时连根,钟伯雄,徐俊良.2001.家蚕血淋巴对病原白僵菌的防御机理[J].农业生物技术学报,9(4):383-386.
    67.宿桂梅,丁杰.2002.柞蚕微孢子虫生命力及抵抗力的研究[J].北方蚕业,95(4):31-32.
    68.宿桂梅,丁杰.2003a.柞蚕微粒子病的发生于环境条件的关系[J].北方蚕业,97(2):35-36.
    69.宿桂梅,丁杰.2003b.柞蚕微孢子虫对柞蚕组织细胞的侵染及组织病变观察[J].北方蚕业,98(3):34-35.
    70.宿桂梅,李亚洁.2002.微粒子感染对柞蚕体内酶活性及血淋巴蛋白质含量的影响[J].辽宁农业科学,1:46-47.
    71.孙京臣,谭玉蓉,戴伟君,等.2005a.家蚕质多角体病毒RDRP的免疫电镜定位研究[J].电子显微镜,24(1):69-73.
    72.孙京臣,戴伟君,谭玉蓉,等.2005b.家蚕质多角体病毒RDRP基因的克隆、表达及定位[J].农业生物技术学报,13(2):202-206.
    73.唐顺明,张志芳,李奕仁,等.2002.用铬变素2R法对家蚕微孢子虫孢子染色的研究[J].蚕业科学,28(1):72-74.
    74.唐啸尘,黄自然,宁波,等.1999.柞蚕微孢子虫单克隆抗体的研制及诊断[J].蚕业科学,25(4):221-224.
    75.唐啸尘.1998.热激防治柞蚕微粒子病和微孢子虫单抗的制备[D].广州:华南农业大学.
    76.陶美林,潘国庆,胡怀翠,等.2009.家蚕微孢子虫丝氨酸蛋白酶抑制剂蛋白serpin基因NbSPN106的鉴定[J].微生物学报,49(6):726-732.
    77.万国富,卢铿明,黄自然,等.1994.单克隆抗体直接ELISA法检测家蚕微孢子虫[J].广东蚕业,28(4):33-36.
    78.万嘉群.1998.用酶标抗体法检测蚕微粒子孢子[J].中国动物检疫,15(1):6-7.
    79.万森,何永强,张海燕,等.2008.家蚕成品卵微粒子病McAb-ELISA检测方法的研究[J].蚕桑通报,39(4):13-16.
    80.汪方炜,鲁兴萌.2003.昆虫的微孢子虫病[J].昆虫知识,40(1):5-8.
    81.汪琳.2005.多重PCR快速检测四种蚕微粒子病原体[J].检验检疫科学,15(6):34-35.
    82.王爱荣,李健男,刘向国,等.2002.柞蚕微孢子虫孢子人工发芽的研究[J].沈阳农业大学学报,33(4):281-284.
    83.王伯阳,姜义仁,杨瑞生,等.2011.柞蚕微孢子虫3种孢壁蛋白的提取与鉴定[J].蚕业科学,37(2):330-336.
    84.王见杨,黄可威,毛西城,等.2001.微孢子虫核糖体小亚单位RNA(SSU rRNA)基因[J].生物化学与生物物理学报,33(2):229-232.
    85.王林玲,陈克平,姚勤,等.2006.柞蚕微孢子核糖体基因和转录间隔区的序列及系统进化分析[J].中国农业科学,39(8):1674-1679.
    86.王林玲.2007.柞蚕微孢子虫核糖体基因及家蚕、柞蚕微孢子虫蛋白质组以及侵染家蚕后中肠的比较蛋白质组学研究[D].江苏大学.
    87.王世富,刘治国.2000.柞蚕微粒子病蚕蛋白质组分变化的研究[J].沈阳农业大学学报,31(3):264-266.
    88.王曦,汪小我,王立坤,等.2010.新一代高通量RNA测序数据的处理与分析[J].生物化学与生物物理进展,37(8):834-846.
    89.王英,张健,张锡林,等.2008.大劣按蚊血淋巴中丝氨酸蛋白酶的分离与鉴定[J].中国病原生物学杂志,3(3):203-205.
    90.王勇,李彦卓,王伯阳,等.2011.柞蚕胚胎发育期蛋白质的2D-PAGE图谱分析[J].蚕业科学,37(4):658-665.
    91.王玉强.2009.柞蚕微孢子虫侵染甜菜夜蛾的生物特性研究[D].华南农业大学.
    92.王韵,周泽扬,鲁成,等.1997.单粒蚕卵DNA的制备方法[J].西南农业大学学报,19(5):434-437.
    93.韦亚东,张国政,陆长德.2005.家蚕微孢子虫原位杂交诊断技术研究[J].蚕业科学,31(1):64-68.
    94.魏庆国,吕明涛.2011.对检法在柞蚕微粒子病镜检中的应用实践[J].北方蚕业,32(2):63-64
    95.问锦曾.1975.微孢子虫对玉米螟生存率及繁殖力的影响[J].昆虫学报,18(1):42-46.
    96.问锦曾.1984.影响玉米螟微孢子虫病田间传播的因素[J].昆虫学报,27(4):468-470.
    97.问锦曾.1986.玉米螟微孢子虫病发生的流行的考察[J].生物防治通报,2(2):87-88.
    98.吴萍,刘挺,覃光星,等.2011.家蚕中肠组织感染质型多角体病毒的应答基因分析[J].中国农业科学,44(13):2814-2822.
    99.吴松锋,朱云平,贺福初.2005.转录组与蛋白质组比较研究进展[J].生物化学与生物物理进展,32(2):99-105.
    100.吴玉林,郭殿荣,李健男.1993.热汤浴卵防治柞蚕微粒子病的研究[J].沈阳农业大学学报,24(1):38-42.
    101.吴正理,李艳红,党晓辉,等.2007.家蚕微孢子虫(Nosema bombycis)侵染家蚕丝腺组织后的免疫胶体金标记观察[J].蚕业科学,33(4):682-685.
    102.夏润玺,李玉萍,王欢,等.2009.柞蚕蛹全长cDNA文库的构建和随机EST测序[J].蚕业科学,35(3):528-532.
    103.向恒,潘国庆,陶美林,等.2010.家蚕微孢子虫全基因组分析支持微孢子虫与真菌的亲缘关系[J].蚕业科学,36(3):442-446.
    104.谢俪.2007.家蚕微孢子虫总蛋白双向电泳及质谱技术分析平台的构建[D].重庆:西南大学.
    105.谢秀枝,王欣,刘丽华,等.2011.iTRAQ技术及其在蛋白质组学中的应用[J].中国生物化学与分子生物学报,27(7):616-621.
    106.徐立,余茂德,鲁成,等.2005.桑叶总DNA的斑迹抽提方法[J].蚕业科学,31(1):107.
    107.徐启茂,吴玉林,李健男,等.1999.应用水解酶复合剂及IBP防治柞蚕微粒子病的研究[J].沈阳农业大学学报,30(2):128-131.
    108.徐淑荣.2008.五龄柞蚕后部丝腺差异表达蛋白研究[D].大连:大连理工大学.
    109.徐兴耀,宁波,孙京臣,等.1998.家蚕微孢子虫单抗体金银染色法检测技术的研究[J].蚕业科学,24(1):11-14.
    110.徐耀军,陈大光.2006.柞蚕微粒子病上升的原因和防治措施[J].特种经济动植物,9(8):15-16.
    111.颜彦,韩红玉,黄兵.2009.寄生虫热激蛋白的研究进展[J].生物技术通报,2:29-33.
    112.杨礼富.2007.蛋白质组学研究技术与展望[J].热带农业科学,27(2):58-62.
    113.于秀文,王显艳,孙玉荣,等.2008.MUC2、CDX2在大肠肿瘤中联合表达的意义[J].肿瘤防治研究,35(10):715-719.
    114.张国德,姜德福.中国柞蚕[M].沈阳:辽宁科学技术出版社,2003.10.
    115.张海燕,万淼,费晨,等.2007.家蚕微孢子虫(浙江株)α-微管蛋白基因部分片段的克隆及系统发育分析[J].蚕业科学,33(1):49-56.
    116.张龙,严毓骅.2008.以生物防治为主的蝗灾可持续治理新对策及其配套技术体系[J].中国农业大学学报,13(3):1-6.
    117.张树军,狄建军,张国文,等.2008.蛋白质组学的研究方法[J].内蒙古民族大学学报,23(6):647-649.
    118.张双全,屈贤铭,戚正武.1985.不同诱导源对柞蚕蛹血淋巴及生殖腺中抗菌物质产生的影响[J].生物化学杂志,1(4):49-56.
    119.张双全,屈贤铭,戚正武.1987.昆虫免疫应答机抗菌肽应用前景[J].生物化学杂志,3(1):11-18.
    120.张玺,许金山,张小燕,等.2010.柞蚕微孢子虫部分孢壁蛋白的分离鉴定及孢壁蛋白8的序列分析[J].蚕业科学,36(6):949-956.
    121.张永栋,刘晨曦,何林,等.2011.羧肽酶在Bt抗性棉铃虫中肠的表达分析[J].环境昆虫学报,33(2):159-165.
    122.张禹,丁杰,于广安,等.1996.野外昆虫与柞蚕微粒子病的关系[J].辽宁农业科学,5:31-34.
    123.张禹,李宏,宿桂梅,等.2002.柞蚕微粒子病治疗药剂―“蚕锈康”的研究[J].辽宁农业科学,(1):10-15.
    124.钟伯雄.2001.五龄家蚕若干组织器官蛋白质数据库构建[J].遗传学报,28(3):217-224.
    125.周成,潘国庆,万永继,等.2002.家蚕微孢子虫N.bombycis分离纯化方法的优化[J].蚕学通讯,22(1):7-9.
    126.朱勃,沈中元,曹喜涛,等.2006.家蚕微孢子虫(镇江株)β-微管蛋白基因部分片段的克隆及系统发育分析[J].蚕业科学,32(4):505-509.
    127.朱立平,陈学清.2000.免疫学常用实验方法[M].北京:人民军医出版社.
    128.朱荣建,唐伟,安楠.2009.菜蛾变形孢虫孢子分离纯化方法研究[J].林业勘查设计,1:96-99.
    129.邹勇,罗冰,段军,等.2011.家蚕蛋白质数据检索系统[J].蚕业科学,37(6):993-999.
    130. Agnew P, Becnel JJ, Ebert D, et al.2003. Symbiosis of microsporidia and insects. Insect Symbiosis(Ed. Bourtzis K&Miller T). CRC Press LLC, Florida, USA, pp.145-163.
    131. Aihara R, Mochiki E, Kamiyama Y, et al.2004. Mucin phenotypic expression in early signet ring cellcarcinoma of the stomach: its relationship with the clinicopathologic factors. Dig. Dis.Sci.,49(3):417-424.
    132. Akiyoshi DE, Morrison HG, Lei S, et al.2009. Genomic survey of the non-cultivatable opportunistichuman pathogen, Enterocytozoon bieneusi.PLoS Pathogens,5(1): e1000261.
    133. Arfin SM, Long AD, Ito EF, et al.2000. Global gene expression profiling in Escherichia coli K12.The effects of integration host factor. J. Biol. Chem.,275(38):29672-84.
    134. Audic S and Claverie JM.1997. The significance of digital gene expression profiles. Genome. Res.,7(10):986-995.
    135. Balbiani G.1882. Sur les microsporidies ou sporogspermies des articules. C.R. Acad. Sci.,95:1168-1171.
    136. Baldauf SL, Roger AJ, Wenk-Siefert I, et al.2000. A kingdom-level phylogeny of eukaryotes basedon combined protein data. Science,290:972-976.
    137. Beznoussenko GV, Dolgikhh VV, Seliverstova EV, et al.2007. Analogs of the Golgi complex inmicrosporidia: structure and avesicular mechanisms of function. J. Cell. Sci.,120:1288-1298.
    138. Biderre C, Mathis A, Deplazes P, et al.1999. Molecular karyotype diversity in the microsporidianEncephalitozoon cuniculi. Parasitology,118:439-445.
    139. Biderre C, Pages M, Metenier G, et al.1994. On small genomes in eukaryotic orgnaisms: molecularkaryotypes of two microsporidian species (Protozoa) parasites of vertebrates. C.R.Acad.Sci.Ⅲ,317:399-404.
    140. Bigliardi E and Sacchi L.2001. Cell biology and invasion of the microsporidian. Microbe andInfection,25(4):373-379.
    141. Birzele F, Schaub J, Rust W, et al.2010. Into the unknown: expression profiling without genomesequence information in CHO by next generation sequencing. Nucleic. Acids. Res., doi:10.1093/nar/gkq116.
    142. Bohne W, Ferguson DJ, Kohler K, et al.2000. Developmental expression of a tandemly repeated,glycine-and serine-rich spore wall protein in the microsporidian pathogen Encephalitozoon cuniculi.Infect Immun.,68(4):2268-75.
    143. Brooks WM.1988. Entomogenous protozoa[M]. Ignoffo CM ed. CRC Handbook of Natural Pesticides.Vol V. Microbial Insecticides. Part A. Entomogenous Protozoa and Fungi. CRC Press, pp.1-49.
    144. Brosson D, Kuhn L, Delbac F, et al.2006. Proteomic analysis of the eukaryotic parasiteEncephalitozoon cuniculi (Microsporidia): a reference map for proteins expressed in late sporogonialstages. Proteomics,6:3625-3635.
    145. Brosson D, Kuhn L, Prensier G, et al.2005. The putative chitin deacetylase of Encephalitozooncuniculi: a surface protein implicated in microsporidian spore-wall formation. FEMS Microbiol Lett.,247(1):81-90.
    146. Bruno VM, Wang Z, Marjani SL, et al.2010, Comprehensive annotation of the transcriptome of thehuman fungal pathogen Candida albicans using RNA-seq. Genome. Res.,20(10):1451-1458.
    147. Bryan RT and Schwartz DA.1999. Epidemiology of microsporidiosis. In: Wittner M, Weiss L (Eds.),The Microsporidia and Microsporidiosis. American Society of Microbiology, Washington, DC,pp.502-516.
    148. Burri L, Williams BA, Bursac D, et al.2006. Microsporidian mitosomes retain elements of thegeneral mitochondrial targeting system. Proc. Natl. Acad. Sci.,103(43):15916-15920.
    149. Byrd JC, Bresalier RS.2004. Mucins and mucin binding proteins in colorectalcancer. Cancer.Metastasis. Rev.,23(1-2):77-99.
    150. Canning E and Lom J.1986. The Microsporidia of Vertebrates. Academic Press, Inc., New York City,NY,286p.
    151. Cavalier-Smith T.1998. A revised six-kingdom system of life. Biological Reviews,73(3):203-266.
    152. Chandramouli K, Qian PY.2009. Proteomics: Challenges, Techniques and Possibilities to OvercomeBiological Sample Complexity. Human Genomics and Proteomics, DOI:10.4061/2009/239204.
    153. Chen MX, Ai L, Xu MJ, et al.2011. Identification and characterization of microRNAs in Trichinellaspiralis by comparison with Brugia malayi and Caenorhabditis elegans. Parasitol. Res.,109:553–558.
    154. Cheung WWK and Wang JB.1995. Electron microscopic studies on Nosema mesnili Paillot(Microsporidia: Nosematidae) infecting the Malpighian tubules of Pieris canidia larva. Protoplasma,186:142-148.
    155. Conesa A, G tz S, García-Gómez JM, et al.2005. Blast2GO: a universal tool for annotation,visualization and analysis in functional genomics research. Bioinformatics,21(18):3674-3676.
    156. Cornman RS, Chen YP, Schatz MC, et al.2009. Genomic analyses of the microsporidian Nosemaceranae, a emergent pathogen of honey bees. PloS Pathogens,5(6):e1000466.
    157. Cozzi PJ, Wang J, Delprado W, et al.2005. MUC1MUC2, MUC4, MUC5AC and MUC6expressionin the progression of prostate cancer. Clin. Exp. Metastasis.,22(7):565-573.
    158. de Graaf DC, Masschelein G, Vandergeynst F, et al.1993. In vitro germination of Nosema apis(Micropsora: Nosematidae) spores and its effect on their a-trehalose/d-glucose ratio. J. Invert. Pathol.,62:220-225.
    159. Delbac F, Duffieux F, David D, et al.1998. Immunocytochemical identification of spore proteins intwo microsporidia with emphasis on apparatus. J. Euk. Microbiol.,45(2):224-231.
    160. Deplazes P, Mathis A, Weber R.2000. Epidemiology and zoonotic aspects of microsporidia ofmammals and birds. Contrib. Microbiol.,6:236-260
    161. DeRisi JL, Iyer VR, Brown PO, et al.1997.Exploring the metabolic and genetic control of geneexpression on a genomic scale. Science,278:680-686.
    162. Desportes I, Le Charpentier Y, Galian A, et al.1985. Occurrence of a new microsporidan:Enterocytozoon bieneusi n.g.,n.sp., in the enterocytes of a human patient with AIDS. J.Protozool.32:250-254
    163. Dider ES and Weiss LM.2008. Overview of microsporidia and microsporidiosis. Protistology,5(4):243-255
    164. Edlind TD, Li J, Visvesvara GS, et al.1996. Phylogenetic analysis of beta-tubulin sequences fromamitochondrial protozoa. Mol. Phylogenet. Evol.,5:359-367.
    165. Engvall E, Perlmann P.1971. Enzyme-linked immunosorbent assay (ELISA). Quantitative assay ofimmunoglobulin G. Immunochemistry,8(9):871-874.
    166. Eugene VK.2002. The clusters of orthologous groups (COGs) database: phylogenetic classificationof proteins from complete genomes. The NCBI handbook[Internet]. McEntyre J and Ostell J, eds.Bookshelf ID: NBK21090.
    167. Fast NM, Logsdon JM, Doolittle WF.1999. Phylogenetic analysis of the TATA box binding protein(TBP) gene from Nosema locustae: evidence for a microsporidia-fungi relationship and spliceosomalintron loss. Mol. Biol. Evol.,16(10):1415-1419.
    168. Faulk WP, Taylor GM.1971. An irmnuocolloid method for the electron microscope.Immuochemistry,8(11):1081-1083.
    169. Fayer R.2004. Infectivity of microsporidia spores stored in seawater at environmental temperatures. J.Parasitol.,90:654-657.
    170. Fedorov A and Hartman H.2004. What does the microsporidian E.cuniculi tell us about the origin ofthe eukaryotic cell? J. Mol. Evol.,59:695-702.
    171. Feldmeyer B, Wheat CW, Krezdorn N, et al.2010. Short read Illumina data for the de novo assemblyof a non-model snail species transcriptome(Radix balthica, Basommatophora, Pulmonata),and acomparison of assembler performance. BMC Genomics,12:317.
    172. Franzen C and Müller A.2001. Microsporidiosis: human diseases and diagnosis. Microbes Infect.,3:389-400.
    173. Frens G.1972. Particle size and sol stability in metal colloids. Colloid. Polym. Sci.,250(7):736-741.
    174. Frixione E, Ruiz L, Cerbon J, et al.1997. Germination of Nosema algerae (Microspora) spores:Conditional inhibition by D2O, ethanol and Hg2+suggests dependence of water influx uponmembrance hydration and specific transmembrance pathways. J. Eukaryot. Microbiol.,44:109-116.
    175. Frixione E, Ruiz L, Santillan M, et al.1992. Dynamics of polar filament discharge and sporoplasmexpulsion by microsporidian spores. Cell. Motil. Cytoskelet.,22:38-50.
    176. Fumarola D, Antonaci S, Jirillc E, et al.1982. Percoll density gradient centrifugation. InternationalJournal of Clinical&Laboratory Research,12(3):485-491.
    177. Gan CS, Chong PK, Pham TK, et al.2007. Technical, experimental, and biological variations inisobaric tags for relative and absolute quantitation(iTRAQ). J. Proteome. Res.,6(2):821-827.
    178. Gibbons JG, Janson EM, Hittinger CT, et al.2009. Benchmarking next-generation transcriptomesequencing for functional and evolutionary genomics. Mol.Biol.Evol.,26(12):2731-2744.
    179. Gill EE and Fast NM.2006. Assessing the microsporidia-fungi relationship: combined phylogeneticanalysis of eight genes. Gene,375:103-109.
    180. Goldberg AV, Molik S, Tsaousis AD, et al.2008. Localization and functionality of microsporidianiron-sulphur cluster assembly protein. Nature,452:624-628.
    181. Grabherr MG, Haas BJ, Yassour M, et al.2011. Full-length transcriptome assembly from RNA-Seqdata without a reference genome. Nature biotechnology:,doi:10.1038/nbt.1883.
    182. Graham IA, Besser K, Blumer S, et al.2010.The Genetic Map of Artemisia annua L.Identifies Lociaffecting Yield of the Antimalarial Drug Artemisinin. Science,327:328-331.
    183. Griffin TJ, Gygi SP, Ideker T, et al.2002. Complementary profiling of gene expression at thetanscriptome and proteome levels in Saccharomyces cerevisiae. Mol. Cell. Proteomics.,1(4):323-333.
    184. Gu GR, Cheng WZ, Yao CL, et al.2011. Quantitative proteomics analysis by isobaric tags for relativeand absolute quantitation identified lumican as a potential marker for acute aortic dissection. Journalof Biomedicine and Biotechonolgy, doi:10.1155/2011/920763.
    185. Hanriot L, Keime C, Gay N.2008. A combination of LongSAGE with Solexa sequencing is wellsuited to explore the depth and the complexity of transcriptome. BMC Genomics,9:418.
    186. Hayman JR, Hayes SF, Amon J, et al.2001. Developmental expression of two spore wall proteinsduring maturation of the microsporidian Encephalitozoon intesinalis. Infect Immun.,69(1):7057-7066.
    187. Hegde PS, White R and Debouck C.2003. Interplay of transcriptomics and proteomics. Curr. Opin.Biotechnol.,14(6):647-651.
    188. Henn MW and Solter LF.2000. Food utilization values of gypsy moth Lymantriae dispar(Lepidoptera: Lymantriidae) larvae infected with the microsporidium Vairimorpha sp.(Micrcsporidia:Burenellidae). J. Invertebr. Pathol.,76:263-269.
    189. Henry JE, Oma EA.1981. Pest control by Nosema locustae, a pathogen of grasshoppers andcrickets[M]. Burges HD, ed. Microbial Control of Pest and Plant Diseases1970-1980. New York:Academic Press, pp.573-586.
    190. Henry JE.1971.Experimental application of Nosema locustae for control of grasshoppers. J. Invertebr.Pathol.,18:389-394.
    191. Hester JD, Varma M, Bobst AM, et al.2002. Species-specific detection of three human-pathogenicmicrosporidial species from the genus Encephalitozoon via fluorogenic5’ nuclease PCR assays. Mol.Cell. Probes.,16:435-444.
    192. Hirt RP, Healy B, Vossbrinck CR, et al.1997. A mitochondrial Hsp70orthologue in Vairimorphanecatrix: molecular evidence that microsporidia once contained mitochondria. Curr. Biol.,7(12):995-998.
    193. Hirt RP, Logsdon JM, Healy B, et al.1999. Microsporidia are related to Fungi: evidence from thelargest subunit of RNA polymerase II and other proteins. Proc. Natl. Acad. Sci.,96:580-585.
    194. Hu HD, Ye F, Zhang DZ, et al.2010. iTRAQ quantitative analysis of multidrug resistancemechanisms in human gastic cancer cell. Journal of Biomedicine and Biotechnology,doi:10.1155/2010/571343
    195. Huang WF, Lo CF, Tseng CC, et al.1998. The small subunit ribosomal RNA gene sequence ofPleistophora anguillarum and the use of PCR primers of diagnostic detection of the parasite.J.Eukaryot. Microbiol.,45(5):556-560.
    196. Huang WF, Tsai SJ, Lo CF, et al.2004. The novel organization and complete sequence of theribosomal RNA gene of Nosema bombycis. Fungal Genetics and Biology,41:473-481.
    197. Ideker T, Thorsson V, Ranish JA, et al.2001. Integrated genomic and proteomic analyses of asystematically perturbed metabolic network. Science,292(5518):929-934.
    198. Irby WS, Huang YS, Kawanishi CY, et al.1986. Immunoblot analysis of exospore polypeptides fromsome entomophilic microsporidia. Journal of Parasitology,33(1):14-20.
    199. Iseli C, Jongeneel CV, Bucher P, et al.1999. ESTScan: a program for detecting, evaluating, andreconstructing potential coding regions in EST sequences. Proc. Int. Conf. Intell. Syst. Mol.Biol.,138-48.
    200. Isoe J, Zamora J, Miesfeld RL.2009. Molecular analysis of the Aedes aegypti carboxypeptidase genefamily. Insect Biochem. Mol. Bio.,39(1):68-73.
    201. Iwano H and Ishihara R.1991. Dimorphism of spores of Nosema spp. in cultured cell. J. Invertebr.Pathol.,57:211-219.
    202. James TY, Kauff F, Schoch CL, et al.,2006. Reconstructing the early evolution of the fungi using asix gene phylogeny. Nature,443:818-822.
    203. Jouvenaz DP.1981. Percoll: An Effective Medium for cleaning Microsporidian Spores. Journal ofInvertebrate Pathology,37:319.
    204. Kamaishi T, Hashimoto T, Nakamura Y, et al.1996a. Complete nucleotide sequences of the genesencoding translation elongation factors1α and2from a microsporidian parasite, Glugea plecoglossi:implications for the deepest branching of eukaryotes. J. Biochem.(Tokyo),120:1095-1103.
    205. Kamaishi T, Hashimoto T, Nakamura Y, et al.1996b. Protein phylogeny of translation elongationfactor EF-1α suggests microsporidians are extremely ancient eukaryotes. J. Mol. Evol.,42:257-263.
    206. Kanehisa M, Araki M, Goto S, et al.2008. KEGG for linking genomes to life and the environment.Nucleic Acids Research,36:D480-D484.
    207. Kanehisa M, Goto S, Sato Y, et al.2012. KEGG for integration and interpretation of large-scalemolecular data sets. Nucleic Acids Research,40:D109-D114.
    208. Katinka MD, Duprat S, Cornillot E, et al.2001.Genome sequence and gene compaction of theeukaryote parasite Encephalitozoon cuniculi. Nature,414:450-453.
    209. Kawakami Y, Inoue T, Ito K, et al.1994.Identification of a chromosome harboring the small subunitribosomal RNA gene of Nosema bombycis. J. Invertebr. Pathol.,64(2):147-148.
    210. Kawakami Y, Iwano H, Hatakeyama Y, et al.2001. Use of PCR with the specific primers fordiscrimination of Nosema bombycis. Journal of Sericultural Science of Japan,70:43-48.
    211. Kawarabata T and Hayasaka S.1987. An enzyme-linked immunosorbent assay to detect alkali-solublespore surface antigens of strains of Nosema bombycis. J. Invertebr. Pathol.,50(2):118-123.
    212. Ke ZX, Xie WD, Wang XZ, et al.1990. A monoclonal antibody to Nosema bombycis and its use foridentification of microsporidian spores. Journal of invertebrate pathology,56(3):395-400.
    213. Keeling PJ and Doolittle WF.1996. Alpha-tubulin from early-diverging eukaryotic lineages and theevolution of the tubulin family. Mol. Biol. Evol.,13:1297-1305.
    214. Keeling PJ and Fast NM.2002. Microsporidia: biology and evolution of highly reduced intracellularparasites. Annu. Rev. Microbiol.,56:93-116.
    215. Keeling PJ and Slamovits CH.2004. Simplicity and complexity of microsporidian genomics ofmicrosporidia. Folia Parasitol.(Praha),52:8-14.
    216. Keeling PJ, Fast NM, Law JS, et al.2005. Comparative genomics of microsporidia. FoliaParasitologica,52(1/2):8-14.
    217. Keeling PJ, Luker MA and Palmer JD.2000. Evidence from beta-tubulin phylogeny thatmicrosporidia evolved from within the fungi. Mol. Biol. Evol.,17:23-31.
    218. Keeling PJ.2003. Congruent evidence from alpha-tubulin and beta-tubulin gene phylogenies for azygomycete origin of microsporidia. Fungal Genet. Biol.,38:298-309.
    219. Keohane EM and Weiss LM.1998. Characterization and function of the microsporidian polar tube: areview. Folia Parasitol.,45:117-127.
    220. Keohane EM and Weiss LM.1999. The structure, function, and composition of the microsporidianpolar tube. In: The Microsporidia and Microsporidosis (Eds. Wittner M and Weiss LM). ASM Press,Washington DC. pp.196-224.
    221. Kim BY, Park NS, Jin BR, et al.2005. Molecular cloning and characterization of a cDNA encoding anovel cuticle protein from the Chinese oak silkworm, Antheraea pernyi. DNA Seq.,16(5):397-401.
    222. Klee J, Tay WT, Paxton RJ.2006. Specific and sensitive detection of Nosema bombi (Microsporidia:Nosematidae) in bumble bees (Bombus spp.; Hymenoptera: Apidae) by PCR of partial rRNA genesequences. J. Invertebr. Pathol.,91:98-104.
    223. Knell JD and Zam SG.1978. A serological comparison of some species of microsporida. J. Invertebr.Pathol.,31:280-288.
    224. Koestler T and Ebersberger I.2011. Zygomycetes, Microsporidia, and the Evolutionary Ancestry ofSex Determination. Genome Biol. Evol.,3:186-194.
    225. Kotler DP and Orenstein JM.1999. Clinical syndromes associated with microsporidiosis. In: WittnerM, Weiss L (Eds.), The Microsporidia and Microsporidiosis. American Society of Microbiology,Washington, DC, pp.258-292
    226. Koudela B, Kucerova S and Hudcovic T.1999. Effect of low and high temperatures on infectivity ofEncephalitozoon cuniculi spores suspended in water. Folia Parasitol.(Praha).,46(3):171-174.
    227. Kunkel JG., Grossniklaus-Buergin C, Karpells ST, et al.1990. Arylphorin of Trichoplusia ni:Characterization and parasite-induced precocious increase in titer. Arch. Insect Biochem. Physiol.,13:117-125.
    228. Lee SC, Corradi N, Byrnes EJ, et al.2008. Microsporidia evolved from ancestral sexual fungi. Curr.Biol.,18:1675-1679.
    229. Lee SC, Corradi N, Doan S, et al.2010. Evolution of the sex-Related Locus and Genomic FeaturesShared in Microsporidia and Fungi. PloS ONE,5:e10539.
    230. Levine ND, Corliss JO, Cox FE, et al.1980. A newly revised classification of the protozoa. J.Protozool.,27:37-58.
    231. Li YH, Wu ZL, Pan GQ, et al.2009. Identification of a novel spore wall protein (SWP26) frommicrosporidia Nosema bombycis. International Journal for Parasitology,39(4):391-398.
    232. Liyama K, Chieda Y, Yasunaga-Aoki C, et al.2004. Analyses of the ribosomal DNA region inNosema bombycis NIS001. J. Eukaryot. Microbiol.,51:598-604.
    233. Lujan HD, Conrad JT, Clark CG, et al.1998. Detection of microsporidia spore-specific antigens bymonoclonal antibodies. Hybridoma,17(3):237-243.
    234. Lynne SG.2002. Laboratory identification of the microsporidia. Journal of Clinical Microbiology,40(6):1892-1901
    235. Maddox JM, McManus ML and Solter LF.1998. Microsporidia affecting forest lepodoptera. In:McManus ML and Liebhold AM (Ed.), Proc. Population Dynamics, Impacts, and IntegratedManagement of Forest Defoliating Insects. Aug.18-23,1996, Banská tiavnica, Slovak Republic. Gen.Tech. Rep. Ne-247. USDA Forest Sevice, Radnor, Pennsylvania. P.198-205.
    236. Madhusudhan KN, Nungshi-Devi C, Lokesh G, et al.2011. Impact of Nosema mylitta (pebrine)Infection on the Larval Parameters, Protein Concentration and Total Hemocyte Level in Daba Ecoraceof Antheraea mylitta D.(Tropical Tasar silkworm). Microbiology Journal,1(3):97-104
    237. Malone LA and McIvor CA.1995. DNA probes for two microsporidia, Nosema bombycis and Nosemacostelytrae. J. Invertebr. Pathol.,65:269-273.
    238. Mathis A.2000. Microsporidia: emerging advances in understanding the basic biology of these uniqueorganisms. Int.J.Parasitol.,30:795-804.
    239. Matsubayashi H, Koike T, Mikata I, et al.1959.A case of Encephalitozoon-like body infection in man.AMA Arch. Pathol.,67(2):181-187.
    240. Mike A, Ohwaki M and Fukada T.1988. Preparation of monoclonal antibodies to the spores ofNosema bombycis, M11and M12. J.Seric.Sci.Jpn.,57(3):189-195.
    241. Moniaux N, Escande F, Porchet N, et al.2001.Structural organization and classification of the humanmucin genes. Front. Biosci.,6:1192-1206.
    242. Moore CB, Brooks WM.1993. An evaluation of SDS-polyacrylamide gel electrophoretic analysis forthe determination of intrageneric relationships of Vairimorpha isolates. Journal of InvertebratePathology.62(3):285-288.
    243. Mortazavi A, Williams BA, Kenneth MC, et al.2008. Lorian Schaeffer and Barbara Wold Mappingand quantifying mammalian transcriptomes by RNA-Seq. Nature Methods,5:621-628.
    244. Moura H and Visvesvara GS.2001. A proteome approach to the host-parasite interaction of themicrosporidian Encephalitozoon intestinalis. Joumal of Eukaryotic Microbiology,48(suppl):56S-59S.
    245. Moura H, Ospina M, Woolfitt AR, et al.2003. Analysis of four human microsporidian isolates byMALDI-TOF mass spectrometry. J. Eukaryot. Microbiol.,20:156-163.
    246. Muetzelburg MV, Hofmann F, Just I, et al.2009. Identification of biomarkers indicating cellularchanges after treatment of neuronal cells with the C3exoenzyme from Clostridium botulinum usingthe iTRAQ protocol and LC-MS/MS analysis. Journal of Chromatograph B Analytical Technologiesin the Biomedical and Life Sciences,877(13):1344-1351.
    247. Munn EA and Greville GD.1969. The soluble proteins of developing: Calliphora erythrocephala,particularly calliphorin, and similar proteins in other insects. Journal of Insect Physiology,15(10):1935-1950.
    248. N egeli KW.1857. über die neue Krankheit der Seidenraupe und verwandte Organismen. Bot. Ztg.,15:760-761
    249. Peek R, Delbac F, Speijer D, et al.2005. Carbohydrate moieties od microsporidian polar tube proteinsare targeted by immunoglobulin G in inmmunocompetent individuals. Infect. Immun.,73:7906-7913.
    250. Peng XX, Gralinski L, Armour CD, et al.2010. Unique signatures of long noncoding RNA expressionin response to virus infection and altered innate immune signaling. MBio.,1(5):e00206-10.
    251. Perkins DN, Pappin DJC, Creasy DM, et al.1999. Probability-based protein identification bysearching sequence databases using mass spectrometry data. Electrophoresis,20:3551-3567.
    252. Peuvel-Fanget I, Polonais V, Brosson D, et al.2006. EnP1and EnP2, two proteins associated with theEncephalitozoon cuniculi endospore, the chitin-rich inner layer of the microsporidian spore wall.International Journal for Parasitology,36(3):309-318.
    253. Pinto-de-Sousa J, Reis CA, David L, et al.2004. MUC5B expression in gastriccarcinoma:relationship with clinico-pathological parameters and with expression of mucins MUC1,MUC2, MUC5AC and MUC6. Virchows. Arch.,444(3):224-230.
    254. Polonais V, Delbac F and Vivares C.2007. Polar tube proteins in microsporidia. Protistology,5:63.
    255. Redding AM, Mukhopadhyay A, Joyner DC, et al.2006. Study of nitrate stress in Desulfovibriovulgaris Hildenborough using iTRAQ proteomics. Briefings in functional genomics and proteomics,5(2):133-143.
    256. Régnière J.1984. Vertical transmission of disease and population dynamics of insects with discretegenerations: a model. J. Theor. Biol.,107:287-301.
    257. Reinartz J, Bruyns E, Lin JZ, et al.2002. Massively parallel signature sequencing(MPSS) as a tool forin-depth quantitative gene expression profiling in all organisms. Brief Funct Genomic Proteomic.,1(1):95-104.
    258. Rosenkranz R, Borodina T, Lehrach H, et al.2008, Characterizing the mouse ES cell transcriptomewith Illumina sequencing. Genomics,92(4):187-194
    259. Ross PL, Huang YN, Marchese JN, et al.2004. Multiplexed protein quantitation in Saccharomycescerevisiae using amine-reactive isobaric tagging reagents. Mol. Cell. Proteomics.,3(12):1154-1169.
    260. Royama T.1984. Population dynamics of spruce budworm, Choristoneura fumiferana. Ecol. Monogr.,54:429-462.
    261. Sadowski PG, Dunkley TP, Shadforth IP, et al.2006. Quantitative proteomic approach to studysubcellular location of membrance proteins. Nature Protocols,1:1778-1789.
    262. Satoh D, Horii A, Ochiai M, et al.1999. Prophenoloxidase-activating enzyme of the silkworm,Bombyx mori. J. Biol. Chem.,274(11):7441-7453.
    263. Shadduck JA and Polley MB.1978. Some factors influencing the in vitro infectivity and replication ofEncephalitozoon cuniculi. Journal of Eukaryotic Microbiology,25:491-496.
    264. Shamim M, Debjani Ghosh, Baig M, et al.1997. Production of Monoclonal Antibodies AgainstNosema bombycis and their Utility for Detection of Pebrine Infection in Bombyx mori L. J.Immunoassay Immunochem.,18:357-370.
    265. Shendure J and Ji H.2008. Next-generation DNA sequencing. Nat. Biotechol.,26(10):1135-1145.
    266. Sinha AK, Sinha SUP, Sinha SS, et al.1990. Changes in free amino acids in the haemolymph ofpebrine infected larvae and pupae of Antheraea mylitta D. Indian Journal of Sericulture.29(2):233-239.
    267. Southern TR, Jolly CE, Lester ME, et al.2007. EnP1, a microsporidia spore wall protein that enablesspores to adhere and infect host cells in vitro. Eukaryot Cell,6(8):1354-1362.
    268. Sprague V, Becnel JJ and Hazard EI.1992. Taxonomy of phylum microspora. Crit. Rev.Microbiol.,18:285-395.
    269. Sprague V.1976. Classification and phylogeny of the microsporidia. In: Bulla LA, Chen TC (Eds.),Comparative Pathology, vol.2. Plenum Press, New York, NY, pp.1-30.
    270. Texier C, Brosson D, El Alaoui H, et al.2005. Post-genomics of microsporidia, with emphasis on amodel of minimal eukaryotic proteme: a review. Folia Parasitol.(Praha).,52:15-22.
    271. Texier CD, Brosson L, Kuhn J, et al.2004. Proteomics of the microsporidian Encephalitozooncuniculi: application to the identification of new spore wall proteins. Journal of EukaryoticMicrobiology,51(suppl):28a.
    272. Thomarat F, Vivare CP and Gouy M.2004. Phylogenetic analysis of the complete genome sequence ofEncephalitozoon cuniculi supports the fungal origin of microsporidia and reveals a high frequency offast-evolving genes. J. Mol. Evol.,59:780-791.
    273. Thomson HM.1960. The possible control of a spruce budworm infestation by a microsporidiandisease. Canada Department of Agriculture Bi-monthly Progress Report,16:1.
    274. Tsaousis AD, Kunji ER, Goldberg AV, et al.2008. A novel route for ATP acquisiton by the remnantmitochondria of Encephalitozoon cuniculi. Nature,453:553-556.
    275. Undeen AH and Epsky ND.1990. In vitro and in vivo germination of Nosema locustae (Microsporidia:Nosematidae) spores. J. Invertebr. Pathol.,56:371-379.
    276. Undeen AH and Frixione E.1990. The role of osmotic pressure in the germination of Nosema algeraespores. J. Protozool.,37:561-567.
    277. Undeen AH and Vander Meer RK.1994. Conversion of intrasporal trehalose into reducing sugarsduring germination of Nosema algerae (Protista: Microspora) spores: a quantitative study. J. Eukaryot.Microbiol.,41:129-132.
    278. Undeen AH, Elgazzar LM, Vander Meer RK, et al.1987. Trehalose levels and trehalase activity ingerminated and ungerminated spores of Nosema algerae (Microspora: Mosematidae). J. Invertebr.Pathol.,50:230-237.
    279. Van der Meer JW and Gochnauer TA.1971. Trehalose activity associated with spores of Nosema apis.J. Invertebr. Pathol.,17:38-41.
    280. Vavra J and Larsson JI.1999. Structure of the microsporidia. In: The Microsporidia andMicrosporidosis (Eds. Wittner M and Weiss L). Amer. Soc. Microbiol., Washington DC. pp.7-84.
    281. Vavra J.2005.“Polar vesicles” of microsporidia are mitochondrial remnants (“mitosomes”)? FoliaParasitol.(Praha).,52:193-195.
    282. Vossbrinck CR and Woese CR.1986. Eukaryotic ribosomes that lack a5.8S RNA. Nature,320:287-288.
    283. Vossbrinck CR, Maddox JV, Friedman S, et al.1987. Ribosomal RNA sequence suggestsmicrosporidia are extremely ancient eukaryotes. Nature.326:411-414.
    284. Wang JY, Chambon C, Lu CD, et al.2007. A proteomic-based approach for the characterization ofsome major structural proteins involved in host-parasite relationships from the silkworm parasiteNosema bombycis(microsporidia). Proteomics.7(9):1461-72.
    285. Wang LL, Chen KP, Zhang Z, et al.2006. Phylogenetic Analysis of Nosema antheraeae(Microsporidia) Isolated from Chinese Oak Silkworm, Antheraea pernyi. The Journal of eukaryoticmicrobiology,53(4):310-313
    286. Wang Z, Gerstein M, Snyder M.2009. RNA-Seq: a revolutionary tool for transcriptomics. Nat. Rev.Genet.,10(1):57-63.
    287. Wasinger VC, Cordwell SJ, Cerpa-Poljak A, et al.1995. Progress with gene-product mapping of theMollicutes:Mycoplasma genitalium. Electrophoresis,16(7):1090-1094.
    288. Weber R, Deplazes P, Schwartz D.2000. Diagnosis and clinical aspects of human microsporidiosis.Contrib. Microbiol.,6:166-192
    289. Weber R, Bryan RT, Owen RL, et al.1992. Improved light-microscopical detection of microsporidiaspores in stool and duodenal aspirates. The Enteric Opportunistic Infections Working Group. N. Engl.J. Med.,326:161-166.
    290. Weidner E, Findley AM, Dolgikh V, et al.1999. Microsporidian biochemistry and physiology. SeeRef.,105.pp.172-195.
    291. Weidner E.1976. The microsporidian spore invasion tube. The ultrastructure, isolation, andcharacterization of the protein comprising the tube. J. Cell. Biol.,71(1):23-24.
    292. Weiss LM and Vossbrinck CR.1999. Molecular biology, molecular phylogeny, and moleculardiagnostic approaches to the microsporidia. In: Wittner M and Weiss LM, Editors. The Microsporidiaand Microsporidiosis, ASM Press, Washington, DC, pp129–171.
    293. Weiss LM.2003. Microsporidia2003:IWOP-8. J. Eukaryot. Microbiol.,50(Suppl.):566-568.
    294. Wilkins MR, Pasquali C, Appel RD, et al.1996a. From proteins to proteomes: large scale proteinidentification by two-dimensional electrophoresis and amino acid analysis. Biotechnology(NY),14(1):61-65.
    295. Wilkins MR, Williams KL, Sanchez JC, et al.1996b. Progress with proteome projects: why allproteins expressed by a genome should be identified and how to do it. Biotechnology&GeneticEngineering Reviews,13(2):19-50.
    296. Williams BA and Keeling PJ.2003. Cryptic organelles in parasitic protists and fungi. Adv. Parasitol.,54:9-68.
    297. Williams BA, Elliot C, Burri L, et al.2010. A broad distribution of the alternative oxidase inmicrosporidian parasites. PLoS Pathogens,6(2): e1000761.
    298. Williams BA, Hirt RP, Lucocq JM, et al.2002. A mitochondrial remnant in the microsporidianTrachipleistophora hominis. Nature,418:865-869.
    299. Williams DF, Oi DH and Knue GJ.1999. Infection of red imported fire ant (Hymenoptera:Formicidae) colonies with the entomopathogen Thelohania solenopsae (Microsporidia:Thelohanidae).J. Econ. Entomol.,92:830-836.
    300. Williams DF, Oi DH, Knue GJ, et a1.1998. Discovery of Thelohania solenopsae from the redimported fire ant, Solenopsis invicta, in the United States. J. Invertebr. Pathol.,71:175-176.
    301. Wittner M.1999. Historic perspective on the microsporidia: expanding horizons. In: Wittner M, WeissL (Eds.), The Microsporidia and Microsporidiosis. American Society of Microbiology, Washington,DC, pp.1-6,553
    302. Wolfson JL and Murdock LL.1990. Diversity in digestive proteinase activity amond insects. Journalof chemical ecology,16(4):1089-1102.
    303. Wu ZL, Li YH, Pan GQ, et al.2008. Proteomic analysis of spore wall proteins and identification oftwo spore wall proteins from Nosema bombycis (Microsporidia). Proteomics,8(12):2447-2461.
    304. Wu ZL, Li YH, Pan GQ, et al.2009. SWP25, a novel protein associated with the Nosema bombycisendospore. Journal of Eukaryotic Microbiology,56(2):113-118.
    305. Xia QY, Zhou ZY, Lu C, et al.2004. A draft sequence for the genome of the domesticated silkworm(Bombyx mori). Science,306(5703):1937-1940.
    306. Xiang H, Pan GQ, Zhang RZ, et al.2010. Natural selection maintains the transcribed LTRretrotransposons in Nosema bombycis. Journal of Genetics and Genomics,37(5):305-314.
    307. Xiang ZH, Mita K, Xia QY, et al.2008. The genome of a lepidopteran model insect, the silkwormBombyx mori. Insect Biochem. Mol. Biol.,38(12):1036-1045.
    308. Xu J, Wang L, Tang F, et al.2011. The nuclear apparatus and chromosomal DNA of themicrosporidian Nosema antheraeae. J. Eukaryot. Microbiol.,58(2):178-180
    309. Xu JS and Zhou ZY.2010. Improving phylogenetic inference of microsporidian Nosema antheraeaeamong Nosema species with RPB1, α-and β-tubulin sequences. African Journal of Biotechnology,9(46):7900-7904
    310. Xu JS, Pan GQ, Fang L, et al.2006. The varying microsporidian genome: Existence of long-terminalrepeat retrotransposon in domesticated silkworm parasite Nosema bombycis. International Journal forParasitology,36(9):1049-1056.
    311. Xu JS, Wang M, Zhang XY, et al.2010. Identification of NbME MITE families: Potential molecularmarkers in the microsporidia Nosema bombycis. Journal of Invertebrate Pathology,103(1):48-52.
    312. Xu Y and Weiss LM.2005. The microsporidian polar tube: a high specialized invasion organelle. Int.J. Parasitol.,35:941-953.
    313. Xu Y, Takvoarian P, Cali A, et al.2003. Lectin binding of the major poalr tube protein(PTP1) and itsrole in invasion. J. Eukaryot. Microbiol.,50, Suppl.,600-601.
    314. Xu YJ, Takvorian P, Cali A, et al.2006. Identification of a new spore wall protein fromEncephalitozoon cuniculi. Infection and Immunity,74(1):239-247.
    315. Ye HG, Sun L, Huang XJ, et al.2010. A proteomic approach for plasma biomarker discovery with8-plex iTRAQ labeling and SCX-LC-MS/MS. Mol. Cell. Biochem.,343(1-2):91-99.
    316. Ye J, Fang L, Zhang Y, et al.2006. WEGO: a web tool for plotting GO annotations. Nucleic. Acids.Res.,34(Web Server issue): W293-7.
    317. Yu X, Zhou Q, Li SC, et al.2008. The Silkworm (Bombyx mori) microRNAs and their expressions inmultiple developmental stages. PLoS One,3(8): e2997.
    318. Zhu M, Simons B, Zhu N, et al.2010. Analysis of abscisic acid responsive proteins in Brassica napusguard cells by multiplexed isobaric tagging. Journal of proteomics,73(4):790-805.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700