用户名: 密码: 验证码:
基于多孔材料成饼过滤技术的液氦净化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
液氦由于其极低的温度、超流动性(HeII)和热机械效应,在航天、军工、机械、医疗等领域都有重要用途。在液氦甚至超流氦温度下,如果其中存在任何杂质例如氧、氮、水分、碳氢化合物等等,这些杂质在低温下将固化,而任何细小的固体颗粒一方面将在系统内部造成污染,另一方面可能导致低温阀门不能正常关闭,从而使得液氦和超流氦大量流失。因此,必须研制出可行的液氦净化方法,尽可能最大量地去除其中的固体颗粒杂质,达到指定的纯度,从而保证所有设备的正常运转并满足寿命要求。
     过滤是从固液混合物中分离固体颗粒最有效的方法之一。成饼过滤过程中,利用表面型过滤介质进行两相分离,其特点是固体颗粒被截留在过滤介质表面形成滤饼。烧结不锈钢丝网过滤器是利用多层丝网叠层的合理搭配和真空烧结等复合工艺制备而成的一种多孔功能材料,具有机械强度高、能承受热应力及冲击、可在较高压差下稳定工作、易于反吹清洗、寿命长等特点。
     本文从理论和试验两个方面对于烧结不锈钢丝网过滤器这种多孔材料应用于液氦净化的机理和特性进行研究,具体内容及结论包括:
     一、过滤器结构型式及布置设计
     根据设计参数确定烧结不锈钢丝网过滤器的结构尺寸与性能指标,针对过滤丝网褶皱结构与圆筒结构、过滤器水平布置与垂直布置,结合计算流体动力学理论和多孔介质过滤理论,分别建立过滤器以及过滤外壳的整体三维模型。其中,使用多孔介质压降方程作为Navier-Stokes方程的动量源项。利用CFD软件StarCCM+求解模型。通过模拟结果与试验结果的对比分析发现,在相同外径、相同液氦流量以及相同的出口压力下,圆筒结构的压降为褶皱结构压降的2.67倍。重力作用对于整个过滤过程压降的影响较小,但是过滤器垂直布置不利于研究滤饼特性。因此,本文选用褶皱结构并将过滤器以水平形式布置。以上结论可为过滤器结构型式以及布置设计提供理论依据。
     二、液氦过滤与再生试验研究
     根据试验目的及原理,搭建液氦过滤与再生试验装置台,分为九个独立的系统:液氦输送系统、杂质气体充注系统、气液混合系统、过滤单元、滤液成分分析系统、反吹再生系统、真空绝热系统、安全保护系统、压力和温度测量系统。对于液氦/固氮颗粒、液氦/固氧颗粒两种滤浆,各自分别实施恒速过滤和恒压过滤试验。试验结果验证了烧结不锈钢丝网过滤器应用于液氦净化的可行性。
     恒速过滤试验结果表明:滤饼形成过程对于过滤特性具有关键影响。而且,在相同的固体颗粒体积浓度下,滤浆流量越高时压降升高趋势更快,到达最大允许压降的时间更短。在相同的滤浆流量下,固体颗粒体积浓度较高时,压降和过滤效率增长速度也较快。恒压过滤试验结果表明:固体颗粒体积浓度越高,滤浆流速下降越快,达到最低流速值的时间越短,过滤效率达到最高值的时间也越短。在恒速工况和恒压工况下,固氮滤饼和固氧滤饼的平均比阻都随着滤浆中固体杂质颗粒体积浓度的增加而降低。两种滤浆具有相同的结论。
     针对固氮滤饼、固氧滤饼,各自分别实施内部反吹、外部反吹、内外部反吹三种方式下的过滤器再生试验。定义反吹速度,比较三种反吹方式的差异程度。结果表明:三种反吹方式均能吹除过滤器表面以及过滤外壳内部沉积的固氮和固氧颗粒;内外部同时反吹方式的反吹速度最高,内部反吹方式次之,外部反吹方式最低。实际应用中,内外部同时反吹是最佳的再生方式。
     三、过滤器渗透率测试试验及结果分析
     基于多孔介质Darcy压降定律、Bernoulli方程、沿程损失与局部损失方程,计算过滤介质渗透率。利用纯净的低温液氦、液氮、常温氦气、氮气和氧气五种流体作为试验工质,最终获得烧结不锈钢丝网过滤器在三种温度下的渗透率数值。结果表明,低温下的渗透率比常温下低得多。这是因为低温下烧结不锈钢丝网发生一定程度的冷缩,流道结构发生改变。
     以体积应变为基本变量,使用Matlab软件对三种温度下的五组试验结果进行拟合,得出渗透率与温度的经验关系式,为烧结不锈钢丝网过滤器的实际应用提供参考。
     四、过滤过程数值模拟及试验结果对比分析
     基于滤饼压缩及分层特性,将滤饼生成过程离散成等时间间隔以内的逐层压缩过程,分析每一层滤饼的压降和厚度,结合颗粒沉积因子,建立滤饼生成模型。模型求解时,建立滤饼比阻连续性方程,以便利用Darcy方程计算每一层滤饼的压降;建立滤饼孔隙率连续性方程,以便利用Carman-Kozeny方程、Happel Cell方程和Ergun方程计算每一层滤饼的压降。提出目标函数,结合液氦+固氮颗粒、液氦+固氧颗粒这两种滤浆分别在三种工况下的恒速试验数据,利用反抛物线插值法求解目标函数最小值从而求取滤饼比阻连续性方程和滤饼孔隙率方程中的经验参数、最佳沉积因子、最适合试验工况的压降方程,为液氦过滤特性以及滤饼性质提供一种预测方法。
Liquid helium is widely applied in astronavigation, military project, mechanicalfield and medical aspect, etc. as an important medium due to its very low temperature,super-fluidity (HeII) and thermal-mechanical effect. At the temperature of liquidhelium and even super-fluid helium, if there is any impurity such as oxygen, nitrogen,water, hydrocarbon, etc. in it, such substances shall solidify while any small solidparticle shall, in one hand, lead to pollution inside the system, and in the other hand,may make cryogenic valve to function abnormally. On such condition, liquid heliumand super-fluid helium will loss in a large amount. Therefore, feasible method must bestudied to purify liquid helium, so as to remove solid particle in it as a maximum,achieve the specified purity, guarantee normal running of all equipments and satisfyrequirement for lifetime.
     Filtration is one of the most efficient methods to separate solid particle out ofsolid-liquid mixture. During cake filtration, two-phase separation is achieved bysurface-type filtration medium, in which solid particles are entrapped on the surfaceof filtration medium to form filter cake. Sintered stainless steel screen filter is a kindof porous functional material which is made by composite technology, includingrational combination of multi-layer screen and vacuum sintering, and it ischaracterized by high mechanical strength, capacity to bear thermal stress and impact,work stably under high pressure difference, tend to regeneration, long lifetime, etc.
     In this paper, theoretical and experimental researches are conducted to study themechanism and characteristics when sintered stainless steel screen filter is used inliquid helium purification. Following contents and conclusions are involved in details:
     1. Filter Structural Pattern Design and Layout Design
     Structural dimensions and performance indexes of sintered stainless steel screenfilter are determined based on design parameters. For pleated structure and cylindricalstructure of filter screen, as well as horizontal layout and vertical layout of filter unit,combine computational fluid dynamics theory with porous medium filtration theory toestablish overall3D model for filter and the shell. Wherein, pressure drop equationfor porous medium is adopted as the momentum term in Navier-Stokes equation. CFDsoftware, Star CCM+is used to solve the model. It is found by comparison andanalysis of simulation results and experimental results that, in the case of the sameexternal diameter, the same flow of liquid helium and the same outlet pressure,pressure drop in cylindrical structure is2.6times of that in pleated structure. Effect of gravity on the pressure drop in total filtration process is relatively small, but verticallayout of filter is unbeneficial for research on filter cake characteristics. Therefore,pleated structure and horizontal layout of filter unit are applied. Such conclusions canprovide theoretical basis for design of filter structure and layout.
     2. Liquid Helium Filtration and Regeneration Test
     In accordance with test purpose and principles, liquid helium filtration andregeneration test rig is established, which is divided into nine independent systems, i.e,liquid helium transportation system, impurity gas filling system, gas/liquid mixingsystem, filtration unit, filtrate composite analysis system, regeneration system,vacuum and thermal-insulating system, security preservation system, pressuregauging system and temperature gauging system. For two kinds of flow slurry, i.e.,liquid helium and solid nitrogen, liquid helium and solid oxygen, constant velocityand constant pressure drop filtration tests are conducted. Experimental results verifythe feasibility to apply sintered stainless steel screen filter in liquid heliumpurification.
     It is shown by constant velocity filtration results that, generation of filter cakehas key influence on filtration characteristics. Furthermore, in the case of the samevolumetric concentration of solid particle, pressure drop shall increase more quicklywhen flow rate of slurry is higher, and it shall achieve maximum allowable pressuredrop in a shorter duration. In the case of the same flow rate of slurry, when volumetricconcentration of solid particle is higher, pressure drop and filtration efficiency shallincrease more quickly. It is shown by constant pressure drop filtration results that,when volumetric concentration of solid particle is higher, flow rate of slurry shalldecrease and achieve the minimum value more quickly, and filtration efficiency shallachieve the maximum value in a shorter duration. For constant velocity filtration andconstant pressure drop filtration, average specific resistance of solid nitrogen cake andsolid oxygen cake both reduce with the increase of volumetric concentration of solidparticle in flow slurry.
     For solid nitrogen cake and solid oxygen cake, filter regeneration tests in themanner of internal regeneration, external regeneration, simultaneous internal andexternal regeneration are conducted respectively. Regeneration speed is defined todescribe the difference for such three kinds of regeneration manners. It is shown byexperimental results that, three kinds of regeneration manners can all removecryogenic solid nitrogen and oxygen particles on filter surface and inside filter shell;simultaneous internal and external regeneration manner has the largest regenerationspeed, the next one is internal regeneration, and the last one is external regeneration.In practical application, simultaneous internal and external regeneration is the bestmanner.
     3. Filter Permeability Test and Result Analysis
     On the basis of Darcy pressure drop law for porous medium, Bernoulli equation, on-way resistance and local resistance equation, permeability of filter medium iscalculated. Five kinds of pure fluid, i.e., cryogenic liquid helium and liquid nitrogen,helium gas, nitrogen gas and oxygen gas at normal temperature, flow through thesintered staninless steel screen filter respectively, permeability values of the filter atthree kinds of temperature are acquired. It is shown by the results that, permeability atcryogenic temeprature is much lower than that at normal temperature, due toshrinkage of sintered stainless steel screen at cryogenic temperature to some degree,which changes flow passage structure.
     Volumetric strain is adopted as the basic variable, and Matlab software is appliedto fit experimental results and obtain empirical relation expression betweenpermeability and temperature, which provide reference for practical application ofsintered staninless steel screen filter.
     4. Numerical Simulation of Filtration Process and Comparison withExperimental Results
     Based on filter cake compression and lamination characteristics, filter cakegeneration procedure is divided into compression procedures layer by layer in equaltime internal. Pressure drop and thickness in each layer of filter cake is analyzed, andparticle deposition factor is combined with it to establish cake generation model. Inorder to solve the model, establish continuity equation for specific filter cakeresistance, so as to apply Darcy equation to calculate pressure drop in each layer offilter cake; establish porosity continuity equation, so as to apply Carman-Kozenyequation, Happel Cell equation and Ergun equation respectively to calculate pressuredrop in each layer of filter cake. Put forward objective function, combine withexperimental filtration data of two kinds of feed slurry (liquid helium and solidnitrogen particle, liquid helium and solid oxygen particle) on three kinds of constantvelocity conditions, apply inverse parabola interpolation method to obtain minimumvalue of such objective function, so as to acquire empirical parameters in continuityequation for specific filter cake resistance and porosity, the most suitable values ofparticle deposition factor and the most applicable pressure drop equation finally. Thesimulation shall provide a prediction technique for liquid helium purificationperformance and filter cake characteristics.
引文
[1]王如竹,汪荣顺.低温系统.上海:上海交通大学出版社,2000.
    [2]张福忠,张化照.超临界氦加温增压方案的探讨.导弹与航天运载技术,2001,6:41-46.
    [3] Wright E L. COBE observations of the cosmic infrared background. New Astronomy Reviews,2004,48(5-6):465-468.
    [4]张荣辉,赵秋艳.空间红外望远镜(SIRTF).航空返回与遥感,2003,24(2):43-49.
    [5] Ootsubo T, Onaka T, Yamamura I, etc. IRTS observations of the mid-infrared spectrum of thezodiacal emission. Advances in Space Research,2000,25(11):2163-2166.
    [6]张敏,王如竹.超流氦冷却的红外望远镜低温系统.低温工程,1999,6:1-5.
    [7]甘智华,王博,刘东立等.空间液氦温区机械式制冷技术发展现状及趋势.浙江大学学报(工学版),2012,46(12):2160-2177.
    [8]赵丽琴.整流罩模拟假弹头空间运动学与动力学分析.硕士论文.西安:西安电子科技大学,2006.
    [9]张磊,卢文忠,冀海燕.基于超导技术的舰船动力系统.造船技术,2009,4:1-2,8.
    [10]谢高峰.低温液体无损贮运理论及试验研究.硕士论文.兰州:兰州大学,2006.
    [11] Wang Qiuliang, Dai Yingming, Zhao Baozhi, etc. Development of high magneticfield superconducting magnet technology and applications in China. Cryogenics,2007,47(7-8):364-379.
    [12]刘立强.低温技术在大型超导磁体中的应用.低温工程,2002,5:45-48.
    [13]徐志坚.核磁共振成像仪器技术研究.硕士论文.上海:华东师范大学,2006.
    [14] Michelle Espy, Andrei Matlashov, Petr Volegov. SQUID-detected ultra-low field MRI. Journalof Magnetic Resonance,2013,228,1-15.
    [15] Roch Andrzejewski, Julio Lucas, Angel Guirao, etc. A wide-angle magnetic spectrograph of anovel design. Nuclear Instruments and Methods in Physics Research Section B: BeamInteractions with Materials and Atoms,2006,249(1-2):939-942.
    [16]张闯.国际粒子加速器的前沿.物理,2008,37(5):289-297.
    [17]张亮,宗占国,刘立强等.应用于大型粒子加速器的低温技术.第八届全国低温工程打击暨中国航天低温专业信息网学术交流会议论文集,2007:175-182.
    [18] Jimenez J M. LHC: The world’s largest vacuum systems being operated at CERN. Vacuum,2009,84(1):2-7.
    [19] Benjamin Bradu, Philippe Gayet, Silviu-lulian Niculescu, etc. Modeling of the very lowpressure helium flow in the LHC cryogenic distribution line after a quench. Cryogenics,2010,50(2):71-77.
    [20]王秋良,焦正宽,毕延芳等.合肥国家同步辐射加速器5T超导Wiggler磁体.低温与超导,1992,20(2):38-44.
    [21]黄延庆,汤洪明,冯斌等.合肥同步辐射加速器超导Wiggler磁体系统改造可行性研究.低温物理学报,2012,34(4):310-314.
    [22]武松涛,吴维越,潘引年等. EAST超导托卡马克装置中的大型超导磁体技术.低温物理学报,2005,27(A02):1113-1120.
    [23]方守贤.我国粒子加速器的现状和发展.物理,1999,28(9):557-566.
    [24] The AMS Collaboration. AMS on ISS Construction of a particle physics detector on theInternational Space Station. http://ams.cern.ch/AMS.
    [25] Blau B, Harrison S M. The superconducting magnet system of AMS02-A particle physicsdetector to be operated on the International Space Station. IEEE Transactions on AppliedSuperconductivity,2002,12:349-352.
    [26]石玉美,汪荣顺. AMS02超导磁体的低温地面支持系统设备(CGSE)方案研究.低温与超导,2006,34(6):397-400.
    [27]李将军,石玉美,汪荣顺. AMS-02超导磁体中超流氦加注过程研究.低温与超导,2005,33(6):5-9.
    [28]陈煜,郑青榕,汪荣顺等.几种获取1.8K超流氦方案的对比分析.上海交通大学学报,2005,39(2):234-237.
    [29]贺超,田贵山,魏春城等.高温烟气陶瓷过滤材料研究进展.现代技术陶瓷,2012,2:18-22.
    [30] Levdansky V V, Smolik J, Moravec P. Trapping of impurity molecules in condensation frommixture of gases. International Journal of Heat and Mass Transfer,2000,43(4):629-637.
    [31] Mirjam Kilgus, Vanessa Gepert, Nicole Dinges, etc. Palladium coated ceramic hollow fibermembranes for hydrogen separation. Desalination,2006,200(1-3):95-96.
    [32]陈华.膜分离法与深冷法联合用于从天然气中提氦.天然气工业,1995,15(2):71-73.
    [33]王熙庭,任庆生.氦资源、应用、市场和提取技术.天然气化工,2012,37(1):73-78.
    [34] Richard A Sauer, Hinsdale Ill. Apparatus and method for producing and injecting sterilecryogenic liquids. U.S. Patent5749232,1998, May.12.
    [35] Takashi Ogawa, Toshiro Minami, Hadano. Filtration Apparatus. U.S. Patent5271232,1993,Dec.21.
    [36]康勇,罗茜.液体过滤与过滤介质.北京:化学工业出版社,2008.
    [37] Behnaz Razi, Abdolreza Aroujalian, Mahdi Fathizadeh. Modeling of fouling layer depositionin cross-flow microfiltration during tomato juice clarification. Food and Bio-productsProcessing,2012,90(4):841-848.
    [38] Darcy H P G. Les Fontaines Punliques de la ville de Dijon. Paris: Victor Dalmont,1856.
    [39] Heertjes P M. Studies in filtration. Rec Tran Chem,1948,68.
    [40] Francisco J, Valdes-Parada, J. Alberto Ochoa-Tapia, etc. Validity of the permeability inCarman-Kozeny equation: A volume averaging approach. Physical A: Statistical Mechanicsand its Application,2009,388(6):789-798.
    [41] Happel, H. Viscous flow relative to arrays of cylinders. Journal of American Institute ofChemical Engineering,1959,5.
    [42] Ergun, Sabri. Fluid flow through packed columns. Chemical Engineering Progress,1952,48(2):89-94.
    [43] Francisco J, Valdes-Parada, J. Alberto Ochoa-Tapia, etc. Validity of the permeability inCarman-Kozeny equation: A volume averaging approach. Physical A: Statistical Mechanicsand its Application,2009,388(6):789-798.
    [44]弈培新,梁新武.烧结金属丝网滤芯过滤性能的试验研究.石油机械,2003,31(7):3-5.
    [45] Wolfgang Peukert. High temperature filtration in the process industry. Filtration andSeparation,1998,35(5):461-464.
    [46] Schimidt E. Experimental investigation into the compression of dust cakes deposited on filtermedia. Filtration and Separation,1995,32(8):789-793.
    [47]罗茜.成饼过滤中过滤介质阻力与堵塞研究的进展.过滤与分离,2007,17(3):37-45.
    [48] Tittarelli A, Borgini A, Bertoldi M, etc. Estimation of particle mass concentration in ambientair using a particle counter. Atmospheric Environment,2008,42(36):8543-8548.
    [49]李娟,石玉美,汪荣顺等.金属丝网过滤器性能影响因素研究.过滤与分离,2007,17(1):5-7.
    [50]秦红霞,何鹏,宋军涛等.常温下固体颗粒层过滤除尘技术.北京科技大学学报,2006,28(8):770-773.
    [51] Chi-Ho Hung, Wallace Woon-Fong Leung. Filtration of nano-aerosol using nanofiber filterunder low Peclet number and transitional flow regime. Separation and PurificationTechnology,2011,79(1):34-42.
    [52]尹法杰,方玉诚,陈欣等.刚性复合烧结金属丝网微孔材料与气固过滤分离技术.石油化工设备技术,1998,19(4):25-28.
    [53] Normanda L de Freitas, José A S Gon alves, Murilo D M Innocentini, etc. Development of adouble-layered ceramic filter for aerosol filtration at high-temperatures: The filter collectionefficiency. Journal of Hazardous Materials,2006,136(3):747-756.
    [54] Awni Y Al-Otoom. Prediction of the collection efficiency, the porosity, and the pressure dropacross filter cakes in particulate air filtration. Atmospheric Environment,2005,39(1):51-57.
    [55] Sherwood J D. Liquid-solid relative motion during slow squeeze flow of pastes. Journal ofNon-newtonian Fluid Mechanics,2005,128(2-3):163-171.
    [56]徐新阳,罗茜.滤饼的可压缩性与滤饼比阻的研究.金属矿山,2001,12:34-42.
    [57] Calle S, Contal P, Thomas D, etc. Evolutions of efficiency and pressure drop of filter mediaduring clogging and cleaning cycles. Powder Technology,2002,128(2-3):213-217.
    [58] David Vidal, Cathy Ridgway, Grégoire Pianet, etc. Effect of particle size distribution andpacking compression on fluid permeability as predicted by Lattice-Boltzmann simulations.Computers and Chemical Engineering,33(1):256-266.
    [59]孙建孟,闫国亮.渗透率模型研究进展.测井技术,2012,36(4):329-335.
    [60]宋新江,崔德密.水泥土截渗墙渗透与力学特性.黄河水利出版社,2010.
    [61] Lion M, Skoczylas F, Lafhaj Z, etc. Experimental study on a mortar. Temperature effects onporosity and permeability. Residual properties or direct measurements under temperature,Cement and Concrete Research,2005,35(10):1937-1942.
    [62] Normanda L F, Goncalves J A S, Murilo D M I, etc. Development of a double-layered ceramicfilter for aerosol filtration at high-temperature: The filter collection efficiency, Journal ofHazardous Material,2006,136(3):747-756.
    [63]冉启全,李士伦.流固耦合油藏数值模拟中物性参数动态模型研究.石油勘探与开发,1997,24(3):61-65.
    [64]雷树业,王利群,贾兰庆等.颗粒床孔隙率与渗透率的关系.清华大学学报(自然科学版),1998,38(5):20-28.
    [65] Stamatakis K, Tien C. Cake formation and growth in cake filtration. Chemical EngineeringScience,1991,46(8):1917-1933.
    [66] Renbi Bai, Chi Tien. Further work on cake filtration analysis. Chemical Engineering Science,2005,60(2):301-313.
    [67] Ruth B F. Correlating filtration theory with industrial practice. Industrial and EngineeringChemistry,1946,38:564-571.
    [68] Wakeman R J, Tarleton S. Filtration. Elsevier Science,1998.
    [69]徐新阳.气压过滤及其滤饼结构的分形特征研究.硕士论文.沈阳:东北大学.1993.
    [70] Rushton A. Cake filtration theory and practice: past, present and future.3rdChina-JapanInternational Conference Proceedings on Filtration and Separation. Wuxi, China,1997.
    [71] Tiller F M, Kwon J H. Role of porosity in filtration: behavior of highly compactable cakes.Journal of American Institute of Chemical Engineers.1998,44(10):2159-2166.
    [72] Svarovsky L. Filtration fundamentals. Solid-Liquid Separation,4thEdition,2001.
    [73]赵玉敏.降低大井银铜矿精矿滤饼水分的研究.硕士论文.沈阳:东北大学.1991.
    [74] Andrea Di Carlo, Pier Ugo Foscolo. Hot syngas filtration in the freeboard of a fluidized bedgasifier: Development of a CFD model. Powder Technology,2012,222:117-130.
    [75]惠晶,徐廷相,章利特等.高温陶瓷过滤器正向流动与过滤过程的数值计算.西安交通大学学报,2005,39(5):463-467.
    [76] Wei-Ming Lu, Yun-Peng Huang, Kuo-Jen Hwang. Stress distribution in a confined wet cake inthe compression-permeability cell and its application. Powder Technology,1998,97(1):16-25.
    [77]宁智.柴油机颗粒的不锈钢过滤器的理论模型与实验研究.博士论文.浙江:浙江大学.2004.
    [78] Ferrer Y, Templier J C, Gonthier Y, etc. Study of filter cake formation mechanisms duringtangential filtration of dust-laden gases at high temperature. Powder Technology,2000,113(1-2):197-204.
    [79]徐新阳,徐继润,刘振山等.滤饼过滤过程的计算机模拟程序设计.过滤与分离,2000,10(4):15-18.
    [80] Ni L A, Yu A B, Lu G Q, etc. Simulation of the cake formation and growth in cake filtration.Minerals Engineering,2006,19(10):1084-1097.
    [81] Tiller F M, Kwon J H. Role of porosity in filtration: behavior of highly compactable cakes.Journal of American Institute of Chemical Engineers,1998,44(10):2159-2166.
    [82]吴燕翔.恒压过滤滤饼孔隙率分析.化学工程,1996,24(5):37-40.
    [83]于亮.刚性陶瓷滤管的脉冲反吹性能研究.节能,2010,29(4):21-25.
    [84]宁智,江玮.柴油机微粒捕捉器电加热再生控制系统及控制策略的研究.机械工程学报,2004,40(5):106-110.
    [85]资新运.柴油机排气颗粒过滤器过滤机理及实用再生技术的研究.硕士论文.大连:大连理工大学动力工程系.1998.
    [86]杨德胜,杨懿.柴油机微粒陶瓷过滤器再生方法的探讨.内燃机,2004,1:18-21.
    [87] Cooper B J, Jung H J, Thoss J E. Treatment of diesel exhaust gas, US Patent4,902,487,1990.
    [88]姬忠礼,孟祥波,时铭显.陶瓷过滤器脉冲反吹系统引射性能的实验测定(I)——喷吹气体流量的测定和分析.化工机械,2000,27(4):187-189.
    [89] Stocklmayer Ch, Hoflinger W. Simulation of the regeneration of dust filters. Mathematics andComputers in Simulation,1998,46(5-6):601-609.
    [90]李孝禄,王旭.一种柴油机颗粒过滤再生器的试验研究.拖拉机与农用运输车,2007,34(6):31-33.
    [91]焦海青,姬忠礼.操作参数对陶瓷过滤管脉冲反吹清灰过程的影响.化工学报,2004,55(7):1155-1160.
    [92]吴晓风,沈来宏.烧结金属过滤式除尘技术研究.过滤与分离,2004,14(3):15-18.
    [93]刑毅,况春江.高温除尘过滤技术的研究.过滤与分离,2004,14(2):1-4.
    [94]王凡,匡星,杨佳慧等.金属过滤介质高温除尘的实验研究.过滤与分离,2006,16(3):4-7.
    [95] The Freedonia Group. US Filter Market Share,2004.
    [96]杨卫亮.316L不锈钢的低温切削研究.硕士学位论文.山西:太原科技大学.2010.
    [97]冯庆祥.固氧在液氢中的行为特性及液氢生产的安全问题.低温与特气,1998,1:55-61.
    [98] Celik D, Van Sciver S W. Tracer particle generation in super-fluid helium through cryogenicliquid injection for particle image velocimetry (PIV) application. Experimental Thermal andFluid Science,2002,26(8):971-975.
    [99] Anne W Nolin, Jeff Dozier. A hyper-spectral method for remotely sensing the grain size ofsnow. Remote Sensing of Environment,2000,74(2):207-216.
    [100]汤慧萍,王建永,葛渊等.多层折叠滤芯过滤性能的研究.液压与气动,2008,12:70-72.
    [101]巴鹏,刘彭,欧周华等.褶型滤芯过滤阻力与结构参数关系的研究.液压与气动,2012,10:117-120.
    [102]王凡,匡星,杨佳慧等.金属过滤介质高温除尘的实验研究.过滤与分离,2006,16(3):4-7.
    [103]王丽丽,刘国荣.常用过滤材料的分类总结及性能测试.过滤与分离,2008,18(1):42-44.
    [104]刘培生.多孔材料孔径及孔径分布的测定方法.钛工业进展,2006,23(2):29-34.
    [105]单丽君,陈蕊娜.固液分离过滤器流场的数值模拟与分析.大连交通大学学报,2009,30(2):6-9.
    [106]钱付平,韩云龙,陈光等.纤维过滤器气相流场的数值模拟.节能技术,2008,26(5):393-396,422.
    [107] Versteeg H K, Malalasekera W. An introduction to Computational Fluid Dynamics.世界图书出版公司.2006
    [108]王福军.计算流体动力学分析:CFD软件原理与应用.北京:清华大学出版社.2004.
    [109]刘鹤青.金属丝编织密纹网的孔隙率.过滤与分离,2007,17(4):27-33.
    [110]冯胜山,许顺红,刘庆丰等.高温废气过滤除尘技术研究进展.工业安全与环保,2009,35(1):6-9.
    [111]李娟,石玉美,汪荣顺.液氮中单管加注二氧化碳气体的实验研究.低温与超导,2008,36(1):6-8.
    [112] Li Juan, Shi Yumei, Wang Rongshun, etc. Study on the process of filling carbon dioxide gasinto static and flowing liquid nitrogen,4thInternational Conference of Cryogenics andRefrigeration,2008, Shanghai, China.
    [113]石玉美,汪荣顺,李娟.发明专利:液氦过滤器特性试验装置.中国:101008595,2007-08-01.
    [114]徐兰.测量系统误差分析研究.硕士论文.江苏:南京理工大学.2007.
    [115]严兆大.热能与动力工程测试技术.北京:机械工业出版社,2009.
    [116]李安生.仪器误差与B类不确定度的评定.安阳工学院学报,2007,4:92-95.
    [117]田社平.基于均匀分布的圆度误差评价.误差与数据处理,2004,5:53-55.
    [118]李娟,汪荣顺,魏蔚.高真空多层绝热杜瓦漏放气速率试验研究.真空与低温,2005,11(4):229-232.
    [119]吴业正.制冷与低温技术原理.北京:高等教育出版社,2007.
    [120]刘贵庆,陶乐仁,郑志皋.基于VB的液氮喷雾流态化速冻机监控系统设计.自动化与仪表,2004(5):51-53.
    [121]李娟,石玉美,汪荣顺等.液氦净化系统的过滤及反吹特性研究.低温与超导,2007,35(6):463-468.
    [122]鲁淑群,朱企新,许莉等.料浆浓度对滤饼过滤过程的影响.流体机械,2001,29(8):30-33.
    [123]夏泰淳.工程流体力学.上海:上海交通大学出版社,2006.
    [124]蔡杰.空气过滤器ABC.北京:中国建筑工业出版社.2002.
    [125] Donald R C, Bruce J T. Permeability of sintered micro-fibrous composites for heterogeneouscatalysis and other chemical processing opportunities. Catalysis Today,2001,69(1-4):33-39.
    [126]朱益华,陶果,方伟等.低渗气藏中气体渗流Klinkenberg效应研究进展.地球物理学进展,2007,22(5):1591-1596.
    [127]李将军,石玉美.液氦在管路中流动的阻力分析.硕士论文.上海:上海交通大学.2006.
    [128] Carl L Yaws, Jewel Andrew Gomes. Chapter4: Viscosity of liquid-inorganic compounds.Transport Properties of Chemicals and Hydrocarbons. William Andrew.2009,194-299
    [129]关治,陆金甫.数值方法.北京:清华大学出版社.2006.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700