用户名: 密码: 验证码:
高抗蚀性烧结钕铁硼制备与性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
烧结钕铁硼是应用最广泛的稀土永磁材料,具有磁性能高、膨胀系数低和价格低等优点,成为现代社会和高新技术的重要基础材料。但由于晶界相和主相之间的电极电位差大,易发生晶间腐蚀,磁体耐蚀性差,严重限制其在重要领域的应用。本文基于双合金工艺,设计、制备了(Pr,Nd)-Fe-Cu和A1-Cu高腐蚀电位辅合金,通过优化辅合金含量,改善了晶界相组织和理化特性,抑制和消弱了晶界相与主相间的电化学反应,成功研制出兼具高抗蚀性和高磁性能的钕铁硼磁体。主要结果如下:
     基于热力学分析、合金腐蚀理论和Nd-Fe-Cu相图,设计制备了(Pr,Nd)32.5Fe62.0-Cu5.5、(Pr,Nd)22.0Fe71.6Cu6.4、(Pr,Nd)12.0Fe80.8Cu7.2高电位辅合金。辅合金的组成元素不向(Pr,Nd)2Fe14B主相中扩散,有利于制备高磁性的磁体;辅合金的腐蚀电位高(--0.8 V),有利于降低晶界相与主相之间的电位差,降低晶界腐蚀动力;辅合金熔点低(~506℃),有利于磁体液相烧结
     利用高电位(Pr,Nd)-Fe-Cu辅合金粉,成功制备出兼具高抗蚀性和高磁性能的烧结钕铁硼磁体,研究揭示了磁体在不同环境中的抗蚀机理。磁体的最大磁能积为356.0-384.0 kJ/m3(45-48 MGOe),在120℃、2 atm、100%相对湿度环境中腐蚀96 h的质量损失为0.3-1.0 mg/cm2,在0.005 M H2SO4溶液中腐蚀电流密度可降至148.9μA/cm2。添加12 wt%(Pr,Nd)32.5Fe62.oCu5.5的替代磁体在0.005 MH2SO4、0.6 M NaCl、0.75 M NaOH溶液和湿热环境中,比非替代磁体((Pr,Nd)14.5-Fe79.5B6.o)的抗蚀性好,前者腐蚀96h的质量损失约为后者的1/16,其原因在于前者中的(Pr,Nd)6Fe13Cu晶界相与(Pr,Nd)2Fe14B主相的腐蚀电位(~0.7 V)接近,这降低了晶界相与主相之间的电位差,降低了晶界相发生电化学腐蚀的动力,也降低了晶界相与水发生氧化腐蚀的动力。磁体的最大磁能积随辅合金添加量的增加先增大后减小,(Pr,Nd)32.5(Pr,Nd)22.oFe71.6Cu6.4、(Pr,Nd)12.oFe80.8Cu7.2添加量分别为3 wt%、3 wt%和2 wt%时,磁能积达到最大值,分别为384.0、368.5、365.4 kJ/m3。
     研究揭示了A1-Cu辅合金粉对烧结钕铁硼磁体显微组织、抗蚀性和磁性的作用机理。掺Al100-xCux(X=15,25,35,45 at.%)改善了(Pr,Nd)14.8Fe78.7B6.5的晶界相分布状况和化学稳定性,提高了磁体抗蚀性,磁体在120℃、2 atm、100%相对湿度环境中腐蚀96 h的质量损失从114.9 mg/cm2降为4.2 mg/cm2;同时也提高了磁性能,磁体的矫顽力从920 kA/m增加为1201 kA/m。磁体晶界显微组织与Cu/Al分布及合金化行为密切相关,增加Al-Cu添加量或其Cu含量,促进(Pr,Nd)Cu(除CuAl2之外)低熔点相析出,影响了晶界组织的演化特点,使磁体的最佳回火温度从550℃降至480℃。回火时(Pr,Nd)-Cu或Al-Cu液相能够改善富(Pr,Nd)晶界相的形态和分布状况,增强其去磁耦合作用,提高了矫顽力,改善了退磁曲线方形度,提高了磁体的磁能积。
Nd-Fe-B sintered magnets are the most widely used magnetic materials due to excellent magnetic properties, low expansion coefficient and low price. They have become the important basica materials for high technology in modern society. However, Nd-Fe-B magnets are sensitive to the grain boundary corrosion because of the large difference of electrode potential between the matrix and intergranular phases, which limits the applications in many important fields. The purpose of this work is to develop corrosion resistant mangets using two-alloy method through designing (Pr.Nd)-Fe-Cu and Al-Cu aid alloys with high corrosion potential. The morphologies as well as physical and chemical characteristics of grain boundaries were optimized to weaken the electrochemical reactions between the matrix and intergranular phases. Finally, corrosion-resistant Nd-Fe-B magnets with outstanding magnetic properties were produced through adopting the content of aid alloys. Main results of the thesis are as follows:
     Acorrding to thermodynamics analysis, corrosion theory of alloys and phase diagram of Nd-Fe-Cu, aid alloys of (Pr,Nd)32.5Fe62.oCu5.5/(Pr,Nd)22.0Fe7i.6Cu6.4/ (Pr.Nd)12.oFe800.8Cu7.2 with high corrosion potential were designed and prepared. Their components did not diffuse into the (Pr,Nd)2Fe14B matrix phase, which benefits the fabrication of highly performant magnets. These alloys had higher corrosion potential (~-0.8 V), which benefits the decrease of the potential difference between the matrix and intergranular phases, thus decreaseing the driving force for the grain boundary corrosion. Moreover, these alloys possessed a low melting piont (~506℃), which benefits the liquid sintering of magnets.
     Corrosion-resistant Nd-Fe-B sintered magnets with excellent magnetic properties were successfuly fabricated using the (Pr.Nd)-Fe-Cu aid alloy powders with high corrosion potential. Meanwhile, their corrosion-resistant mechanism in different enviorments was investigated. These magnets had the maximum energy products of 356.0-384.0 kJ/m3 (45-48 MGOe) and possessed a low mass loss of 0.3-1.0 mg/cm2 in 120℃,2 atm and 100% relative humid atmosphere for 96 h. Moreover, their corrosion current density reached 148.9μA/cm2 in 0.005 M H2SO4 solution. The magnet with 12 wt%(Pr,Nd)32.5Fe62.0Cu5.5 had a better corrosion resistance than (Pr.Nd)14.5Fe79.5-B6.0 in 0.005 M H2SO4,0.6 M NaCl,0.75 M NaOH solutions or humid/hot environments. The mass loss of the former magnet corrded for 96 h was about 1/16 times in comparison to the latter one. The reason for a better corrosion resistance of former magnet can be ascribed to the closer equal corrosion potential of (Pr,Nd)6Fe13Cu to the (Pr,Nd)2Fe14B phase. It reduces the potential difference between the cathodic matrix phase and the anodic grain boundary phases, leading to the decrease in the driving force for the electrochemical corrosion of grain boundary phases. Additionally it decreases driving force in the oxidation or hydrogen reactions of grain boundary phase with H2O. Moreover, the maxium energy product of magnets first increased with addition of (Pr,Nd)-Fe-Cu and then decreased after the maxiumu values at the optimum amount of 3 wt%,3 wt% and 2 wt% for (Pr,Nd)32.5Fe62.oCu5.5/ (Pr,Nd)22.oFe71.6Cu6.4/(Pr,Nd)12.oFe80.8Cu7.2. Their maximum values were 384.0,368.5 and 365.4 kJ/m3, respectively.
     The mechanism of the effect of Al-Cu aid alloy powders on the microstructure, the corrosion resistance and the magnetic properties was investigated. It was found that addition of Al100-xCux (x=15,25,35,45 at.%) to (Pr,Nd)14.8Fe78.7B6.5 could improve the distribution and chemical stability of intergranular phases, which increase the corrosion resistance of magnets. Their mass loss was decreased from 114.9 to 4.2 mg/cm2 in 120℃,2 atm and 100% relative humid atmosphere for 96 h. Also the improvement of grain boundary microstructure increased the magnetic properties, especially the coercivity from 920 to 1201 kA/m. The grain boundary morphologies closely relate the distribution and alloying behavior of Cu/Al in magnets. Increasing Al-Cu amount or its Cu content promotes the precipation of the low-melting phases of (Pr,Nd)Cu besides CuAl2, which affects the morphology evolution of grain boundaries and thus reduces the optimum annealing temperature of magnets from 550 to 480℃. During annealing the (Pr,Nd)-Cu or Al-Cu liquid phase can improve the morphology/ distribution of the Nd-rich phase and increase the decouple effects, leading to the increase of coercivity. Meanwhile, it improves the squareness of demagnetizing loops and increases the maxium energy products of magnets.
引文
[1]严密,彭晓领.磁学基础与磁性材料,杭州:浙江大学出版社,2006:141-142.
    [2]M. Sagawa, S. Fujimura, M. Togawa, H. Yamamoto, Y. Matsuura, material for permanent magnets on a base of Nd and Fe, Journal of Applied Physics,1984,55(6):2083-2087.
    [3]第六届全国磁性薄膜与纳米磁学会议,宁波(2010).
    [4]J.F. Herbst, J.J. Croat, F.E. Pinkerton, W.B. Yelon. Relationships between crystal structure and magnetic properties in Nd2Fe14B, Physics Reviwe B,1984,29(7):4176-4178.
    [5]D. Givord, H.S. Li, J.M. Moreau, Magnetic properties and crystal structure of Nd2Fe14B. Solid State Communication,1984,50(6):497-499.
    [6]S. Hirosawa, Y. Matsuura, H. Yamamoto, S. Fujimura, M. Sagawa, H. Yamauchi. Magnetization and magnetic anisotropy of R2Fe14B measured on single crystals. Journal of Applied Physics,1986,59(3):873-879.
    [7]J. Fidler, K.G. Knoch, Electron microscopy of Nd-Fe-B based magnets, Journal of Magnetism and Magnetic Materials,1989,80(1):48-56.
    [8]J. Fidler. On the role of the Nd-rich phases in sintered Nd-Fe-B magnets, IEEE Transactions on Magnetics,1987,23(5):2106-2108.
    [9]M.R. Corfield, A.J. Williams, I.R. Harris, The effects of long term annealing at 1000℃ for 24 h on the microstructure and magnetic properties of Pr-Fe-B/Nd-Fe-B magnets based on Nd16Fe76B8 and Pr16Fe76B8, Journal of Alloys and Compounds,2000,296:138-147.
    [10]J. Bernardi, J. Fidler, Preparation and transmission electron microscope investigation of sintered Nd15.4Fe75.7B6.7Cu1.3Nb0.9 magnets. Journal of Applied Physics,1994,28(5): 6421-6243.
    [11]W. Rodewald, B. Wall, Temperature stability and magnetizing behaviour of sintered Nd-Dy-Fe-Co-Mo-Al-B-magnets, Journal of Magnetism and Magnetic Materials,1991,101: 338-340.
    [12]J. Bernardi, J. Fidler, F. Fodermayr, The effect of V or W additives to microstructure and coercivity of Nd-Fe-B based magnets, IEEE Transactions on Magnetics,1992,23(5): 2127-2129.
    [13]周寿增,董清飞,超强永磁体-稀土铁系永磁材料.北京:冶金工业出版社,2004:199-200.
    [14]F. Vial, F. Joly, E. Nevalainen, M. Sagawa, K. Hiraga, K.T. Park, Improvement of coercivity of sintered NdFeB permanent magnets by heat treatment, Journal of Magnetism and Magnetic Materials,2002,242-245:1329-1334.
    [15]Y. Shinba, T.J. Konno. K. Ishikawa, K. Hiraga, Transmission electron microscopy study on Nd-rich phase and grain boundary structure of Nd-Fe-B sintered magnets, Journal of Applied Physics,2005,97(5):053504.
    [16]N.A. El-Masry, H.H. Stadelmaier, Nanometer particles in the intergranular microstructure of Fe-Nd-B permanent magnets, Material Letters,1985,3(9-10):405-408.
    [17]R. Ramesh, J.K. Chen, G. Thomas, On the grain-boundary phase in iron rare-earth boron magnets, Journal of Applied Physics,1987,61(8):2993-2998.
    [18]W.Z. Tang, S.Z. Zhou, R. Wang, CD. Graham. An investigation of the Nd-rich phases in the Nd-Fe-B system, Journal of Applied Physics,1988,64(10):5516-5518.
    [19]J. Fidler, On the role of the Nd-rich phases in sintered Nd-Fe-B magents, IEEE Transactions on Magnetics,1987,23(5):2106-2108.
    [20]N. Oono, M. Sagawa, R. Kasada, H. Matsui, A. Kimura, Production of thick high-performance sintered neodymium magnets by grain boundary diffusion treatment with dysprosium with dysprosium-nickel-alumimum alloy, Journal of Magnetism and Magnetic Materials,2011,323:297-300.
    [21]H. Sepehri-Amin, T. Ohkubo, T. Nishiuchi, S. Hirosawa, K. Hono, Coercivity enhancement of hydrogenation-disproportionation-desorption-recombination processed Nd-Fe-B eutectic alloys, Scripta Materialia,2010,63:1124-1127.
    [22]H.R. Kirchmayr, Permanent magnets and hard magnetic materials, Journal of Physics D, 1996,29(11):2763-2778.
    [23]R.W. Gao, D.H. Zhang, H. Li, J.C. Zhang. Effects of the degree of grain alignment on the hard magnetic properties of sintered NdFeB magnets, Applied Physics. A,1998,67(3): 353-356.
    [24]H. Kronmuller, K.D. Durst, M. Sagawa, Analysis of magnetic hardening mechanism in RE-Fe-B permanent magnets, Journal of Magnetism and Magnetic Materials,1988,74(3): 291-302.
    [25]R.W. Gao, D.H. Zhang, H. Li, S.T. Jiang, S.Z. Zhou, F.B. Li, L.D. Zhang. Coercivity and its dependence on the strength of alignment magnetic field in Nd-Fe-B sintered magnets, Journal of Applied Physics,1995,78(2):1156-1159.
    [26]D. Givord, Q. Lu. M.F. Rossignol, P. Tenaud, T. Viadieu, Experimental approach to coercivity analysis in hard magnetic materials, Journal of Magnetism and Magnetic Materials, 1990,83(1-3):183-188.
    [27]D. Li, K. J. Strnat, Domain behavior in sintered Nd-Fe-B magnets during field-induced and thermal magnetization change, Journal of Applied Physics,1985,57(8):4143-4145.
    [28]A. Fukuno, K. Hirose, T. Yoneyama, Coercivtity mechanism of sintered NdFeB magnets having high coercivities, Journal of Applied Physics,1990,67(9):4750-4752.
    [29]E.A. Perigo, H. Takiishi, C.C. Motta, R.N. Faria, On the squareness factor behavior of RE-FeB (RE=Nd or Pr) magnets above room temperature, IEEE Transactions on Magnetics, 2009,45(10):4431-4434.
    [30]J.F. Herbst, R2Fe14B materials:intrinsic properties and technological aspects, Reviews of Modern Physics,1991,63(4):819-882.
    [31]于濂清,高性能烧结钕铁硼制备和性能研究[博士论文],杭州:浙江大学材料系,2007,1-123.
    [32]W.Q. Liu, H. Sun, X.F. Yi, X.C. Liu, D.T. Zhang, M. Yue, J.X. Zhang, Coercivity enhancement in Nd-Fe-B sintered permanent magnet by Dy nanoparticles doping, Journal of Alloys and Compounds,2010,501:67-69.
    [33]G. Bai, R.W. Gao, Y. Sun, G.B. Han, B. Wang, Study of high-coercivity sintered NdFeB magnets, Journal of Magnetism and Magnetic Materials,2007,308(1):20-23.
    [34]K. Hirota, H. Nakamura, T. Minowa, M. Honshima, Coercivity enhancement by the grain boundary diffusion process to Nd-Fe-B sintered magnets, IEEE Transactions on Magnetics, 2006,42(10):2909-2911.
    [35]S. Pandian, V. Chandrasekaran, G. Markandeyulu, K.J.L. Iyer, K.V.S. Rama Rao, Effect of Co. Dy and Ga on the magnetic properties and the microstructure of powder metallurgically processed Nd-Fe-B magnets, Journal of Alloys and Compounds,2004,364(1-2):295-303.
    [36]M. Yue, W.Q. Liu, D.T. Zhang, Z.G. Jian, A.L. Cao, J.X. Zhang, Tb nanoparticles doped Nd-Fe-B sintered permanent magnet with enhanced coercivity, Applied Physics Letters,2009, 94:092501.
    [37]石永金,张小立,易毅刚,铽含量对耐热钕铁硼永磁材料的磁性能的影响,稀有金属材料与工程,1999,28(4):236-239.
    [38]D. Li, E.D. Xu, J.L. Liu, Y.X. Du, The 2-17 type Sm2-xHRExCO10Cu1.5Fe3.2Zr0.2 (HRE=Gd, Tb, Dy, Ho, Er) magnets with low temperature coefficient, IEEE Transactions on Magnetics, 1980,16(5):988-990.
    [39]S. Dai, A.H. Morrish, X.Z. Zhou, B.P. Hu, S.G. Zhang, Mossbauer study of the permanent-magnet material Nd2(Fe1-xNix)14B, Journal of Applied Physics,1988,63(8): 3722-3724.
    [40]C.D Fuerst, G.P Meisner, F.E Pinkerton, W.B Yelon, Site occupancy in erbium-iron-manganese-boron alloys, Journal of the Less-Common Metals,1987,133(2):255-261.
    [41]O. Moze, L. Pareti, M. Solzi, F. Bolzoni, W.I.F. David, W.T.A. Harrison, A.W. Hewat, Magnetic structure and preferential site occupation in manganese-and chromium-substituted Y2Fe14B compounds, Journal of the Less-Common Metals,1988,136(2):375-383.
    [42]Y. Matsuura, S. Hirosawa, H. Yamamoto, S. Fujimura, M. Sagawa, Magnetic properties of the Nd2(Fe1-xCox)14B system, Applied Physics Letters,1985,46(3):308-310.
    [43]S. Hirosawa, Y. Yamaguchi, K. Tokuhara, H. Yamamoto, S. Fujimura, M. Sagawa, Magnetic properties of Nd2(Fe1-xMx)14B measured on single crystals (M=Al, Cr, Mn and Co), IEEE Transactions on Magnetics,1987,23(5):2120-2122.
    [44]T. Mizoguchi,1. Sakai, H. Niu, K. Inomata, Magnetic properties of Nd-Fe-B magnets with both Co and Al addition, IEEE Transactions on Magnetics,1987,23(5):2281-2283.
    [45]周寿增,郭灿杰,呼琴,李春和,高磁能积低温度系数的铁基永磁合金的磁性能与组织结构,北京钢铁学院学报,1988,10(3):317-322.
    [46]X.G. Cui, M. Yan, T.Y. Ma, L.Q. Yu, Effects of Cu nanopowders addition on magnetic properties and corrosion resistance of sintered Nd-Fe-B magnets, Physica B,2008,403: 4182-4185.
    [47]R.S. Mottram, A.J. Williams, I.R. Harris, The effects of blending additions of copper and cobalt to Nd16Fe76B8 milled powder to produce sintered magnets, Journal of Magnetism and Magnetic Materials,2001,234:80-89.
    [48]L.Q. Yu, J. Zhang, S.Q.Hu, Z.D. Han, M. Yan, Production for high thermal stability NdFeB magnets, Journal of Magnetism and Magnetic Materials,2008,320:1427-1430.
    [49]W.F. Li, T. Ohkubo, K. Hono, Effects of post-sinter annealing on the coercivity and microstructure of Nd-Fe-B permanent magnets, Acta Materiala,2009,57:1337-1346.
    [50]O.M. Ragg, I.R. Harris, A study of the effect of the addition of various amounts of Cu to sintered Nd-Fe-B magnets, Journal of Alloys and Compounds,1997,256:252-257.
    [51]A. Kianvash, I.R. Harris. The effect of heat treatment on the microstructure and magnetic properties of sintered magnets produced from Nd-Fe-B based alloys with and without Cu substitution, Journal of Alloys and Compounds,1992,178:325-341.
    [52]S. Pandian, V. Chandrasekaran, K.J.L Iyer, K.V.S. Rama Rao, Investigations on the metallurgical features and magnetic properties of Nd16.8Fe757-xAlxB7.5(0≤x≤6), IEEE Transactions on Magnetics,2001,37(4):2489-2492.
    [53]S. Szymura, H. Bala, Y.M. Rabinovich, J. Wiechula, Properties of sintered Al substituted NdFeB magnets, Modern Physics Letters B,1998,12(6-7):257-263.
    [54]K.G. Knoch, G. Schneider, J. Fidler, E.T. Henig, H. Kronmuller, Al-doped Nd-Fe-B permanent magnets:wetting and microstructural investigations, IEEE Transactions on Magnetics,1989,25(5):3426-3428.
    [55]K.G. Knoch, B. Grieb, E.T. Henig, H. Kronmuller, G. Petzow, Upgraded Nd-Fe-B-AD (AD= Al, Ga) magnets:wettability and microstructure, IEEE Transactions on Magnetics,1990, 26(5):1951-1953.
    [56]C.H. Lin, S.K. Chen, K.D. Lin, W.C. Chang, T.S. Chin, Magnetic properties and microstructure of magnesium-doped Nd-Fe-B magnets, Journal of Applied Physics,1988, 64(10):5513-5515.
    [57]马宝钿,宋晓平,张湃,王笑天,zn对NdFeB基稀土永磁体磁性能和显微组织的影响,稀有金属材料与工程,1992,21(3):33-36.
    [58]W.H. Cheng, W. Li, C.J. Li, S.Z. Dong, The magnetic properties, thermal stability and microstructure of Nd-Fe-B/Ga sintered magnets prepared by blending method, Journal of Magnetism and Magnetic Materials,2001,234(2):274-278.
    [59]吴叶仁,倪俊杰,严密,添加Mg7Zn3对烧结Nd-Fe-B抗蚀性能及磁性能的影响,稀有金属材料与工程,2010,39:487-451.
    [60]A. Yan, X.P. Song, X.T. Wang, Effect of minor intergranular additives on microstructure and magnetic properties of Nd-Fe-B based magnets, Journal of Magnetism and Magnetic Materials,1997,169(1-2):193-198.
    [61]P.J. Pollard, P.J. Grundy, S.F.H. Parker, D.G. Lord, Effect of Zr additions on the microstructural and magnetic properties of NdFeB based magnets, IEEE Transactions on Magnetics,1988,24(2):1626-1628.
    [62]S.F.H. Parker, P.J. Grundy, J. Fidler, Electron microscope study of precipitation in a niobium-containing (Nd, Dy)-Fe-B sintered magnet, Journal of Magnetism and Magnetic Materials,1987,66(1):74-78.
    [63]W.H. Cheng, W. Li, C.J. Li, X.M. Li, The role of Nb addition in Nd-Fe-B sintered magnets with high performance, Journal of Alloys and Compounds,2001,319(1-2):280-282.
    [64]A. Shaaban, Effects of Zr substitution in NdFeB permanent magnets, A IP Conference Preceding,2007,909(1):63-67.
    [65]A. Fujita, I.R. Harris, Magnetic anisotropy in arc-cast Nd-Fe-B-Zr alloys, IEEE Transactions on Magnetics,1993,29(6):2803-2805.
    [66]Y. Kitano, J. Shimomura, M. Shimotomai, Analytical electron microscopy of Ti-doped Nd-TM-B magnets, Journal of Applied Physics,1991,69(8):6055-6057.
    [67]S. Hirosawa, H. Tomizawa, S. Mino, A. Hamamura, High-coercivity Nd-Fe-B-type permanent magnets with less dysprosium, IEEE Transactions on Magnetics,1990,26(5): 1960-1962.
    [68]T.S. Chin, C.H. Lin, Y.H. Huang, J.M. Yau, Enhanced thermal stability of sintered (Nd,Dy)(Fe,Co)B magnets by the addition of Ta or Ti, IEEE Transactions on Magnetics, 1993,29(6):2788-2790.
    [69]A.S. Kim, F.E. Camp, High performance NdFeB magnets. Journal of Applied Physics,1996, 79(8):5035-5039.
    [70]A.S. Kim, F.E. Camp, Effect of minor grain boundry additives on the magnetic properties of NdFeB magnets, IEEE Transactions on Magnetics,1995,31(6):3620-3622.
    [71]X.P. Song, S. Yang, X.H. Wang, Z.B. Sun, J. Sun, Effect of Copper and Titanium addition on microstructures and magnetic properties of Nd22Fe71B7 based magnets, Journal of Rare Earths, 2001,19(1):21-24.
    [72]A. Yan, X.P. Song, Z.M. Chen, X.T. Wang, Characterization of microstructure and coercivity of Nd-Fe-B magnets with Ti and Al or Cu addition, Journal of Magnetism and Magnetic Materials,1998,185(3):369-374.
    [73]W. Rodewald, P. Schrey, Structural and magnetic properties of sintered Nd14.4Fe67.0-xCo11.8-MoxB6.8 Magnets, IEEE Transactions on Magnetics,1989,25(5):3770-3772.
    [74]E. Stsuki, T. Otsuka, T. Imai, Processing and magnetic properties of sintered Nd-Fe-B magnbets, Proc.11th Int. workshop on raer earth magnets and their applications, Pittsburg, (October,1990),328.
    [75]M. Honshima, K. Ohashi, High-energy Nd-Fe-B magnets and their applications. Journal of Material Engineering and Performance,1994,3(2):218-222.
    [76]A.M. Gabay, Y. Zhang, G.C. Hadjipanayis, Effect of very small additions on the coercivity of Dy-free Nd-Fe-(Co)-B-sintered magnets, Journal of Magnetism and Magnetic Materials, 2002,238(1-2):226-232.
    [77]H.R. Madaah Hosseini, A. Kianvash, M. Seyyed Reihani. H. Yoozbashi Zadeh. Production of (Nd, MM)2(Fe, Co, Ni)14B-type sintered magnets using a binary powder blending technique. Journal of Alloys and Compounds,2000,298:319-323.
    [78]M. Velicescu, P. Schrey, W. Rodewald, Dy-distribution in the grains of high-energy (Nd. Dy)-Fe-B magnets. IEEE Transactions on Magnetics,1995,31(6):3623-3625.
    [79]W. Rodewald, B. Wall, M. Katter, K. UstUner, S. Steinmetz, Extraordinary strong Nd-Fe-B magnets by a controlled microstructure, Proceedings of 17th international workshop on rare earth magnets and their applications, Agust 18-22,2002, Delaware USA,25.
    [80]K. Mummert, A.M. El-Aziz, G. Atmkleit, W. Rodewald, L. Schultz, Corrosion behaviour of Nd-Fe-B permanent magnets, Materials and Corrosion,2000,51:13-19.
    [81]谢发勤,郜涛,邹光荣.NdFeB磁体组成相的电化学腐蚀,腐蚀科学与防护技术,2002,14(5):260-262.
    [82]L. Schultz. A.M. El-Aziz, G. Atmkleit, K. Mummert, Corrosion behaviour of Nd-Fe-B permanent magnetic alloys, Materials Science and Engineering 1999, A267:307-313.
    [83]托马晓夫,契尔诺娃,腐蚀与耐蚀合金,北京:化学工业出版社,1985:23-27.
    [84]D.S. Edgley, J.M. Le Breton, S. Steyaert, F.M. Ahmed, I.R. Harris, J. Teillet, Characterisation of high temperature oxidation of Nd-Fe-B magnets. Journal of Magnetism and Magnetic Materials,1997,173:29-42.
    [85]I. Skulj, H.E. Evans, I.R. Harris, Oxidation of NdFeB-type magnets modified with additions of Co, Dy, Zr and V, Journal of Material Science,20008,43:1324-1333.
    [86]O. Isnard, W.B. Yelon, S. Miraglia, D. Fruchart, Journal of Applied Physics,1995,78: 1892-1895.
    [87]I.R. Harris, P.J. McGuiness, Proceedings of the 11th international workshop on rare earth magnets and application,1990, p.29.
    [88]A.S. Kim, F.E. Camp, T. Lizzi, Hydrogen induced corrosion mechanism in NdFeB magnets. Journal of Applied Physics,1996,79 (8):4840-4842.
    [89]B.M. Ma, Y.L. Liang, D.W. Scott, W.L.Liu, C.O. Bounds,13th international workshop on rare earth magnets and application,1994, p.309.
    [90]C.J.Willman, K.S.V.L.Narasimhan, Corrosion characteristics of RE-Fe-B permanent magnets, Journal of Applied Physics,1987,61(8):3766-3768.
    [91]刘卫强,岳明,张久兴,王公平,李涛,富钕相对烧结NdFeB磁体耐腐蚀性的影响,稀有金属材料与工程,2007,36(6):1066-1069.
    [92]M. Yue, J.X. Zhang, W.Q. Liu, G.P. Wang, Chemical stability and microstructure of Nd-Fe-B magnet prepared by spark plasma sintering. Journal of Magnetism and Magnetic Materials, 2004.271:364-368.
    [93]G. Yan, A.J. Williams, J.P.G. Farr, I.R. Harris, The effect of density on the corrosion of NdFeB magnets, Journal of Alloys and Compounds,1999,292:266-274.
    [94]D.W. Sott, B.M. Ma, Y.L. Liang, C.O. Bounds, The effects of average grain size on the magnetic properties and corrosion resistance of NdFeB sintered magnets, Journal of Applied Physics,1996,79(8):5501-5504.
    [95]H. Bala, G. Pawlowska, S. Szymura, V.V. Sergeev, Yu.M. Rabinovich, Corrosion characteristics of Nd-Fe-B sintered magnets containing various alloying elements, Journal of Magnetism and Magnetic Materials,1990,87:L255-L259.
    [96]S. Szymura, H. Bala, Yu.M. Rabinovich, V.V. Sergeev, G. Pawlowska, Structure, magnetic properties and corrosion behaviour of sintered Nd16Fe76-xCrxB8 magnets, Journal of Magnetism and Magnetic Materials,1991,94:113-118.
    [97]A.S. Kim, High Performance, Temperature Stable and Corrosion Resistant Nd-Fe-B Magnets, Proc.3rd. Int. Symp on Physics of Magnetic Materials (ISPMM95) Seoul, Korea,1995, 646-650.
    [98]L.Q. Yu, Y.H. Wen, M. Yan, Effect of Dy and Nb on the magnetic properties and corrosion resistance of sintered NdFeB, Journal of Magnetism and Magnetic Materials,2004,283: 353-356.
    [99]H. Bala, S. Szymura, E. Owczarek, W.N. Wiechula, Corrosion behaviour of sintered Nd-(Fe,Al)-B magnets, Intermetallics,1997,5(7):493-495.
    [100]P. Tenaud, F. Vial, Improved corrosion and temperature behaviour of modified Nd-Fe-B magnets, IEEE Transactions on Magnetics,1990,26(5):1930-1932.
    [101]I. Gurrappa, Suitability of Nd-Fe-B permanenet magnets for biomedical applications-a corrosion study, Journal of Alloys and Compounds,2002,339:241-247.
    [102]B. Grieb, Corrosion resistant materials based on neodymium-iron-boron, IEEE Transactions on Magnetics,1997,33(5):3904-3906.
    [103]A.S. Kim, J.M. Jacobson, Oxidation and oxidation protection of Nd-Fe-B magnets, IEEE Transactions on Magnetics,1987,23(5):2509-2511.
    [104]G.W. Warren, Kuo-En Chang, Bao-Min Ma, C.O. Bounds, Corrosion behavior of NdFeB with Co and V additions, Journal of Applied Physics,1993,73 (10):6479-6481.
    [105]W. Fernengel, W. Rodewald, R. Blank, P. Schrey, M. Katter, B. Wall, The influence of Co on the corrosion resistance of sintered Nd-Fe-B magnets, Journal of Magnetism and Magnetic Materials,1999,196-197:288-290.
    [106]S. Steyaert, J.M.L. Breton, J Teillet, Microstructure and corrosion resistance of Nd-Fe-B magnets containing additives, Journal of Physics D,1998,31(13):1534-1547.
    [107]M. Shimotomai, Y. Fukuda, A. Fujita, Y. Ozaki, Corrosion-resistant Nd-TM-B maget, IEEE Transactions on Magnetics,1990,26(5):1939-1941.
    [108]崔熙贵,烧结Nd-Fe-B永磁材料显微结构优化与性能研究[博士论文],杭州:浙江大学材料系,2009,1-144.
    [109]涂少军,晶界改性制备高耐蚀性烧结钕铁硼磁体[硕士论文],杭州:浙江大学材料系,2009,1-59.
    [110]吴叶仁,晶界优化制备烧结Nd-Fe-B永磁材料[硕士论文],杭州:浙江大学材料系,2010,1-63.
    [111]莫文剑,张澜庭,陈亮,单爱党,吴建生,添加Si3N4对烧结NdFeB的磁性能及抗腐蚀性能的影响,中国稀土学报,2007,25(5):588-591.
    [112]W.J. Mo, L.T. Zhang, Q.Z. Liu, A.D. Shan, J.S. Wu, M. Komuro, L.P. Shen, Microstructure and corrosion resistance of sintered NdFeB magnet modified by intergranular additions of MgO and ZnO. Journal of Rare Earths,2008,26(2):268-273.
    [113]W.J. Mo, L.T. Zhang, A.D. Shan, L.J. Cao, J.S. Wu, M. Komuro. Improvement of magnetic properties and corrosion resistance of NdFeB magnets by intergranular addition of MgO, Journal of Alloys and Compounds,2008,461(1-2):351-354.
    [114]S.K. Chen, T.S. Chin, S.J. Heh, K.D. Lin, Coercivity enhancement of boron nitride doped Nd15Fe77B8 permanent magnets, IEEE Transactions on Magnetics,1990,26(5):2634-2636.
    [115]赵国仙,宋晓平,陈钟敏,闫阿儒,王笑天,WC对Nd-Fe-B烧结磁体的显微组织和磁性能的影响,金属学报,1996,32(4):413-416.
    [116]郑精武,夏庆萍,乔伟,姜黎强,张诚,烧结NdFeB表面涂覆铝微粉涂层研究,稀有金属材料与工程,2008,37(9):1677-1680.
    [117]宋振纶,李卫,钕铁硼永磁材料表面防护技术:特点、应用、问题,磁性材料及器件,2007,39(1):1-6.
    [118]应华根,烧结NdFeB磁体化学镀镍基合金防护研究[博士论文],杭州:浙江大学材料系,2007,1-126.
    [119]吴元騄,烧结NdFeB磁体的化学镀表面防护研究[硕士论文],杭州:浙江大学材料系,2008,1-67.
    [120]Y. Matsuura, Recent development of Nd-Fe-B sintered magnets and their applications, Journal of Magnetism and Magnetic Materials,2006,303:344-347.
    [121]A.S. Kim, F.E. Camp, E.J. Dulis, Effect of oxygen, carbon, and nitrogen contents on the corrosion resistance of Nd-Fe-B magnets, IEEE Transactions on Magnetics,1990,26(5): 1936-1938.
    [122]周宜春,郑学军,材料的宏微观力学性能,北京:高等教育出版社,2009:103-140.
    [123]常铁军,刘喜军,材料近代分析测试方法,哈尔滨:哈尔滨工业大学出版社,2005:216-231.
    [124]金属X射线衍射学, 马世良,西安:西北工业大学出版社,1987:120-121.
    [125]A.R. Miedema, R. Boom, F.R. Deboer, On the heat of formation of solid alloys, Journal of the Less-common Metals,1975,41:283-298.
    [126]H.B. Michaelson, Work function of the elements, Journal of Applied Physics,1950,21: 536-540.
    [127]Akira Takeuchi, Akihisa Inoue, Classification of bulk metallic glasses by atomic size difference, heat of mixing and period of constituent elements and its application to characterization of the main alloying element, Materials Transactions,2005,46(12): 2817-2829.
    [128]李正,何叶青,胡伯平,王震西,烧结Nd-Fe-B中的热力学影响,物理学报,2005,54(11):5400-5404.
    [129]刘秀晨,安成强,金属腐蚀学,北京:国防工业出版社,2002:24-26.
    [130]V. Raghavan, Cu-Fe-Nd (Copper-Iron-Neodymium) Phase Diagram Evaluations:Section II, Journal of Phase Equilibria,1999,20 (4):423-425.
    [131]O.M. Ragg, I.R. Harris, A study of the effect of the addition of various amounts of Cu to sintered Nd-Fe-B mangets, Journal of Alloys and Compounds,1997,256:252-257.
    [132]M. Katter, L. Zapf, R. Blank, W. Fernengel, W. Rodewald, Corrosion mechanism of Re-Fe-Co-Cu-Ga-Al-B magnets, IEEE Transactions on Magnetics,2001,37(4):2474-2476.
    [133]K.G. Knoch, A.Le Calvez, Q. Qi, A. Lethe-Jasper, J.M.D. Coey, Structure and magnetic properties of Nd6Fe13Cu, Journal of Applied Physics,2005.97:5878-5880.
    [134]W.F. Li, T. Ohkubo, K. Hono, The origin of coercivity decrease in fine grained Nd-Fe-B sintered magnets, Journal of Magnetism and Magnetic Materials,2009,321(8):1100-1105.
    [135]W.F. Li, T. Ohkubo, K. Hono, Effect of post-sinter annealing on the coercivity and microstructure of Nd-Fe-B permanent magnets, Acta Materialia,2009,57:1337-1346.
    [136]D. Brown, B.M. Ma, Z.M. Chen, Developments in the processing and properties of Nd-Fe-B-type permanent magnets, Journal of Magnetism and Magnetic Materials,2002, 248(3):432-440.
    [137]Y. Shinba, T.J. Konno, K.Ishikawa, K. Hiraga, M. Sagawa, Transmission electron microscopy study on Nd-rich phase and grain boundary structure of Nd-Fe-B sintered magnets, Journal of Applied Physics,2005,97:053504.
    [138]M. Stern, A. L. Geary, Electrochemical polarization 1. A theoretical analysis of the shape of polarization curves, Journal of the Electrochemical Society,1957,104(1):56-63.
    [139]A.A. El-Moneim, A. Gebert, Electrochemical characterization of galvanically coupled single phases and nanocrystalline NdFeB-based magnets in NaCl solutions, Journal of Applied Electrochemistry,2003,33:795-805.
    [140]G.M. Florianovich, L.A. Sokolova, Y.M. Kolotyrkin, On the mechanism of the anodic dissolution of iron in acid solutions, Electrochimica Acta,1967,12:879-886.
    [141]E. Mccafferty, N. Hackerman, Kinetics of iron corrosion in concentrated acidic chloride solutions, Journal of Electrochemical Society,1972,119:999-1009.
    [142]S. Asakura, K. Nobe, Electrodissolution kinetics of iron in chloride solutions, Journal of Electrochemical Society,1971,118:13-18.
    [143]Y.W. Song, H. Zhang, H.X. Yang, Z.L. Song, A comparative study on the corrosion behavior of NdFeB magnets in different electrolyte solutions, Materials and Corrosion,2008, 59(10):794-801.
    [144]F.E. Camp, A.S. Kim, Effect of microstructure on the corrosion behavior of NdFeB and NdFeCoAlB magnets, Journal of Applied Physics,1991.70(10):6348-6350.
    [145]A.S. Kim. F.E. Camp, High performance NdFeB magnets, Journal of Applied Physics,1996, 79(8):5035-5039.
    [146]D.F. Cygan, M.J. McNallan, Corrosion of NdFeB permanent magnets in humid environments at temperatures up to 150℃, Journal of Magnetism and Magnetic Materials, 1995,139:131-138.
    [147]J.P. Nozieres, D.W. Taylor, H. Bala, M. Malik, S.Szymura. H. Stoklosa, Corrosion behavior of hot-worked Nd-Fe-B and Nd-Fe-Cu-B permanent-magnets, Journal of Alloys and Compounds,1992,186:201-208.
    [148]O. Filip, A.M. El-Aziz, R. Hermann, K. Mummert, L. Schultz, Effect of Al additives and annealing time on microstructure and corrosion resistance of Nd-Fe-B alloys, Materials Letters,2001,51:213-218.
    [149]戴永年,二元合金相图集,北京,科学出版社,2009:45-46.
    [150]H.Sepehri-Amin, W.F. Li. T. Ohkubo. T. Nishiuchi, S. Hirosawa, K. Hono, Effect of Ga addition on the microstructure and magnetic properties of hydrogenation-diproportionation -desorption-recombination processed Nd-Fe-B powder, Acta materialia,2010,58: 1309-1316.
    [151]H. Kato, T. Akiya, M. Sagawa, K. Koyama, T. Miyazaki, Effect of high magnetic field on the coercivity in sintered Nd-Fe-B magnets, Journal of Magnetism and Magnetic Materials, 2007,310(2):2596-2598.
    [152]H.W. Kwon, P. Bowen, I.R. Harris, Microstructural and magnetic studies on Pr-Fe-B-Cu alloys. Journal of Applied Physics,1991,70(1):6357-6359.
    [153]J. Delamare, D. Lemarchand, P. Vigier, Structural investigation of the metastable compound Al in an as-cast Fe-Nd eutectic alloy, Journal of Alloys and Compounds,1995,216: 273-280.
    [154]K.G. Knoch, A.Le Calvez, Q. Qi, A. Leithe-Jasper, J.M.D. Coey, Structure and magnetic properties of Nd6Fe13Cu, Journal of Applied Physics,1993,73(10):5878-5880.
    [155]G. Yan, A.J. Williams, J.P.G. Farr, I.R. Harris, The effect of density on the corrosion of NdFeB magnets, Journal of Alloys and Compounds,1999,292:266-274.
    [156]H.R. Madaah Hosseini, A. Dadoo, A. Dolati, A. Kianvash, A study on the corrosion behavior of the (Nd,MM)2(Fe,Co,Ni)14B-type sintered magnets, Journal of Alloys and Compounds,2006,419:337-341.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700