用户名: 密码: 验证码:
白囊耙齿菌高产菌株选育、发酵、胞内多糖分离纯化及生物活性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
白囊耙齿菌(Irpex lacteus Fr.)是一种重要的药用真菌,具有提高免疫力、抗肾炎等多种药理活性。但关于白囊耙齿菌的相关研究较少,本文主要针对白囊耙齿菌在工业生产中发酵产物不稳定及药理活性不明确的问题,对其进行一系列研究。
     首先采用单因素、响应面(RSM)结合人工神经网络(ANN)的方法,对白囊耙齿菌的产孢培养基进行优化,使其产孢量提高。然后对其进行亚硝基胍(NTG)诱变,并采用期望函数的方法同时以菌丝体干重、胞内腺苷、胞内甘露醇和胞内多糖为综合指标对突变株进行筛选,得到白囊耙齿菌高产菌株ILN10,并对其进行ITS和RAPD分子鉴定。采用期望函数结合化学计量学方法,对白囊耙齿菌高产菌株ILN10的发酵培养基进行优化。并在此基础上,对白囊耙齿菌高产菌株ILN10的发酵特性进行研究。
     为了进一步研究白囊耙齿菌高产菌株ILN10的药理活性,通过DEAE52离子交换柱层析及Sephadex G100凝胶柱层析获得ILN3A和ILN3B两个纯化胞内多糖组分。并通过均一性、分子量、单糖组分、紫外光谱、红外光谱及高碘酸氧化和Smith降解对其进行初步的结构分析。MTT法证实了多糖组分的体外抗肿瘤活性及抗肾炎活性。并采用大鼠C BSA模型对ILN3A的体内抗肾炎活性进行研究。分别对大鼠尿蛋白、血清白蛋白、胆固醇、甘油三酯、肌酐、尿素氮、细胞因子及肾脏病理形态进行分析,以此评价ILN3A对慢性肾小球肾炎的治疗作用及作用机理,为白囊耙齿菌高产菌株ILN10的开发利用奠定基础。
     白囊耙齿菌(Irpex lacteus Fr.)是我国的传统中药,主要用于慢性肾小球肾炎的治疗。受其资源的限制,工业上主要以其发酵产物为原料。其有效成分主要以蛋白质、多糖、腺苷、多肽、皂甙和甘露醇等为主。但关于白囊耙齿菌的相关研究较少,本文主要针对白囊耙齿菌在工业生产中存在的发酵产物不稳定及药理活性不明确等问题,对其进行一系列研究。
     首先采用单因素、响应面结合人工神经网络的方法,对白囊耙齿菌的产孢培养基及培养条件进行优化,提高其产孢量。然后对其进行亚硝基胍(NTG)诱变,并采用期望函数的方法同时以菌丝体干重、胞内腺苷、胞内甘露醇和胞内多糖为综合指标对突变株进行筛选,得到白囊耙齿菌高产菌株,利用ITS序列分析对高产菌株进行菌种鉴定,并通过RAPD技术考察高产菌株和原始菌株在分子水平上的差异。优化得到白囊耙齿菌的最适产孢培养基为:蛋白胨3.78g/L,酵母浸粉2.44g/L,葡萄糖4.93g/L,MgSO_47H_2O0.19g/L和VB10.02g/L。产孢条件为接种量3%,于26℃,150r/min培养4d,产孢量可达到最高2.66×10~5个/mL。采用NTG对白囊耙齿菌进行诱变,以期望函数为综合指标对突变株进行筛选得到遗传稳定的高产突变株ILN10,期望函数值D是原始菌株的1.68倍。ITS鉴定证实ILN10属于非褶菌目,多孔菌科,耙齿菌属。随后从45条随机引物中筛选出引物S83,在RAPD扩增中存在400bp左右的差异性条带。利用二次PCR扩增,排除了RAPD分析中存在假带现象的问题。结果表明,白囊耙齿菌高产菌株ILN10为一株不同于原始菌株的新菌株,两菌株存在分子水平差异性。
     以期望函数为考察指标,采用化学计量学方法,对白囊耙齿菌高产菌株ILN10的发酵培养基进行优化。并在此基础上,对白囊耙齿菌高产菌株ILN10的发酵特性进行研究。优化得到ILN10的最佳发酵培养基为:乳糖26.75g/L,酵母浸粉23.92g/L,(NH_4)_2SO_40.33g/L,KH_2PO_40.5g/L,MgSO_4·7H_2O0.5g/L,VB10.15g/L。此时D值最高为0.5196。验证实验得到D的平均值为0.5225,是未优化的1.99倍。对白囊耙齿菌高产菌株ILN10液体摇瓶发酵特性的研究表明,胞内腺苷产量、胞内多糖产量、胞内甘露醇产量及乳糖消耗量及发酵液的pH随ILN10的发酵呈现出明显的动力学变化。
     为了对白囊耙齿菌高产菌株ILN10的药理活性进行研究,通过DEAE纤维素和Sephadex G100柱层析分离得到ILN10的纯化多糖ILN3A和ILN3B。并采用均一性、分子量、单糖组分、紫外光谱、红外光谱及高碘酸氧化和Smith降解对其进行初步的结构分析。两种均一多糖的平均分子量分别为2264和2033kDa,都是由甘露糖、鼠李糖和葡萄糖组成。紫外光谱扫描证实ILN3A和ILN3B组分中不存在核酸和蛋白质。近红外光谱分析表明ILN3A和ILN3B具有显著的多糖特征吸收峰,存在羟基、C H、C=O、C O C和C O H的特征吸收峰。另外证明了吡喃环骨架结构的存在。高碘酸氧化和Smith降解表明ILN3A的多糖链是由鼠李糖、甘露糖和葡萄糖以(1→2)和(1→4)糖苷键连接。而ILN3B多糖链是由甘露糖的(1→2)和(1→4)糖苷键及鼠李糖和葡萄糖的(1→3)组成。
     采用MTT法对ILN10的体外抗肿瘤活性和抗肾炎活性进行研究。结果显示,ILN3A和ILN3B对HepG2和Hela细胞的增殖都具有显著的抑制作用,但与原始菌株的纯化多糖组分相比,并不存在显著的优势。然而,ILN3A对HBZT1细胞的抑制作用明显高于其他多糖组分,其IC_(50)为97.28μg/mL。
     采用C BSA膜性肾炎大鼠对ILN3A的抗肾炎活性及作用机制进行研究。研究证实,ILN3A能够有效降低肾炎大鼠的尿蛋白、总胆固醇、甘油三酯和血清肌酐水平,提高血清白蛋白和6keto PGF水平,改善膜性肾炎的症状。ILN3A多糖组分通过NF κB介导的细胞因子途径实现抗肾炎作用,下调NF κB的分泌水平,从而抑制IL2、IL6和TNF α的释放,促进IL2R的释放,进一步抑制损伤性炎症反应的发生。病理形态分析证实ILN3A能显著减轻肾小球病变,其中以高剂量组效果最为明显,与雷公藤阳性对照组结果接近,中剂量组效果次之,与益肾康阳性对照组接近,但给药浓度却远远低于阳性对照组。可见ILN3A组分能够有效的改善慢性肾炎大鼠的症状,抑制炎症反应,降低肾脏损伤。
Irpex lacteus Fr. is a traditional Chinese medicine, which is mainly used for thetreatment of chronic glomerulonephritis. Its mycelia by fermentation are usually usedas raw materials in clinical application. The active ingredients of Irpex lacteus mainlyconsist of proteins, polysaccharides, adenosine, peptides, saponins and mannitol, etc.However, the fermented products are unstable in the industrial process and theirpharmacological activities remain unknown in Irpex lacteus application. In order tosolve these problems, a series of studies were conducted.
     In this thesis, chemometrics methods were applied first to optimize thesporogenous media and culture conditions of Irpex lacteus. Then Irpex lacteus wastreated by nitrosoguanidine. A desirability function has been developed to screen themutants. The yields of biomass, intracellular adenosine, intracellular mannitol,intracellular polysaccharide have been simultaneously considered in the desirabilityfunction. In addition, the ITS sequence of the mutational strain was identified. ThenRAPD technique was used to investigate the differences at the molecular level fromIrpex lacteus ILN10and wild type strain. Optimum sporogenous medium comprised:peptone3.78g/L, yeast extract2.44g/L, glucose4.93g/L, MgSO_4·7H_2O0.19g/L andVB10.02g/L. The optimal sporogenous culture conditions were as follows: inculum3%, temperature26℃, rotational speed150r/min and fermentation time4days. Themaximum concentration of spore was2.66×105/mL. A mutant, Irpex lacteus ILN10with high genetic stability was obtained, whose desirability function value was1.68fold higher than that of the wild type Irpex lacteus. ITS sequence of Irpexlacteus ILN10were identified as order Aphyllophorales, family Polyporaceae, genusIrpex Fr.. The whole genome of Irpex lacteus ILN10and wild type strain werescanned using RAPD techniques. The results showed that differential band about400 bp was amplified by primer S83, which proved Irpex lacteus ILN10and wild typestrain were differences in the DNA molecular level.
     The desirability value and chemometrics methods were also applied to optimizethe fermentation medium of Irpex lacteus ILN10. Then the fermentation characteristicof Irpex lacteus ILN10was studied. Optimum fermentation medium consisted of:lactose26.75g/L, yeast extract23.92g/L,(NH_4)2SO_40.33g/L,KH_2PO_40.5g/L,MgSO_4·7H_2O0.5g/L,VB10.15g/L. The average desirability value of threevalidation experiments was0.5225,1.99fold as high as that of the original medium.The fermentation characteristics showed that while Irpex lacteus ILN10beingfermented the intracellular adenosine, intracellular mannitol, intracellularpolysaccharide, utilization of lactose and the pH of the fermentation broth changed indynamics.
     The polysaccharide fractions were purified from Irpex lacteus ILN10byDEAE52cellulose and Sephadex G100chromatography. Two main fractions,ILN3A and ILN3B, were obtained and the chemical characteristics were analyzed.The average molecular weights of the two fractions were2264and2033kDa,respectively. Both of these polysaccharides consisted primarily of rhamnose, mannoseand glucose, and their ratios were1:6.13:1.96and1:5.04:1.87, respectively.Ultraviolet spectrum indicated the absence of protein and nucleic acid in ILN3A andILN3B. Both infrared spectrum of the purified ILN3A and ILN3B displayed apolysaccharide characteristic absorption peak, such as hydroxyl groups, C H groups,C=O groups, C O C groups and C O H groups. And it also proved the existence ofskeletal modes of pyranose rings. The analysis of periodate oxidation smith showedthat ILN3A had a backbone of (1→2) and (1→4) linked rhamnose, mannose andglucose residues, ILN3B had a backbone of (1→2) and (1→4) linked mannoseresidues and (1→3) linked rhamnose and glucose residues.
     The MTT method was used to evaluate the antitumor and antinephritis activitiesof Irpex lacteus ILN10polysaccharide fractions. It was found that ILN3A and ILN3Bhad noticeable inhibition effects on HepG2tumor cells. However, when comparedwith those of the wild type strain it had no advantage. In addition, the inhibition ability of ILN3A polysaccharide fraction on HBZT1was higher than otherpolysaccharide fractions, whose IC50value was97.28μg/ml.
     The nephritis rats induced by cationic bovine serum albumin (C BSA) wereused to study the effect of ILN3A polysaccharide fraction on glomerulonephritis.ILN3A could effectively reduce the level of urine protein (UP), total cholesterol (TC),triglycerides (TG) and serum creatinine (Scr) in nephritis rats. ILN3A could alsoeffectively increase the level of serum urea nitrogen (BUN), serum albumin (Alb) and6keto PGF. The mechanism by which ILN3A provides prevention ofglomerulonephritis may be attributable to inhibition of NF κB mediated cytokinepathway. Through the NF κB inhibition, ILN3A is able to down regulate the releaseof IL2, IL6and TNF α, and up regulate IL2R, thus inhibiting the inflammatoryreaction. The pathological analysis confirmed that all of the ILN3A polysaccharidefraction could mitigate the glomerulonephritis. The effect of ILN3A high dose groupwas most obvious, and the results were most close to LeiGongTeng positive controlgroup. The effect of ILN3A medium dose group was lower, but still close toYiShenKang positive control group. The results indicated that ILN3A polysaccharidefraction can effectively improve the nephritis symptoms, alleviate glomerular immuneinflammation and reduce the kidney damage of nephritis rats.
引文
[1]严仲铠,李万林主编.中国长白山药用植物彩色图志[M].北京卫生出版社.
    [2]曾宪录,张济民,张忠辉.白耙齿菌(Irprex lacteus)及其相似种的分类研究[J].东北师大学报自然科学版,1992(1):111116.
    [3] Svobodová K, Majcherczyk A, Novotny C, et al. Implication of myceliumassociated laccase from Irpex lacteus in the decolorization of synthetic dyes[J].Bioresour. Technol.,2008,99:463471.
    [4] Novotny C, Erbanová P, Cajthaml T, et al. Irpex lacteus, a white rot fungusapplicable to water and soil bioremediation[J]. Appl. Microbiol. Biotechnol.,2000,54:850853.
    [5]杨真威,姜瑞芝,陈英红,等.耙齿菌糖蛋白的提取分离、理化性质及抗炎活性[J].天然产物研究与开发,2005,17(3):280282.
    [6]石陶圣,吴凌,赵兴红,等.响应面法优化白囊耙齿菌胞内多糖提取条件[J].中国医药工业杂志,2009,40(10):743746.
    [7]杨庆尧.食用菌生物学[M].上海:上海科学技术出版社,1981.
    [8]朱戎,陈向东,兰进.药用真菌液体发酵研究进展[J].中药材,2003,26(1):5557.
    [9] Prosser J I. Kinetics of filamentous growth and branching[M]. The growingfungus, London: Chapman&Hall,1995,301318.
    [10] Smith G, Calam C. Variations in inocula and their influence on the productivityof antibiotic fermentations[J]. ol. Lett.,1980,2:261266.
    [11] Greasham R. Growth kinetics and fermentation scale up[M]. Biotechnology offilamentous fungi, technology and products, Stoneham, MA: ButterworthHeinemann,1991:6587.
    [12] Monod J. Recherches sur la Croissance des Cultures Bacteriennes[M]. Paris:Hermann,1942.
    [13] Maria P. Fungal morphology and metabolite production in submerged mycelialprocesses[J]. Biotechnology Advances,2004,22:189259.
    [14] Dabes J N, Finn R K, Wilke C R. Equations of substrate limited growth: thecase for Blackman kinetics[J]. Biotechnol Bioeng,1973,15:115977.
    [15] Peberdy J F. Protein secretion in filamentous fungi trying to understand ahighly productive black box[J]. Trends Biotechnol.,1994,12:5057.
    [16]李羿,万德光,杨胜.茯苓摇瓶补料液体发酵和发酵罐补料液体发酵[J].药物生物技术,2007,14(1):5659.
    [17]李羿,李晨,游元元,等.茯苓发酵罐补料液体发酵的研究[J].化学研究与应用,2011,23(7):847851.
    [18]刘少琴,赵紫华,马彩霞,等.药用真菌液体发酵培养的研究进展[J].中国现代中药,2006,8(7):2831.
    [19]谭周进,谢达平,王征,等.蜜环菌胞外胞内多糖的发酵条件研究[J].微生物学通报,2002,29(3):3337.
    [20]胡焕荣.灵芝菌丝体深层发酵工业化生产的研究[J].食品科学,2006,27(2):196198.
    [21] Hsieh C Y, Tseng M H, Liu C J. Production of polysaccharides fromGanoderma lucidum(CCRC36041)under limitations of nutrients[J]. Enzyme&Microbial Technology,2006,38:109117.
    [22]刘冬,李世敏,许柏球.灵芝菌丝体深层液体发酵培养基研究[J].微生物学杂志,2001,21(2):1517.
    [23]李刚,李宝健.灵芝发酵培养基的研究[J].中药材,1998,21(8):379381.
    [24]方庆华,钟建江.灵芝真菌发酵生产灵芝胞内多糖和灵芝酸[J].华东理工大学学报,2001,27(3):254257
    [25] Fang Q H, Zhong J J. Submerged fermentation of higher fungus Ganodermalucidum for production of valuable bioactive metabolites ganoderic acid andpolysaccharide[J]. Biochemical engineering journal,2002(10):6165.
    [26] Robinson P M.实用真菌生理学[M].贵阳:贵州人民出版社,1986:5660.
    [27]胡征,李冬生,吴小刚.液态发酵冬虫夏草生物活性强化剂工艺优化研究[J].食品技术,2004(4):4849.
    [28]裘娟萍,孙培龙,朱家荣,等.灰树花深层发酵工艺条件的研究[J].微生物学通报,2001,28(3):3335.
    [29]张广臣,雷虹,何欣,等.微生物发酵培养基优化中的现代数学统计学方法[J].食品与发酵工业,2010,36(5):110113.
    [30] Cui F J, Li Y, Xu Z H, et al. Optimization of the medium composition forproduction of mycelial biomass and exopolymer by Grifola frondosa GF9801using response surface methodology[J]. Bioresource Technology,2006,97:12091216.
    [31]陆震鸣,何喆,许泓瑜,等.基于人工神经网络遗传算法的樟芝发酵培养基优化[J].生物工程学报,2011,27(12):17731779.
    [32]刘华,贾薇,刘艳芳,等.珍稀药用真菌—樟芝深层发酵培养条件的优化[J].微生物学通报,2007,34(1):7074.
    [33]赵子高,杨焱,刘艳芳,等.药用真菌桑黄液体深层发酵条件的优化[J].微生物学通报,2007,34(3):459463.
    [34]陆正清.灵芝液体深层发酵技术[J].江苏食品发酵,2007,(3):3840.
    [35]李平作,章克昌.灵芝胞外生物活性胞内多糖的pH控制发酵[J].微生物学通报,2000,27(1):58.
    [36]夏志兰,喻桃生,周连玉.灵芝液体发酵条件的优化研究[J].微生物学杂志,2007,27(2):1015.
    [37]邵伟,乐超银,熊泽,等.茯苓液体发酵条件的研究[J].食用菌,1999,4:23.
    [38]陈艳秋,武红,傅伟杰,等.桑黄菌的人工驯化培养试验初报[J].食用菌,1997,19(1):17.
    [39] Xiao J H, Chen D X, Xiao Y, et al. Optimization of submerged cultureconditions for mycelial polysaccharide production in Cordyceps pruinosa[J].Process Biochemistry,2004,39:22412247.
    [40]李素玲,尚春树,贺耀武.环境因子对密环菌菌丝生长的影响[J].山西农业科学,1998,26(4):7881.
    [41] Miles P G, Chang S T. Mushroom biology: Concise basics and currentdevelopments[M]. World Scientific Press,1997,161175.
    [42] Chang S T, Miles P G. Mushroom biology: a new discipline[J]. Mycologist,1992,6(2):6473.
    [43] Lucas E H. Tumor inhibition in Boletus edulis and other Holobasidiomycetes.Antibiotic Chemotherapy,1957,7:115.
    [44] Gregory F J. Studies on antitumor substances produced by basidionmycetes[J].Mycologia,1966,58:8091.
    [45] Miyazaki T, Nishijima M. Studies on fungal polysaccharides. XXVII. Structuralexamination of a water soluble, antitumor polysaccharide of Ganodermalucidum[J]. Chemical&Pharmaceutical Bulletin,1981,29:36113625.
    [46] Kanayma H, Togami M, Adachi N, et al. Studies on the antitumor activepolysaccharides from the mycelia of Poria cocos: III. Antitumor activityagainst mouse tumors[J]. Yakugaku Zasshi,1986,106:307319.
    [47] Chihara G, Hamuro J, Maeda Y Y, et al. Fractionation and purification of thepolysaccharides with marked antitumor activity, especially lentinan, fromLentinus edodes[J]. Cancer Research,1970,30:27762782.
    [48] Hobbs C. Medicinal values of Lentinus edodes (Berk) Sing.(Agaricomycetideae). A literature review[J]. International Journal MedicalMushrooms,2000,2:287297.
    [49] Hiroshi S, Takeda M. Diverse biological activity of PSK (Krestin), aprotein bound polysaccharide from Coriolus versicolor (Fr.)[J]. Mushroombiology and mushroom products,1993:237245.
    [50] Cun Z, Mizuno T, Ito H, et al. Antitumor activity and immunological propertyof polysaccharides from the mycelium of liquid cultured Grifola frondosa[J].Journal of the Japanese Society for Food Science and Technology,1994,41:724733.
    [51] Mizuno T, Ohsawa K, Hagiwara N, et al. Fractionation and characterization ofantitumor polysaccharides from Maitake, Grifola frondosa[J]. Agriculture andBiological Chemistry,1986,50:16791688.
    [52] Mizuno T, Saito H, Nishitoba T, et al. Antitumoractive substances frommushrooms[J]. Food Research International,1995,11:2361.
    [53] Ukai S, Kiho T, Hara C, et al. Polysaccharides in fungi: XIII. Antitumor activityof various polysaccharides isolated from Dictyophora indusiata, Ganodermajaponicum, Cordyceps cicadae, Auricularia auricula judae and Auriculariasp[J]. Chemical&Pharmarceutical Bulletin,1983,31:741749.
    [54] Ukai S, Morisaki S, Goto M, et al. Polysaccharides in fungi. VII. Acidicheteroglycans from the fruiting bodies of Auricularia auricula judae[J].Chemical&Pharmarceutical Bulletin,1982,30:635649.
    [55] Ruiz Herrera J. Fungal cell wall: Structure, synthesis, and assembly[M]. BocaRaton, Ann Arbor, London: CRC press,1956.
    [56] Mizuno T. Development of antitumor polysaccharides from mushroom fungi[J].Food and Food Ingredient Japanese Journal,1996,167:6987.
    [57] Wessels J G H, Sietsman J. Wall structure and growth in Schizophyllumcommune[M]. In J. H. Burnett,&A. P. J. Trinci (Eds.), Fungal walls andhyphal growth. Cambridge: Cambridge University Press,1979,2737.
    [58] Sietsman J H, Wessels J G H. Evidence for covalent linkages between chitin andβ glucan in a fungal wall[J]. Journal of Genetic Microbiology,1979,114:99105.
    [59]杨景峰,罗志刚,罗发兴.物理波在真菌胞内多糖提取中的应用[J].粮油食品科技,2007,15(5):5558.
    [60]林武滔,念保义,王铮敏.超声强化姬松茸胞内多糖的提取及其机理分析[J].宝鸡文理学院学报(自然科学版),2004,24(3):191193.
    [61] Tabata K, Tto W, Kojima T. Ultrosonic degradation of schizophyllan, anantitumor polysaccharide produced by schizophyllan commune fries[J].Carbohydrate Research,2002,89(1):121135.
    [62]胡斌杰,陈金锋,王宫南.超声波法与传统热水法提取灵芝胞内多糖的比较研究[J].食品工业科技,2007,28(2):190192.
    [63]于淑娟,高大维,李国基.超声波酶法提取灵芝胞内多糖的机理研究[J].华南理工大学学报(自然科学版),1998,26(2):123127.
    [64]张文超,蔡妙颜,李琳,等.金针菇子实体胞内多糖提取新方法[J].食用菌,2000,7,(8):48.
    [65]张文超,蔡妙颜,李琳,等.物理波强化提取金针菇胞内多糖[J].食用菌,2001,(1):57.
    [66]邓岩,张英华.物理波强化提取金针菇胞内多糖[J].现代化农业,2001,(6):22.
    [67]高娟娟,梁安慧,阳敏,等.超声波对杏鲍菇胞内多糖提取率影响试验[J].食用菌,2005,(6):4950.
    [68]张海容,韩伟珍.微波法与传统热水法提取香菇胞内多糖的比较研究[J].食品研究与开发,2005,26,(5):6871.
    [69]王亚飞,毕红梅.超声波法提取香菇胞内多糖的研究[J].内蒙古科技与经济,2004,(14):124125.
    [70]边洪荣,孙广利,张海岚.用正交试验法研究超声提取香菇胞内多糖的最佳工艺[J].中药材,2006,29(3):289291.
    [71]张钟,高智谋.微波辅助野生黑木耳胞内多糖的提取工艺条件优化[J].包装与食品机械,2006,24(2):710.
    [72]樊黎生,张声华,吴小刚.微波辅助提取黑木耳胞内多糖的研究[J].食品与发酵工业,2005,31(10):142148.
    [73]欧阳小丽,张晓昱,王宏勋,等.茶薪菇菌丝体胞内多糖提取方法的研究[J].中国食用菌,2004,23(5):3537.
    [74]聂金媛,吴成岩,吴世容,等.微波辅助提取茯苓中茯苓胞内多糖的研究[J].中草药,2004,35(12):13461348.
    [75]郝瑞芳,景浩.真菌胞内多糖的研究进展[J].中国食物与营养,2008,(4):1922.
    [76] Zhang M, Cui S W, Cheung P C K, et al. Antitumor polysaccharides frommushrooms: a review on their isolation process, structural characteristics andantitumor activity[J]. Trends in Food Science&Technology,2007,18:419.
    [77]曾凯宏,明建,曾凯芳.真菌胞内多糖的结构与功能[J].食品科技,2001,(4):6566.
    [78]郝瑞芳,景浩.真菌胞内多糖的研究进展[J].中国食物与营养,2008,(4):1922.
    [79] Bao X F, Liu C P, Fang J N, et al. Structuraland immunological studies of amajor polysaccharide from spores of Ganoderma lucidum(Fr.)Karst[J].Carbohydrate Research,2001,332(1):6774.
    [80] Hamuro J, Chihara G. Mechanisms of action of autitumor polysaccharides. Ⅰ.Effect of antilymphocyteserum on the antitumor activity of lentinan[J].International Journal Cancer,1971,8(1):4146.
    [81]姜瑞芝,陈怀永,陈英红,等.银耳孢糖的化学结构初步研究及其免疫活性[J].中国天然药物,2006,4(1):7376.
    [82]恭敏,朱勤,王彤,等.冬虫夏草胞内多糖的分子结构与免疫活性[J].生物化学杂志,1990,6(6):486491.
    [83]钟昕,周素梅,王强.药用真菌胞内多糖研究进展[J].科技导报,2009,27(9):97101.
    [84] Zhang A L, Lu J H, Zhang N, et al. Extraction, purification and anti tumoractivity of polysaccharide from mycelium of mutant Cordyceps militaris[J].Chem. Res. Chinese Universities,2010,26(5):798802.
    [85] Varki A, Cummings R, Esko J, et al. Essentials of glycobiology[M]. Principlesof structural analysisand sequencing of glycans. La Jolla, CA: Cold SpringHarbour Laboratory Press,1999.
    [86]张惟杰.糖复合物生化研究技术[M].浙江:浙江大学出版社,1999,245252.
    [87] Cui S W. Structural analysis of polysaccharides[M]. Food carbohydrates. BocaRaton, FL: CRC Press, CRC Taylor&Francis press,2005,146160.
    [88] Vliegelhart F G, Dorland D L. High resolution1H NMR spectroscopy as a toolin the structure analysis of carbohydrates related to glycoprotein[J]. Advancesin Carbohydrate Chemistry and Biochemistry,1983,41:209216.
    [89] Rees D A. Conformational analysis of polysaccharides. II. Alternatingcopolymers of the agar carrageenan chondroitin type by model building in thecomputer with calculation of helical parameters[J]. Journal of ChemicalSociety (B): Physical Organic,1969,12:217226.
    [90] Rees D A, Scott W E. Conformational analysis of polysaccharides:stereochemical significance of different linkage positions in β linkedpolysaccharides[J]. Journal of the Chemical Society (D): ChemicalCommunications,1969,18:10371038.
    [91] Rees D A, Scott W E. Polysaccharide conformation. Part VI. Computer modelbuilding for linear and branched pyranoglycans. Correlations with biologicalfunction. Preliminary assessment of inter residue forces in aqueous solution.Further interpretation of optical rotation in terms of chain conformation [J].Journal of the Chemical Society (B): Physical Organic,1971,3:469479.
    [92] Burton B A, Brant D A. Comparative flexibility, extension, and conformation ofsome simple polysaccharide chains[J]. Biopolymers,1983,22:17691792.
    [93] Sato T, Norisuye T, Fujita H. Triple helix of Schizophyllum communepolysaccharide in dilute solution.5. Light scattering and refractometry inmixtures of water and dimethyl sulfoxide[J]. Macromolecules,1983,16:185189.
    [94] Young S, Dong W. Observation of a partially opened triplehelix conformation in13β glucan by fluorescence resonance energy transfer spectroscopy[J].Journal of Biological Chemistry,2000,275:1187411879.
    [95] Xu X, Zhang X, Zhang L, et al. Collapse and association of denatured lentinanin water/dimethylsulfoxide solutions[J]. Biomacromolecules,2004,5:18931898.
    [96] Zhang X, Zhang L, Xu X. Morphologies and conformation transition of lentinanin aqueous NaOH solution[J]. Biopolymers,2005,75:187195.
    [97] Xu Q, Allen B. Dynamics of uniformly13C enriched cell wall polysaccharideof streptococcus mitis J22studied by13C relaxation rates[J]. Biochemistry,1996,35:1451214520.
    [98] Rao V S R, Qasba P K, Balaji P V, et al. Methods of conformational analysis. In:Conformation of carbohydrates[M]. Harwood academic publishers,1998.
    [99] Ando T, Kodera N, Takai E, et al. A high speed atomic force microscope forstudying biological macromolecules[J]. Biophysics,2001,98:1246812472.
    [100] Camesano T A, Wilkinson K J. Single molecular study of xanthanconformation using atomic force microscopy[J]. Biomacromolecules,2001,2:11841191.
    [101] McIntire T M, Brant D A. Observation of the (1→3) β D Dglucan lineartriple helix to macrocycle interconversion using noncontact atomatic forcemicroscopy[J]. Journal of American Chemical Society,1998,120:69096919.
    [102] Piotr E, Hongbin L, Andres F, et al. Chair boat transitions in singlepolysaccharide molecules observed with force ramp AFM[J]. Biophysics,2002,99:42784283.
    [103] Perez S, Kouwijzer M, Mazeau K, et al. Modeling polysaccharides: presentstatus and challenges[J]. Journal of Molecular Graphics,1996,14:307321.
    [104] Ikekawa T. Beneficial effects of edible and medicinal mushrooms in healthcare[J]. International Journal Medical Mushrooms,2001,3:291298.
    [105] Chihara G. Immunopharmacology of lentinan, a polysaccharide isolated fromlentinus edodes: its application as a host defense potentiator[J]. InternationalJournal Oriental Medicine,1992,17:5777.
    [106] Maeda Y Y, Watanabe S T, Chihara C, et al. Denaturation and renaturation of aβ1,6;1,3glucan, lentinan, associated with expression of T cell mediatedresponses[J]. Cancer Research,1988,48:671675.
    [107] Koh J H, Yu K W, Choi Y M, et al. Activation of macrophages and theintrestinal system by an orally administered decoction from cultrured myceliaof Cordyceps sinesis[J]. Biosci Biotechnol Biochem,2002,66(2):407411.
    [108]张秀娟,季宇彬.真菌胞内多糖的免疫药理作用的研究[J].哈尔滨商业大学学报,2002,18(1):6365.
    [109] Chen, Y Y, Chang H M. Antiproliferative and differentiating effects ofpolysaccharide fraction from fu ling (Poria cocos) on human leukemic U937and HL60cells[J]. Food and Chemical Toxicology,2004,42:759769.
    [110]刘瑞,侯亚义,张伟云,等.云芝子实体提取物的抗肿瘤作用研究.医学研究生学报,2004,17(5):413415.
    [111] Yoo H S, Shin J W, Cho J H, et al. Effects of cordyceps militaris extract onangiogenesis and tumor growth[J]. Acta Pharmacol. Sin.,2004,25(5):657665.
    [112] Lin X, Cai Y, Li Z, et al. Structure determination, apoptosis induction, andtelomerase inhibition of CEP2, a novel lichenin from Cladonia furcata[J].Biochimica et Biophysica Acta,2003,1622:99108.
    [113] Yang J, Zhang W, Shi P, et al. Effects of exopolysaccharide fraction (EPSF)from a cultivated Cordyceps sinensis fungus on c Myc, c Fos, and VEGFexpression in B16melanoma bearing mice[J]. Pathol. Res. Pract.,2005,(201):745750.
    [114]崔红霞,苏富琴,赵学梅.姬松茸胞内多糖抗肿瘤作用研究[J].中药药理与临床,2006,22(2):2729.
    [115] Zaidman B Z, Yassin M, Mahajna J, et al. Medicinal mushroom modulators ofmolecular targets as cancer therapeutics[J]. Applied Microbiology andBiotechnology,2005,2:124.
    [116] Kiho T, Yamane A, Hui J, et al. Polysaccharides in fungi, XXX VI.Hypoglycemic activity of a polysaccharide (CS F30) from the culturalmycelium of Cordyceps sinensis and its effect on glucose metabolism in mouseliver[J]. Biol. Pharm. Bull,1996,19(2):294296.
    [117] Gong X J. Study on the pharmacologic effect of extracts from culturalmycelium of Cordyceps sinensis, MSc Thesis[J]. China PharmacologyUniversity, Nanjing, PR China,2001:176.
    [118]龚淑俐,邓放明.真菌胞内多糖的生物活性研究进展[J].中国食物与营养,2006,12:2728.
    [119]薛惟建,杨文,陈琼华.昆布和猴头菌胞内多糖对实验性高血糖的防治作用[J].中国药科大学学报,1989,20(6):378380.
    [120] Hikino H, Konno C, Mirin Y, et al. Isolation and hypoglyce micactivity ofGanoderans A and13, Glycans of Ganodermalucidum fruitbodies[J]. Plant aMedica.,1985,51(4):339340.
    [121]秦佑娟,孙瑜,王振华.云芝胞内多糖治疗慢性乙型肝炎121例[J].新消化病学杂志,1996,4(7):417.
    [122] Li F H, Liu P, Xiong W G, et al. Effects of Cordyceps polysaccharide on liverfibrosis induced by DMN in rats[J]. China J. Chin. Mater. Med.,2006,31:19681971.
    [123] Fang B W, Liu P, Xu L M, et al. The effect of Cordyceps polysaccharides onliver fibrosis induced by BSA[J]. Chin. J. Tradit. Med. Sci. Tech,1997,4:103105.
    [124]周斌,刘俊,程光宇,等.姬菇胞内多糖对CCl4所致小鼠急性肝损伤的保护作用[J].食品科学,2011,32(23):277280.
    [125]宋晓琳,沈明花.花脸蘑胞内多糖对小鼠急性肝损伤的保护作用[J].食品科学,2011,36(7):4954.
    [126]陈丛英,楼洪刚.灵芝胞内多糖对α萘异硫氰酸酯致大鼠肝损伤的保护作用[J].中国医院药学杂志,2011,31(13):10781080.
    [127]李佳佳,李杨,鞠玉琳,等.桦褐孔菌胞内多糖对小鼠脏器中弓形虫感染的影响[J].动物医学进展,2011,32(2):6568.
    [128]汤剑平,丰先明,万艳.香菇菌胞内多糖联合阿德福韦酯治疗慢性乙型肝炎30例[J].现代中西医结合杂志,2011,20(9):10901091.
    [129]刘俊,陶明煊,程光宇,等.金顶侧耳胞内多糖对CCl4所致急性肝损伤小鼠肝、心、肾抗氧化酶活性及同工酶影响[J].食品科学,2011,32(13):325331.
    [130]陈洁,杨红梅,裴瑞,等.灵芝胞内多糖对肝缺血再灌注损伤保护作用的研究[J].实用医学杂志,2010,26(4):700701.
    [131]崔海丹,王欣彤,赵青,等.榛蘑胞内多糖对四氯化碳所致小鼠急性肝损伤的保护作用[J].食品科技,2011,36(10):170177.
    [132]董爱国,霍俊凤,马吉飞.姬松茸水溶性粗胞内多糖对镉中毒小鼠肝脏保护作用及其机理的研究[J].中国兽药杂志,2010,44(6):1618.
    [133]傅明辉,洪梅达.金针菇子实体胞内多糖的抗氧化活性的研究[J].食品研究与开发,2011,32(12):2022.
    [134]张汇,鄢嫣,聂少平,等.黑灵芝不同部位胞内多糖成分分析及抗氧化活性[J].食品科学,2011,32(1):5661.
    [135]谢丽源,张勇,彭卫红,等.桑黄胞内多糖免疫及抗氧化活性研究[J].食品科学,2011,32(9):276281.
    [136]王宏芳,李雪静,徐坤,等.松茸胞内多糖对受照小鼠抗氧化系统的保护作用[J].西安交通大学学报(医学版),2011,32(10):7274.
    [137] You Y H, Lin Z B. Protective effects of Ganoderma lucidum polysaccharidespeptide on injury of macrophages induced by reactive oxygen species[J]. ActaPharmacol Sinica,2002,23(9):787.
    [138]杜志强,杨晨晨,王建英.猴头菇胞内多糖对小鼠血清抗氧化能力的影响[J].食品研究与开发,2011,32(9):5658.
    [139] Yu Z, Yin L, Yang Q, et al. Effect of Lentinus edodes polysaccharide onoxidative stress, immunity activity and oral ulceration of rats stimulated byphenol[J]. Carbohydrate Polymers,2009,75(1):115118.
    [140]张娅,李宝才,项朋志,等.松茸胞内多糖超声提取物抗氧化活性研究[J].化学与生物工程,2011,28(9):7582.
    [141] Chen J, Zhang W, Lu T, et al. Morphological and genetic characterization of acultivated Cordyceps sinensis fungus and its polysaccharide componentpossessing antioxidant property in H22tumour bearing mice[J]. Life Sci.,2006,78:27422748.
    [142]姚思宇,赵鹏,刘荣珍,等.虫草胞内多糖降血脂作用的动物试验研究[J].中国热带医学,2004,4(2):197198.
    [143] Cowan M M. Plant products as antimicrobial agents[J]. Clinical MicrobiologyReviews,1999,564582.
    [144] Chen H W, Zhu Y L, Hong G J. Study of the inhibitory activity of Cordycepspolysaccharide on micronucleus induced by cyclophosphomide[J]. FoodFerment. Ind.,2005,31:911.
    [145]徐廷万,王丽波,段文健,等.人工北虫草胞外胞内多糖对受抑制的免疫功能的影响及抗疲劳作用[J].中药药理与临床,2002,18(6):1718.
    [146] Li F H, Liu P, Xiong W G, et al. Effects of Cordyceps polysaccharide on liverfibrosis induced by DMN in rats[J]. China J. Chin. Mater. Med.,2006,31:19681971.
    [147]宾文,宋丽艳,于荣敏,等.人工培养北虫草胞内多糖的抗炎与免疫作用研究[J].时珍国医国药,2003,14(1):12.
    [148] Saxena R K, Sinha U. Conidiation of Aspergillus nidulans in submerged liquidculture[J]. General. Apply. Microbiol.,1973,19:141146.
    [149] Martinelli S. Conidiation of Aspergillus nidulans in submerged culture[J].Trans. Br. Mycol. Soc.,1976,67:121128.
    [150] Morton A G. The induction of sporulation in mould fungi[J]. Proc. R. Soc.London Ser. B.,1961,153:548569.
    [151] Jeffrey L M and Lawrence N Y. Light is required for conidiation in Aspergillusnidulans[J]. Genes Dev.,1990,4:14731482.
    [152] Skromne I, Sanchez O, Aguirre J. Starvation stress modulates the expression ofthe Aspergillus nidulans brlA regulatory gene[J]. Microbiol,1995,141:2128.
    [153] Cappellini R A, Peterson J L. Macroconidium formation in submerged culturesby a non sporulating strain of Gibberella zeae[J]. Mycologia,1965,57:962966.
    [154]周德庆.微生物学实验手册[M].上海:上海科学技术出版社,1986:281.
    [155]张石柱.绿僵菌微循环产孢及相关基因分析[D].重庆:重庆大学生物工程学院,2007.
    [156]路宁海,徐瑞富,吴立民,等.长蠕孢菌产孢条件的研究[J].微生物学通报,2005,32(5):7781.
    [157]李华,刘丽丽,李娟.酿酒酵母产孢培养基的筛选及单倍体的分离[J].酿酒科技,2008,6:2227.
    [158] Innis M, White T, Cap J. PCR Protocols: A Guide to Methods andApplications[J]. New York: Academic Press,1990:481482.
    [159]国家药典委员会.中国药典, Ⅰ部[S].北京:化学工业出版社,2010:75.
    [160]张娜,周卫,王文溪,等.响应面法优化白囊耙齿菌中腺苷的提取工艺[J].中国生化药物杂志,2011,32(5):370374.
    [161]张娜,郭姣,季文斌,等.响应面法优化白囊耙齿菌中腺苷的超声法提取工艺[J].中国医药工业杂志,2011,42(2):100103.
    [162] Salim A, Hassanin M A, Zohair A. A simple procedure for reducing leadcontent in fish[J]. Food and Chemical Toxicology,2003,41:595597.
    [163] Dubois M, Gilles K A, Hamilton J K, et al. Colorimetric method fordetermination of sugars and related substances[J]. Anal. Chem.,1956,28:350356.
    [164]李茂业,林华峰,刘苏,等.提高布氏白僵菌产孢量的培养基及培养条件研究[J].生物技术通报,2009,(S1):380383.
    [165] Black W C, Mclain D K, Rai K S. Pattern of variation in the rDNA citronwithin and among world populations of a mosquito[J]. Aedes albopictus(Skuse)Genetics,1989,121:539550.
    [166]白生文,范惠玲,等. RAPD标记技术及其应用进展[J].河西学院学报,2008,24(2):5254.
    [167] Cui H L, Chen Y, Wang S S, et al. Isolation, partial characterization andimmunomodulatory activities of polysaccharide from Morchella esculenta[J]. J.Sci. Food Agric.,2011,91:21802185.
    [168] Xiao J H, Chen D X, Liu J W, et al. Optimization of submerged culturerequirements for the production of mycelial growth and exopolysaccharide byCordyceps jiangxiensis JXPJ0109[J]. Journal of Applied Microbiology2004,96:1105–1116.
    [169] Hwang H J, Kim S W, Xu C P, et al. Production and molecular characteristicsof four groups of exopolysaccharides from submerged culture of Phellinusgilvus[J]. Journal of Applied Microbiology,2003,94:708–719.
    [170] Zhang N, Liu Y, Lu J H, et al. Isolation, Purification and Bioactivities ofPolysaccharides from Irpex lacteus[J]. Chem. Res. Chinese Universities,2012,28(2):249254.
    [171] Fischer M H, Yu N X, Gray G R, et al. The gel forming polysaccharide ofpsyllium husk[J]. Carbohydrate research,2004,339:20092017.
    [172] Ge Y, Duan Y F, Fang G Z, et al. Polysaccharides from fruit calyx of Physalisalkekengi var. Francheti: Isolation, purification, structural features andantioxidant activities[J]. Carbohydrate Polymers,2009,77:188193.
    [173] Kacurakova M, Capek P, Sasinkova V, et al. FT IR study of plant cell wallmodel compounds: Pectic polysaccharides and hemicelluloses[J]. CarbohydratePolymers,2000,43:195203.
    [174] Yang L, Zhang L M. Chemical structural and chain conformationalcharacterization of some bioactive polysaccharides isolated from naturalsources[J]. Carbohydrate Polymers,2009,76:349361.
    [175] Chen Y, Xie M Y, Nie S P, et al. Purification, composition analysis andantioxidant activity of a polysaccharide from the fruiting bodies of Ganodermaatrum[J]. Food Chemistry,2008,107:231241.
    [176] Melo M R S, Feitosa J P A, Freitas A L P, et al. Isolation and characterizationof soluble sulfated polysaccharide from the red seaweed Gracilaria cornea[J].Carbohydrate Polymers,2002,49:491498.
    [177] Wu J Y, Zhang Q X, Leung P H. Inhibitory effects of ethyl acetate extract ofCordyceps sinensis mycelium on various cancer cells in culture and B16melanoma in C57BL/6mice[J]. Phytomedicine,2007,14:4349.
    [178] Hua Y F, Zhang M, Fu C X, et al. Structural characterization of a2Oacetylglucomannan from Dendrobium officinale stem[J]. CarbohydrateResearch,2004,339:22192224.
    [179] Huang Q L, Jin Y, Zhang L N, et al. Structure, molecular size and antitumoractivities of polysaccharides from Poria cocos mycelia produced infermenter[J]. Carbohydrate Polymers,2007,70:324333.
    [180] Jin Y, Zhang L N, Zhang M, et al. Antitumor activities ofheteropolysaccharides of Poria cocos mycelia from different strains and culturemedia[J]. Carbohydrate Research,2003,338:15171521.
    [181] Ye H, Wang K, Zhou C H, et al. Purification, antitumor and antioxidantactivities in vitro of polysaccharides from the brown seaweed Sargassumpallidum[J]. Food Chemistry,2008,111:428432.
    [182] Falk R J, Jennett J C, Nachman P H. Membranous nephropathy[M]. In:Brenner BM, ed. The Kindney, WB Saunders, Philadelphia, PA,2000,12841292.
    [183] Maruyama S, Cantu E, Demartino C, et al. Membranous glomerulonephritisinduced in the pig by antibody to angiotensingenesis enzyme: considerationson its relevance to the pathogenesis of human idiopathic membranousglomerulonephritis[J]. J. Am. Soc. Nephrol.,1999,10:21022108.
    [184] Hirayama K, Ebibara L, Yamamoto S, et al. Predominance of type2immuneresponse in idiopathic membranous nephropathy[J]. Nephron.,2002,91:255261.
    [185] Chen J S, Chen A, Chang L C, et al. Mouse model of membranousnephropathy induced by cationic bovine serum albumin antigen dose responserelations and strain differences[J]. Nephrol. Dial. Transplant,2004,19:27212728.
    [186] Li S G, Zhang Y Q, Zhao J X. Preparation and suppressive effect of astragaluspolysaccharide in glomerulonephritis rats[J]. International Immunopharm.,2007,7:2328.
    [187] Makela S, Mustonen J, Ala houhala L, et al Urinary excretion of interleuin6correlates with proteinuria in acute Puumala hantavirius induced nephritis[J].Am. J. Kidney Dis.,2004,43(5):809816.
    [188]王立范.肾炎消白方对阿霉素肾病大鼠尿蛋白的影响[D].黑龙江:黑龙江中医药大学,2008,60–64.
    [189]汪保和,皮亦华,黄畅,等.补肾通络方对阳离子化牛血清白蛋白致膜性肾炎大鼠高凝状态的影响[J].中草药,2009,7(40):10951098.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700