用户名: 密码: 验证码:
青钱柳悬浮培养细胞三萜酸积累、分离鉴定及其降糖机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
青钱柳(Cyclocarya paliurus (Batal.) Iljinsk)为我国特有的胡桃科青钱柳属珍稀濒危植物,零星分布于我国南方各省,可用于保健食品、医药、园林绿化、工业用材等多个领域。研究表明,青钱柳叶含三萜、黄酮、多糖、皂苷及各种微量元素等多种功能活性成分,是具有很高利用价值的天然保健食品资源,但其繁育十分困难,资源稀缺严重制约了其开发利用。本文研究了青钱柳细胞悬浮培养及其三萜酸积累规律,从悬浮培养细胞中提取分离出了主要的三萜酸并进行了结构鉴定,同时对其降糖作用效果及机制进行了研究,旨在探索以青钱柳细胞悬浮培养方式生产三萜酸类降糖功能因子的可行性,为深度开发和利用青钱柳资源、生产三萜酸类降糖功能食品提供理论依据。
     以青钱柳无菌幼叶诱导愈伤组织,通过长期的筛选和继代培养,获得了疏松易碎、生长旺盛、适合于悬浮培养的优良愈伤组织,转入悬浮培养后,再经反复的筛选、继代和优化培养条件,建立了良好的细胞悬浮培养体系。该培养体系最佳继代时间为接种后第8天,最大细胞干重产量出现在第10天,最高总三萜酸产量出现在第14天。在保持MS培养基中总氮源浓度及铵态氮和硝态氮比例的同时,将磷酸盐、钙离子和镁离子浓度分别调整至1.875 mmol·L-1、2 mmol·L-1和2 mmol·L-1,可获得较高的总三萜酸产量。以三氯化铈和水杨酸对悬浮细胞进行诱导,总三萜酸产量分别可提升35.70%和22.31%。悬浮培养细胞总三萜酸、熊果酸和齐墩果酸产量分别可达1179.85 mg·L-1、443.64 mg·L-1和159.00 mg·L-1。
     本文首次对青钱柳悬浮培养细胞中的主要三萜酸进行了提取、分离和鉴定。以乙酸乙酯为提取溶剂超声辅助提取悬浮细胞总三萜酸,得率高且杂质少,提取物易于纯化,优化后的主要工艺参数为提取时间40 min、提取温度50℃、料液比1:10,优化条件下总三萜酸提取得率达5.56%。经大孔树脂吸附、硅胶柱层析、Sephadex LH-20凝胶层析、半制备高效液相色谱和重结晶等分离纯化,从总三萜酸粗提物中获得了5个单体三萜酸,经HPLC、TLC、RRLC-TOF/MS、1H NMR、13C NMR和DEPT等检测分析,化合物Ⅰ-V分别被鉴定为熊果酸、齐墩果酸、白桦脂酸、2αl-羟基熊果酸、2a-羟基齐墩果酸,其中白桦脂酸和2α-羟基齐墩果酸是首次在青钱柳中得到分离、鉴定。
     本文以3T3-L1脂肪细胞为模型,在前脂肪细胞、成熟脂肪细胞、胰岛素抵抗脂肪细胞多个层次上进行了青钱柳悬浮培养细胞三萜酸降糖作用效果研究。试验结果表明:(1)TTA(总三萜酸)、UA(熊果酸)、OA(齐墩果酸)、BA(白桦脂酸)、CA(2α-羟基熊果酸)对3T3-L1前脂肪细胞增殖没有促进作用,2.5μg·mL-1 MA(2α-羟基齐墩果酸)有明显的促进作用;(2)TTA、UA、OA、BA对前脂肪细胞葡萄糖消耗没有促进作用,而CA、MA在浓度为2.5至5μg·mL-1时有促进作用,并且在没有胰岛素刺激的情况下也能显著提高葡萄糖消耗;(3)5μg·mL-1的TTA、UA、OA能极显著地促进前脂肪细胞分化,而5μg·mL-1的CA明显地抑制分化,BA和MA则基本无影响;(4)TTA、UA、OA、CA和MA均对成熟脂肪细胞的葡萄糖消耗具有较好的促进作用,且在无胰岛素存在的条件下也能提升葡萄糖消耗,表明三萜酸促进成熟脂肪细胞葡萄糖消耗可能存在与Ros(罗格列酮)不同的作用机制;(5)TTA、UA、MA能防止Dex(地塞米松)所诱导的胰岛素抵抗的形成,OA和CA虽然不能防止胰岛素抵抗形成但能减轻抵抗的程度,而BA对胰岛素抵抗的形成没有影响;(6)TTA和UA能改善已经形成胰岛素抵抗细胞的抵抗状态,具有较好的胰岛素增敏作用,MA、OA、CA也有一定的增敏效果,但BA对抵抗状态没有改善作用;(7)各三萜酸在合适的浓度下,均能显著地减少胰岛素抵抗脂肪细胞培养上清液中的FFA(游离脂肪酸)的含量,这也可能是三萜酸改善胰岛素抵抗、促进葡萄糖消耗的作用机制之一。
     在全面研究三萜酸降糖作用效果的基础上,选择了效果较好的TTA 7.5μg·mL-1组、UA 5μg·mL-1组、OA 5μg·mL-1组和MA 5μg·mL-1组进行进一步的降糖机制研究,通过检测三萜酸对胰岛素抵抗3T3-L1脂肪细胞中PPARγ、CAP、Glut4、Resistin和IRS-1五个胰岛素信号传导相关关键靶点的mRNA表达水平,初步探索其作用的分子机理。试验结果表明:(1)UA可能通过两条途径增强胰岛素抵抗3T3-L1脂肪细胞的胰岛素敏感性、促进葡萄糖消耗:一是上调PPARγ及其下游基因Glut4 mRNA的表达,二是提高IRS-1 mRNA的表达;(2)OA可能是通过下调Resistin mRNA的表达来发挥降糖作用;(3)MA可能通过提高胰岛素抵抗3T3-L1脂肪细胞CAP和IRS-1 mRNA的表达来增强胰岛素敏感性、促进葡萄糖消耗,虽然MA没有表现出促进PPARγmRNA表达的活性,但还是明显促进了CAP mRNA的表达,提示CAP的表达除受PPARγ调控之外还可能存在其它调控途径;(4)TTA为各三萜酸的混合物,其降糖作用的效果和机制基本上是各三萜酸作用的综合体现,一是通过促进PPARγmRNA的表达来提高其下游CAP、Glut4 mRNA的表达;二是上调IRS-1 mRNA的表达;(5)青钱柳三萜酸在改善胰岛素抵抗、促进葡萄糖消耗上存在与Ros不一样的作用机制。
     综上所述可得出如下结论:(1)青钱柳悬浮培养细胞中含熊果酸、齐墩果酸、白桦脂酸、2α-羟基熊果酸、2α-羟基齐墩果酸五种主要的三萜酸;(2)青钱柳细胞悬浮培养可用于熊果酸、齐墩果酸等三萜酸的生产;(3)青钱柳悬浮培养细胞三萜酸具有较好的降糖作用效果;(4)青钱柳悬浮培养细胞三萜酸可通过提升PPARy、CAP、Glut4、IRS-1 mRNA的表达、下调Resistin mRNA的表达水平来实现降糖作用。
Cyclocarya paliurus (Batal.) Iljinskaja (C. paliurus) is a rare and endangered plant growing in southern provinces of China and now only a few populations remained due to the great difficulty in propagation and cultivation. This plant is often used for functional foods, drugs, landscape and timber. Researches indicated that C. paliurus leaves contained many functional components such as triterpenoids, flavonoids, polysaccharides, saponins, and microelements, and therefore were valuable natural resource for functional food. Development and utilization of this plant are seriously hampered for scarce resources due to the difficulties in reproduction. In order to explore the feasibility of triterpenic acid production with hypoglycemic effect by suspension culture and provide reference for manufactures of triterpenoid functional food and the utilization of C. paliurus, cell suspension culture of C. paliurus was established, and the accumulation, extraction, separation, and identification of triterpenic acids in suspended cultured cells were studied in this paper. At the same time, the hypoglycemic effect and mechanism of triterpenic acids were explored.
     The crisp vigorous calli which were fit for suspension culture were obtained from the calli induced form germless immature C. paliurus leaves after sub-culturing and screening repeatedly. Good cell suspension cultures have been established by repetitious subculture and optimization of culture conditions when the suitable calli were inoculated into liquid culture medium. The optimum date for subculture was the 8th day after inoculation, and the highest biomass yield appeared at the 10th day. but the maxmum yield of TTA (total triterpenic acid) appeared at the 14th day. Higher yield of TTA could be obtained in MS medium (Murashige and Skoog mediums) when the phosphate, Ca++, and Mg++ concentration was adjusted to 1.875 mM,2 mM, and 2 mM respectively. TTA yield increased 35.70% and 22.31% respectively when the suspended cultured cells were induced by CeCl3 and salicylic acid. The yield of TTA, UA (ursolic acid), and OA (oleanolic acid) were as high as 1179.85 mg·L-1, 443.64 mg·L-1, and 159.00 mg·L-1 respectively in cell suspension culture of C. paliurus.
     The major triterpenic acids in the suspended cultured cells of C. paliurus were extracted, separated, and identified for the first time. High TTA extraction yield could be obtained from the suspended cultured cells by the ultrasonic extraction with acetoacetate, and the crude extraction was easy to purify for little impurities. The maximum TTA extraction yield reached 5.56% when the extraction was performed under the optimal parameters namely 40 min,50℃, and 1/10 of material/acetoacetate. Five triterpenic acids were separated from TTA by macroporous resin adsorption, silica gel column chromatography, Sephadex LH-20 column chromatography and semipreparative high performance liquid chromatography, and identified as UA, OA, BA (betulinic acid), CA ((2a,3(3)-2,3-Dihydroxy-urs-12-en-28-oic acid), and MA ((2α,3β)-2,3-Dihydroxy- olean-12-en-28-oic acid) respectively by determination of HPLC, TLC, RRLC-TOF/MS,1H NMR 13C NMR, and DEPT. This is the first report that BA and MA was separated and identified from C. paliurus.
     The hypoglycemic effects of triterpenic acids from suspended cultured cells of C. paliurus were investigated with in vitro model of 3T3-L1 preadipocytes, mature adipocytes, and IR mature adipocytes. The main results showed that:(1) Improvement on the proliferation of 3T3-L1 preadipocytes wasn't observed when TTA, UA, OA, and BA were added into the culture medium, but 2.5μg·mL-1 MA did improve the proliferation. (2) TTA, UA, OA, and BA didn't stimulate the glucose consumption of preadipocytes, but 2.5-5μg·mL-1 CA and MA increased glucose consumption with or without the stimulation of insulin. (3) 5μg·mL-1 TTA, UA, and OA significantly improved the differentiation of preadipocytes, but 5μg·mL-1 CA inhibited differentiation, and BA and MA didn't show effects on differentiation. (4) TTA, UA, OA, CA, and MA all increased the glucose consumption of mature adipocytes with or without the stimulation of insulin, which indicated that the mechanism of triterpenic acids on the enhancement of glucose consumption differed from Ros (rosiglitazone). (5) TTA, UA, and MA could prevent mature adipocytes from formation of insilin resistance (IR). Although OA and CA couldn't prevent IR formation, but both could alleviate IR symptom. BA had no effect on the IR formation. (6) TTA and UA could significantly alleviate IR symptom and enhance the sensitivity to insulin for IR adipocytes, MA, OA, CA showed weaker effect than that of TTA and UA, but BA had no effect on IR adipocytes. (7) All triterpenic acids significantly decreased FFA (free fatty acids) content of culture medium at suitable concentration, which might interpret the mechanism of alleviation of IR symptom and improvement of glucose consumption.
     IR adipocytes treated by 7.5μg·mL-1 TTA,5μg·mL-1 UA,5μg·mL-1 OA,5μg·mL-1 MA,3.6μg·mL-1 Ros and adipocytes of control, IR model were collected for experiments on hypoglycemic mechanism. This paper investigated the moleculer hypoglycemic mechanism by detecting on mRNA expression of PPARy, CAP, Glut4, Resistin, and IRS-1 which played important role in the signal transduction of insulin. The main results showed that:(1) UA might improve the sensitivity to insulin and the consumption of glucose by two pathways:firstly up-regulated PPARy and Glut4 (downstream responsive gene of PPARy) mRNA expression, secondly enhanced IRS-1 mRNA expression. (2) OA stimulated glucose consumption by down-regulation of Resistin mRNA expression. (3) MA might improve the sensitivity to insulin by increasing the expression of CAP and IRS-1 mRNA. It should be noted that MA improved CAP mRNA expression although it didn't enhance the expression of PPARγmRNA, which suggested that there were still other pathways to regulate the expression of CAP mRNA except PPARy pathway. (4) As mixture of triterpenic acids, TTA showed comprehensive effects as a whole by two pathways:firstly increasing the expression of downstream responsive genes such as CAP and Glut4 by up-regulation of PPARγmRNA, secondly increasing the expression of IRS-1 mRNA. (5) Triterpenic acids from suspended cultured cells of C. paliurus improved the sensitivity to insulin and the consumption of glucose by the pathways different from Ros.
     The main results can be concluded as:(1) There were five triterpenic acids namely UA, OA, BA, CA, and MA in the suspended cultured cells of C. paliurus. (2) Cell suspension culture of C. paliurus could be used to produce triterpenic acids such as UA and OA. (3) Triterpenic acids from suspended cultured cells of C. paliurus showed good hypoglycemic effect. (4) Triterpenic acids from suspended cultured cells of C. paliurus improved glucose consumption by increasing the expression of PPARy, CAP, Glut4. and IRS-1 mRNA and decreasing the expression of Resistin mRNA.
引文
[1]李俊,陆园园,李甫.青钱柳的研究进展[J].江西中医学院学报,2006,18(2):76-77.
    [2]谢明勇,谢建华.青钱柳研究进展[J].食品与生物技术学报,2008,27(1):113-121.
    [3]陈金华,黄建安,刘仲华.青钱柳叶的化学成分分析[J].食品工业科技,2009,30(7):159-160,278.
    [4]Xie M Y, Li L, Nie S P, et al. Determination of speciation of elements related to blood sugar in bioactive extracts from Cyclocarya paliurus leaves by FIA-ICP-MS [J]. Eur. Food Res. Technol,2006,223:202-209.
    [5]尹忠平,上官新晨,黎冬明,等.超声辅助提取青钱柳叶总三萜化合物研究[J].江西农业大学学报(自然科学版):2010,32(2):373-377.
    [6]Boonsnongcheep P, Korsangruang S, Soonthornchareonnon N, et al. Growth and isoflavonoid accumulation of Pueraria candollei var. candollei and P. candollei var. mirifica cell suspension cultures [J]. Plant Cell Tiss Organ Cult,2010,101:119-126.
    [7]Estrada-Zuniga M E, Cruz-Sosa F, Rodriguez-Monroy M, et al. Phenylpropanoid production in callus and cell suspension cultures of Buddleja cordata Kunth [J]. Plant Cell Tiss Organ Cult,2009,97:39-47.
    [8]YANG Y, HE F and YU L J. Dynamics analyses of nutrients consumption and flavonoids accumulation in cell suspension culture of Glycyrrhiza inflate [J]. Biologia Plantarum,2008, 52(4):732-734.
    [9]李琰.雷公藤组织培养生产次生代谢产物及其代谢调控研究[D].西北农林科技大学,2008.
    [10]陈金华,黄建安,刘仲华.青钱柳叶的化学成分分析[J].食品工业科技,2009,30(7):159-160,278.
    [11]施利仙.青钱柳活性成分含量及分布规律的研究[D].江西农业大学,2009.
    [12]郝翻.青钱柳黄酮和皂甙化合物同步提取及纯化技术研究[D1.湖南农业大学,2009.
    [13]尹忠平,上官新晨,张月红,等.大孔树脂吸附纯化青钱柳叶三萜化合物[J].食品科学:2011,32(6):61-65.
    [14]尹忠平,上官新晨,张月红,等.高纯度青钱柳叶总三萜化合物精制研究[J].食品科技:2011,36(2):161-165.
    [15]舒任庚,徐昌瑞,黎莲娘.青钱柳甜味成分研究[J].药学学报,1995,30(10):757-761.
    [16]Shu R G., Xu C R., Li L, et al. Cyclocariosides Ⅱand Ⅲ:two secodammarane triterpenoid saponins from Cyclocarya paliurus [J]. Planta Medica,1995,61(6):551-553.
    [17]舒任庚,刘玉风,陈杰,等.青钱柳植物中三萜成分的研究[J].中药材,2005,28(7):558-559.
    [18]钟瑞建,高幼衡,徐昌瑞,等.青钱柳中五环三萜成分的研究[J].中草药,1996,27(7):387-388.
    [19]Jiang Z Y., Zhang X M., Zhou J, et al. Two new triterpenoid glycosides from Cyclocarya paliurus [J]. Journal of Asian Natural Products Research,2006,8(1-2):93-98.
    [20]钟瑞建,舒任庚,倪小兰,等.青钱柳酸A的结构研究[J].药学学报,1996,31(5):398-400.
    [21]陆园园.青钱柳叶氯仿提取物化学成分的研究[D].广西师范大学,2006.
    [22]杨大坚,钟炽昌,谢昭明.甜茶树甜味成分研究[J].药学学报,1992,27(11):841-844.
    [23]舒任庚,宋子荣,舒积成.青钱柳正丁醇部位化学成分研究[J].中药材,2006,29(12):1304-1307.
    [24]李俊.鹊肾树心材和青钱柳叶化学成分及其生物活性的研究[D].中山大学:2008.
    [25]杨武英,上官新晨,徐明生,等.微波辅助法提取青钱柳叶总黄酮工艺研究[J].江西农业大学学报(自然科学版):2007,29(6):1016-1020.
    [26]杨万霞,余诚棋,方升佐.青钱柳叶中黄酮类化合物的地理变异[J].浙江林学院学报,2009,26(4):522-527.
    [27]米丽雪,上官新晨,施利仙,等.青钱柳营养器官总黄酮含量测定及分布规律研究[J].江西农业大学学报(自然科学版):2009,31(5):896-900.
    [28]吴彩娥,方升佐,冯宗帅,等.青钱柳叶总黄酮大孔树脂纯化工艺[J].农业机械学报:2009,40(6):133-137.
    [29]易醒,石建功,周光雄,等.青钱柳化学成分研究[J].中国中药杂志,2002,27(1):63-65.
    [30]李俊,陆园园,许子竞,等.青钱柳中黄酮成分的研究[J].中药材,2005,28(12):1058-1059.
    [31]张晓琦,叶文才,殷志琦,等.青钱柳的化学成分研究[J].中国中药杂志,2005,30(10):791-792.
    [32]谢明勇,王远兴,易醒,等.青钱柳叶中黄酮化合物结构及含量研究[J].分析化学,2004,32(8):1053-1056.
    [33]舒任庚,舒积成,刘玉凤.青钱柳嫩叶中多糖的含量测定[J].中国中医药信息杂志,2005,12(3):45-46.
    [34]李磊,谢明勇,易醒,等.青钱柳多糖组分及其降血糖活性研究[J].江西农业大学学报(自然科学版),2001,23(4):483-486.
    [35]陈木森,洪艳平,上官新晨.青钱柳多糖的提取及含量测定[J].西北农业学报,2007,16(3):192-195.
    [36]谢建华.青钱柳多糖的分离纯化与结构解析及其生物活性研究[D].南昌大学,2007.
    [37]舒任庚,舒积成.青钱柳中的酚类化学成分[J].中草药,2007,38(4):507-508.
    [38]李磊,谢明勇,邓泽元,等.青钱柳无机元素的初级形态分析[J].南昌大学学报(工科版),2000,22(1):74-77.
    [39]李磊,谢明勇,孙振华,等.青钱柳叶植物药中生命元素的溶出特性及其化学形态研究[J].高等学校化学学报,2000,21(5):707-709.
    [40]李俊,黄锡山,陆园园,等.青钱柳化学成分的研究[J].高等学校化学学报,2008,30(2):238-240.
    [41]谢明勇,李磊.青钱柳化学成分和生物活性研究概况[J].中草药,2001,32(4):365-366.
    [42]徐明生,沈勇根,吴海龙,等.青钱柳水提物降血糖作用的研究[J].营养学报,2006,26(3):230-232.
    [43]上官新晨,陈锦屏,吴少福,等.青钱柳提取物对家兔实验性糖尿病模型降血糖作用的研究[J].西北农林科技大学学报,2003,31(6):117-120.
    [44]王文君,蒋艳,吴少福,等.青钱柳醇提取物对糖尿病小鼠降血糖作用的研究[J].畜牧兽医学报,2003,34(6):562-566.
    [45]施利仙,上官新晨,王文君,等.青钱柳多糖对四氧嘧啶糖尿病小鼠的降血糖作用[J].营养学报,2009,31(3):263-266.
    [46]李磊,谢明勇,易醒.青钱柳多糖降血糖作用研究[J].中药材,2002,25(1):39-41.
    [47]张小芳.广一西青钱柳降血糖有效成分及作用机制的研究[D].桂林医学院,2010.
    [48]杨武英,上官新晨,徐明生,等.青钱柳黄酮对αα-葡萄糖苷酶活性及小鼠血糖的影响[J].营养学报,2007,29(5):507-509.
    [49]易醒,谢明勇,辜清,等.青钱柳对胆固醇调节作用的初步研究[J].中国商办工业,2000,4:51-52.
    [50]Kurihara H, Fukami H, Kusumoto A, et al. Hypoglycemic action of Cyclocarya paliurus (Batal.) Iljinskaja in normal and diabetic mice [J]. Bioscience, Biotechnology, and Biochemistry,2003,67(4):877-880.
    [51]Kurihara H, Asami S, Shibata H, et al. Hypolipomic effect of Cyclocarya paliurus (Batal.) Ijinskaja in lipid-loaded mice [J]. Biol Pharm Bull,2003,26(3):383-385.
    [52]冷任轩.青钱柳的基础理论研究和临床观察[J].江西中医药,1994,25(2):64-65.
    [53]黄明圈,上官新晨,徐明生,等.青钱柳多糖降血脂作用的研究[J].江西农业大学学报(自然科学版),2011,33(1):157-161.
    [54]黄敬耀,楼兰英,徐膨,等.摇钱树叶的药理研究[J].中药通报,1986,11(11):61.
    [55]黄贝贝,肖凤仪,张文平,等.青钱柳对小鼠免疫功能的影响[J].江西中医学院学报,2004,16(5):59-60.
    [56]董彩军,谢明勇,聂少平,等.青钱柳提取物体外抗氧化活性研究[J].食品科学,2007,28(10):31-34.
    [57]陈薇,段小群,卢曦,等.青钱柳提取物清除羟自由基和抑制脂质过氧化的作用[J].右江医学,2009,37(4):381-383.
    [58]陈薇,段小群,梁成钦,等.青钱柳正丁醇提取物抗脂质过氧化作用的实验研究[J].广西中医药,2009,32(4):57-59.
    [59]谢明勇,王远兴,温辉梁,等.青钱柳中黄酮甙和维生素含量的测定[J].食品科学,2001,22(1):66-68.
    [60]朱至清.植物细胞工程[M].北京:化学工业出版社,2003.
    [61]H.S.扎夫拉编著,许亦农,麻密主译.植物生物技术导论[M].北京:化学工业出版社,2005.
    [62]薛建平,柳俊,蒋细旺.药用植物生物技术[M].合肥:中国科学技术大学出版社,2005.
    [63]程江华.石榴愈伤组织的诱导和悬浮培养体系的建立[D].安徽农业大学,2009.
    [64]刘志,吴树敬,杨永华.紫草宁形成相关的基因克隆及其代谢工程[J].中国生物工程杂志,2004,24(2):26-29.
    [65]王巍杰,杨永强,吴尚卓.细胞悬浮培养制备紫杉醇的研究进展[J].河北理工大学学报(自然科学版),2011,33(1):136-140.
    [66]石岳香,周敏,杨华,等.内生真菌和诱导子对长春花悬浮细胞及生物碱合成的影响[J].现代生物医学进展,2009,9(5):886-889.
    [67]潘学武,董妍玲,石亚亚,等.稀土元素铈对提高细胞培养喜树碱产量的研究[J].北方园艺,2010,(17):91-93.
    [68]刘菲.喜树悬浮培养体系的建立及喜树碱含量的调控研究[D].湖南农业大学,2010.
    [69]Roat C, Ramawat K G. Elicitor-induced accumulation of stilbenes in cell suspension cultures of Cayratia trifolia (L.) Domin [J]. Plant Biotechnol Rep,2009, (3):135-138.
    [70]Yoon H J, Kim H K, Ma C J, et al. Induced accumulation of triterpenoids in Scutellaria baicalensis suspension cultures using a yeast elicitor[J]. Biotechnology Letters,2000,22: 1071-1075.
    [71]常钰,刘涤,胡之璧.植物细胞和器官大规模培养研究的进展[J].生物技术通报,2001,(1):31-36.
    [72]刘展眉,崔英德,宾淑英.喜树及喜树碱研究中的生物技术应用[J].广东化工,2006,33(158):67-71.
    [73]Bonfill M, Mangas S, Moyano E, et al. Production of centellsides and phytosterols in cell suspension cultures of Centella asiatica [J]. Plant Cell Tiss Organ Cult,2011,104:61-67.
    [74]Georgiev M I, Weber J, Maciuk A. Bioprocessing of plant cell cultures for mass production of targeted compounds[J]. Appl Microbiol Biotechnol,2009,83:808-823.
    [75]曹庸.虎杖颗粒愈伤组织悬浮培养体系建立与白蔡芦醇的生物合成、调控及生物转化研究[D].湖南农业大学,2005.
    [76]林龙云.太子参细胸悬浮培养及其皂苷的提取与分析[D].福建农林大学,2006.
    [77]崔堂兵,郭勇,林炜铁.提高植物细胞培养法生产次生代谢物产量的方法[J].植物生理学通讯,2001,37(5):479-482.
    [78]连雷龙.青钱柳的栽培技术[J].林业科技开发,2003,17(3):51-52.
    [79]李海玲,方升佐.青钱柳繁殖技术研究进展[J].林业科技开发,2005,19(3):3-5.
    [80]杨万霞.青钱柳种子休眠原因及萌发生理的初步研究[D].南京林业大学,2004.
    [81]宋祖祥,邱先华.青钱柳播种育苗技术试验[J].江西林业科技,2004,(5):10-11.
    [82]夏小华,邱先华,梁永华,等.神茶原料青钱柳扦插繁殖试验初报[J].蚕桑茶叶通讯,1994,(2):12-14.
    [83]胡冬南,蒋艳,吴少福,等.青钱柳组织培养的初步研究[J].江西农业大学学报(自然科学版),2005,27(1):39-41.
    [84]上官新晨,郭春兰,蒋艳,等.培养基和植物激素对青钱柳茎段和叶片愈伤组织诱导的研究[J].江西农业大学学报(自然科学版),2006,28(5):678-682.
    [85]吴群英,徐庆,李丽亚,等.青钱柳不同外植体组织培养及防褐变的研究[J].时珍国医国药,2008,19(8):1872-1874.
    [86]胡东南,上官新晨,刘亮英,等.青钱柳茎段离体培养研究[J].湖北农业科学,2009,8(6):1300-1303.
    [87]乔卿梅,程茂高,王新民.青钱柳离体胚的组织培养研究[J].广东农业科学,2009(7):69-71.
    [88]张志敏,尚旭岚,王纪,等.消毒方法和培养基对青钱柳茎段腋芽萌发的影响[J].林业科技开发,2010,24(3):87-90.
    [89]王莹.青钱柳离体快繁及生根机理的初步研究[D].南京林业大学,2008.
    [90]上官新晨,郭春兰,杨武英,等.培养基及培养条件对青钱柳愈伤组织生长和黄酮含量的影响[J].福建农林大学学报(自然科学版),2006,35(6):588-592.
    [91]程茂高,乔卿梅,魏志华.青钱柳愈伤组织培养条件研究的优化[J].郑州牧业工程高等专科学校学报,2009,29(1):12-14.
    [92]胡冬南,蒋艳,吴少福,等.青钱柳组织培养的初步研究[J].江西农业大学学报(自然科学版),2005,27(1):39-41.
    [93]上官新晨,蒋艳,米丽雪,等.5种大量元素对青钱柳愈伤组织生长及黄酮类化合物积累的影响[J].江西农业大学学报(自然科学版),2011,33(3):502-507.
    [94]Reaven G. M. Role of insulin resistance in human diseae [J]. Diabetes,1988,37(12): 1595-1607.
    [95]刘晓海,董志,傅洁民,等.倍他福林对胰岛素抵抗HepG2细胞模型的作用及其初步机制[J].中国新药杂志,2008,17(12):1026-1029.
    [96]郭晓农.地黄寡糖改善胰岛素抵抗的作用和机理的体外研究[D].兰州大学硕士学位论文,2006.
    [97]赵海燕,王勇,马永平,等.胰岛素信号转导障碍与胰岛素抵抗[J].新医学,2010,41(4):267-271.
    [98]Quinn L. Mechanisms in the development of the type 2 diabetes mellitus [J]. J Cardiovasc Nurs,2002,16:1-3.
    [99]Shao J, Yamashita H, Qiao L, et al. Phosphatidylinositol 3-kinase redistribution is associated with skeletal muscle insulin resistance in gestational diabetes mellitus [J]. Diabetes, 2002,51:19-21.
    [100]Pessin J E, Saltiel A R. Signaling pathways in insulin action:molecular targets of insulin resistance [J]. J Clin Invest,2000,106:165-169.
    [101]Kido Y. Nakae J, Accili D. The insulin receptor and its cellular targets [J]. J Clin Endocrinol Metab,2001,86(3):972-979.
    [102]Saltiel A R, Kahn C R. Insulin signalling and the regulation of glucose and lipid metabolism [J]. Nature,2001,414(6865):799-806.
    [103]Pagliassotti M J, Kang J, Thresher J S, et al. Elevated basal PI3-kinase activity and reduced insulin signaling in sucrose-induced hepatic insulin resistance [J]. Am J Physiol (Endocrinol Metab),2002,282:E170.
    [104]Karlsson M, Thorn H, Parpal S, et al. Insulin induces translocation of glucose transporter GLUT4 to plasma membrane caveolae in adipocytes [J]. FASEBJ,2002,16:249.
    [105]Faster L J, Li D, Randhawa V K, et al. Insulin accelerates inter-endosomal GLUT4 traffic via Phosphatidylinositol 3-kinase and protein kinase B [J]. J Biol Chem,2001,276:1412.
    [106]王芬.中药糖耐康干预KKAy小鼠胰岛素抵抗信号转导的作用机制研究[D].北京中医药大学博士学位论文,2008.
    [107]周军.过氧亚硝酸根对胰岛素信号转导的调控作用及其机理[D].华中科技大学博士学位论文,2009.
    [108]陈家伦.胰岛素信号转导及临床意义(上)[J].国外医学内分泌学分册,2002,22(1):1-4.
    [109]Bhattacharya S, Dey D, Roy S S. Molecular mechanism of insulin resistance [J]. J Biosci, 2007,32:405-413.
    [110]Tniguchi C M, Emanuelli B, Kahn C R. Critical nodes in signalling pathways:insights into insulin action [J]. Nat Rev Mol Cell Biol,2006,7(2):85-96.
    [111]Herschkovitz A, Liu Y F, Ilan E, et al. Common inhibitory serine sites phosphorylated by IRS-1 kinases, triggered by insulin and inducers of insulin resistance [J]. J Biol Chem,2007, 282(25):18018-18027.
    [112]Ronn S G, Billestrup N, Mandrup-poulsen T. Diabetes and suppressors of cytokine signaling proteins [J].Diabetes,2007,56(2):541-548.
    [113]罗怡,曹仁贤.胰岛p细胞胰岛素信号转导通路[J].国际内分泌代谢杂志,2006,26(1):37-39.
    [114]杨桂枝.胰岛素抵抗细胞模型的研究以及在筛选胰岛素增敏剂药物中的应用[D].四川大学博士学位论文,2003.
    [115]Kanzaki M, Pessin J E. Insulin signaling:GLUT4 vesicles exit via the exocyst [J]. Curr Biol, 2003,13(14):574-576.
    [116]Fecchi K, Volonte D, Hezel M P, et al. Spatial and temporal regulation of GLUT-4 translocation by flotillin-1 and caveolin-3 in skeletal muscle cells [J]. FASEB J,2006,20 (6): 705-707.
    [117]Chiang S H, Baumann C A, Kanzaki M, et al. Insulin-stimulated GLUT-4 translocation requires the CAP-dependent activation of TC10 [J]. Nature,2001,410 (6831):944-948.
    [118]Chiang S H, Hou J C, Hwang J, et al. Cloning and functional characterization of related TC10 isoforms, a subfamily of Rho proteins involved in insulin-stimulated glucose transport [J]. J Biol Chem,2002,277 (15):13067-13073.
    [119]殷惠军,张颖,杨领海,等.西洋参茎叶总皂苷对胰岛素抵抗脂肪细胞葡萄糖转运、GLUT-4转位和ICAP基因表达的影响[J].中国药理学通报,2007,23(10):1332-1337.
    [120]徐敏,宁光.MKP-4与胰岛素抵抗[J].国外医学内分泌学分册,2004,24(5):16-18.
    [121]Sun X J, Rothenberg P, Kahn C R. Structure of the insulin receptor substrate IRS-1 defines a unique signal transduction protain [J]. Nature,1991,352:73-77.
    [122]Giovannone B, Scaldaferri M L, Federici M, et al. Insulin receptor substrate (IRS) transduction system:distinct and overlapping signaling potential [J]. Diabetes Metab Res Rev, 2000,16:434-441.
    [123]王剑.2型糖尿病大鼠骨骼肌IRS-1、IL-1β、TNF-α表达及罗格列酮干预的研究[D].河 北医科大学硕十学位论文,2007.
    [124]Myers M G Jr, Backer J M, Sun X J, et al. IRS-1 activates phosphatidylinositol 3'-kinase by associating with src homology 2 domains of p85 [J].Proc Natl Acad Sci USA,1992,89: 10350-10354.
    [125]Araki E, Lipes M A, Patti M E, et al. Alternative pathway of insulin signaling in mice with targeted disruption of the IRS-1 gene [J]. Nature,1994,372(6502):186-190.
    [126]Tamemoto H, Kadowaki T, Tobe K, et al. Insulin resistance and growth retardation in mice lacking insulin receptor substrate-1 [J]. Nature,1994,372 6502):182-186.
    [127]Kido Y, Burks D J, Withers D, et al. Tissue-specific insulin resistance in mice with mutations in the insulin receptor, IRS-1 and IRS-2 [J]. J Clin West,2000,105:199-205.
    [128]White M F, Kahn C R. The insulin signaling system [J]. J Biol Chem,1994,269(1):1-4.
    [128]Issemann I, Green S. Activation of a member of the steroid hormone receptor superfamily by peroxisome proliferators [J]. Nature,1990,347(6294):645-650.
    [129]Ye J M, Iglesias M A, Watson D G, et al. PPARalpha/gamma ragaglitazar eliminates fatty liver and enhances insulin action in fat-fed rats in the absence of hepatomegaly [J]. Am J Physiol Endocrinol Metab,2003,284:E531-E540.
    [130]Willson T M, Brown P J, Sternbach D D, et al. The PPARs:from orphan receptors to drug discovery [J]. J Med Chem,2000,43(4):527-550.
    [131]Castiollo G, Brun R P, Rosenfield J K, et al. An adipogenic cofactor bound by the differentiation domain of PPARγ [J]. The EMBO Journal,1999,18:3676-3687.
    [132]D Auboeuf, J Rieusset, L Fajas, et al. Tissue distribution and quantification of the expression of mRNAs of peroxisome prolifetators-activated receptors and liver X receptor-alpha in human:no alteration in adipose tissue of obese and NIDDM patients [J]. Diabetes,1997,46:1319-1327.
    [133]何新益.苦瓜中降血糖活性成分的高通量筛选研究[D].湖南农业大学博士学位论文,2006.
    [138]Guan Y F & Breyer M D. Peroxisome prolifetator-activated receptors (PPARs):novel therapeutic targets in renal disease [J]. Kidney Int,2001,60:14-30.
    [139]Lee C H, Chawla A, Urbiztondo, et al. Transcriptional repression of atherogenic inflammation:modulation by PPAR-delta [J]. Science,2003,302(5644):453-457.
    [140]Braissant O, Foufelle F, Scotto C, et al. Differential expression of peroxisome prolifetators-activated receptors (PPARs):tissue distribution of PPAR-α,-β/δ, and -γ in the adult rat [J]. Endocrinology,1996,137:354-366.
    [141]Tohru F, Yuji M and Shinji K. Adiponectin as a potential key player in metabolic syndrome: Insights into atherosclerosis, diabetes and cancer. International Congress Series,2004,1262: 368-371.
    [142]Baumann C A, Chokshi N, Saltiel A R, et al. Cloning and characterization of a functional peroxisome proliferrator activator receptor-γ-responsive element in the promoter of the CAP gene [J]. Biol Chem,2000,275 (13):9131-9135.
    [143]Amroni, Natalia K, Chava H, et al. Peroxisome proliferator-activated receptor-yrepresses GLUT4 promoter activity in primary adipocytes, and rosiglitazone alleviates this effect [J]. The Jounral of Biological Chemistry,2003,278(33):30614-30623.
    [144]Fred H, Naeem Z, Knut T, et al. Resistin expression in 3T3-L1 adipocytes is reduced by arachidonic acid [J]. Journal of Lipid Researeh,2005,46:143-153.
    [145]Laplante M., Sell H., MacNaul K. L., et al. PPAR-gamma activation mediates adipose depot-specific effects on gene expression and lipoprotein lipase activity:mechanisms for modulation of postprandial lipemia and differential adipose accretion [J]. Diabetes,2003, 52(2):291-299.
    [146]Despres J. P. and Lemieux I. Abdominal obesity and metabolic syndrome [J]. Nature,2006, 444(7121):881-887.
    [147]Long Y. C. and Zierath J. R. AMP-activated protein Kinase signaling in metabolic regulation [J]. J. Clin. Invest.,2006,116(7):1776-1783.
    [148]Yamauchi T, Kamon J, Waki H, et al. The fat-derived hormone adiponcetin reverse insulin resistance associated With both lipoatrophy and obesity [J]. Nat Med,2001,7:941-946.
    [149]伍仕敏,周新,杨华芬,等.基于报告基因的PPRE转录调节模型的建立及应用[J].军事医学科学院院刊,2007,31(4):330-333.
    [150]何新益,刘仲华.苦瓜多糖降血糖活性的高通量筛选研究[J].食品科学,2007,28(2):313-316.
    [151]廖晨钟,邓沱.以PPAR为靶标的抗2型糖尿病药物研发策略[J].中国新药杂志,2003,12(12):980-983.
    [152]Oberfield J L, Collins J L, Holmes C P, et al. Divergent effects of selective peroxisome proliferator-activated receptor-gamma 2 ligands on adipocyte versus osteoblast differentiation [J]. Pro Natl Acad Sci,1999,96(11):6102-6106.
    [153]Wang Y X, Lee C H, Tiep S, et al. Peroxisome proliferator-activated receptor activates fat metabolism to prevent obesity [J]. Cell,2003,113:159-170.
    [154]Lu X P, Li Z B, Liao C Z, et al. Substituted arylaleanoic acid derivatives as dual PPAR agonists with potent antihyperglycemic and antihyperlipidemic activity [P]. America patent, application number:60/429221,2002-11-26.
    [155]Hou J C, Pessin J E. Ins(endocytosis) and outs(exocytosis) of GLUT4 trafficking [J]. Curr Opin Cell Biol,2007,19(4):466-473.
    [156]Foster L J, Klip A. Mechanism and regulation of GLUT4 vesicle fusion in muscle and fat cells [J]. Am J Physiol,2000,279(4):C 877-C 890.
    [157]高勇.胰岛素信号通路中Glut4的作用机制研究[D].浙江大学硕士学位论文,2006.
    [158]郭仪.中药复方“益糖康”对2型糖尿病大鼠骨骼肌GLUT4mRNA表达的影响[D].沈阳:辽宁中医药大学硕士学位,2007.
    [159]李良刚,陈槐卿,Sean L McGee. AMPK调节骨骼肌细胞GLUT4基因表达的机制研究[J].生物医学工程学杂志,2008,25(1):161-167.
    [160]范俊梅.葡萄糖转运蛋白4的转运调控研究进展[J].现代生物医学进展,2008,8(8): 583-586.
    [161]Maianu L, Keller S R, Garvey W T. Adipocytes exhibit abnormal subcellular distribution and translocation of vesicles containing glucose transporter 4 and Insulin-Regulated Aminopeptidase in type2 diabetes mellitus:implications regarding defects in vesicle trafficking [J]. J Clin Endocrinol Melab,2001,86(11):5450-5456.
    [162]Zisman A, Peroni O D, Abel E D, et al. Targeted disruption of the glucose transporter 4 seleetively in muscle causes insulin resistance and glucose intolerance[J]. Nat Med,2000, 6(8):924-928.
    [163]Lee G D Fryer, Asha Parbu-Patel, David Carling. The anti-diabetic drugs rosiglitazone and metformin stimulate AMP-activated Protein kinase through distinct signaling Pathways [J]. The Journal of Biological Chemistry,2002,277:25226-25232.
    [164]Satoh H, Nguyen A, Miles P D. et al. Adenovirus mediated chronic"hyperresistinemia" leads to in vivo insulin resistance in normal rats [J]. J Clin Invest,2004,114:224-231.
    [165]Liu Feng, Guo Xi-rong, Gong Hai-xia, et al. A resistin binding peptide selected by phage display inhibits 3T3-L1 preadipocyte differentiation [J]. Chin Med J,2006,119(6):496-503.
    [166]Pravenec M, Kazdova L, Landa V, et al. Transgenic and recombinant resistin impair skeletal muscle glucose metabolism in the spontaneously hypertensive rat [J]. J Biol Chem,2003,278: 45209-45215.
    [167]Mcteman P G, Mcteman C L, Chetty R, et al. Increased resistin gene and protein expression in human abdominal adipose tissue [J]. The Journal of clinical endocrinology and metabolism, 2002,87(5):2407-2415.
    [168]Gabriely I, Ma X H, Yang X M, et al. Removal of visceral fat prevents insulin resistance and glucose intolerance of aging:an adipokine-mediated process [J]. Diabetes,2002,51(10): 2951-2958.
    [169]Fehmann H C, Heyn J. Plasma resistin levels in patients with type 1 and type 2 diabetes mellitus and in healthy controls [J]. Horm Metab Res,2002,34(11-12):671-673.
    [170]Maebuchi M, Machidori M, Urade R, et al. Low resistin levels in adipose tissues and serum in high-fat fed mice and genetically obese mice:development of an ELSA system for quantification of resistin [J]. Arch of Biochem Biophys,2003,416(2):164-170.
    [171]Savage D B, Sevter C P, Klenk E S, et al. Resistin/fizz3 expression in relation to obesity and peroxisome proliferator-activated receptor-gamma action in humans [J]. Diabetes,2001, 50(10):2199-2202.
    [172]陈国光.高糖细胞模型的建立与中药降糖作用及机理初步研究[D].北京中医药大学硕士学位论文,2007.
    [173]Yu Z W, Jonas B, Sven E, et al. Insulin can enhance GLUT4 gene expression in 3T3-F442A cells and this effect is mimicked by vanadate but counteracted by cAMP and high glucose-potential implications for insulin resistance [J]. Biochim Biophys Acta,2001, 1535(2):174-185.
    [174]Dvaid W C and Yashomati M P. GLUT4 expression in 3T3-L1 adipocytes is repressed by proteasome inhibition, but not by inhibition of calpains [J]. Molecular and cellular Endocrinology,2005,232(1-2):37-45.
    [175]王丽静,刘礼斌,刘晓红,等.糖皮质激素对3T3-L1脂肪细胞PI-3K、p38MAPK磷酸化的影响[J].中国病理生理杂志,2009,25(9):1704-1707.
    [176]Anofsso F, Alessi M C, Herrry M, et al. Up-regulated expression of PAI-1 in HepG2 cells [J]. Thromb Haemost,1995,74:73.
    [177]姜斐,姚楠,钱士辉,等.女贞子中8个化合物对胰岛素抵抗HepG2细胞葡萄糖消耗的影响[J].海峡药学,2010,22(1):164-167.
    [178]Mayerson A, Ripudaman S, Duofur S, et al. The effects of rosiglitazone on insulin sensitivity, lipolysis, and hepatic and skeletal muscle triglyceride content in patients with tpye 2 diabetes [J]. Diabetes,2002,51:797-802.
    [179]李良刚,陈槐卿. CaMK和AMPK信号通路能共调收缩信号诱导的骨骼肌细胞GLUT4基因转录[J].生物化学与生物物理进展,2009,36(4):471-479.
    [180]于乐,吴伟康.附子多糖对胰岛素抵抗脂肪细胞模型葡萄糖摄取的影响[J].亚太传统医药,2009,5(7):11-13.
    [181]郭晓农,杨具田,牛峰等.胰岛素抵抗3T3-L1脂肪细胞模型的建立及鉴定[J].中药材,2008,31(2):258-261.
    [182]张静,王秋月,姜雅秋,等.游离脂肪酸诱导3T3-L1细胞胰岛素抵抗模型的建立[J].解剖科学进展,2008,14(2):126-129.
    [183]吴汉荣,向光盛,卢慧玲,等.高浓度葡萄糖诱导脂肪细胞产生胰岛素抵抗[J].华中科技大学学报(医学版),2006,35(1):66-67,78.
    [184]张召锋,赵明,王军波,等.肿瘤坏死因子-α诱导大鼠L6细胞胰岛素抵抗模型的建立[J].卫生研究,2010,39(2):149-151.
    [185]刘晓海,董志,傅洁民,等.倍他福林对胰岛素抵抗HepG2细胞模型的作用及其初步机制[J].中国新药杂志,2008,17(12):1026-1029.
    [186]李宏杨,刘国民,刘飞,等.熊果酸及五环三萜同类物的研究进展[J].湖南工业大学学报,2009,23(5):18-21,51.
    [187]高大威.齐墩果酸抗糖尿病作用及其机理研究[D].燕山大学,2007.
    [188]Huang J A, Tang X H, Ikejima T, et al. A new triterpenoid from Panax ginseng exhibits cytotoxicity through p53 and the caspase signaling pathway in the HepG2 cell line [J]. Arch Pharm Res,2008,31(3):323-329.
    [189]Choi C, Jung H, Kang S, et al. Antioxidant constituents and a new triterpenoid glycoside from Flos Lonicerae [J]. Arch Pharm Res,2007,30(1):1-7.
    [190]Bensasson RV, Zoete V, Berthier G, et al. Potency ranking of triterpenoids as inducers of a cytoprotective enzyme and as inhibitors of a cellular inflammatory response via their electron affinity and their electrophilicity index [J]. Chemico-Biological Interactions,2010,186(2): 118-126.
    [191]方文娟.日本结缕草(Zoysia Japonica Steud.)悬浮再生体系的建立与超低温保存研究[D].北京林业大学,2008.
    [192]董云洲.丰抗8号小麦悬浮细胞系的建立及遗传转化的初步研究[J].应用基础与工程科学学报,1998,6(2):140-144.
    [193]胡张华,陈火庆,吴关庭,等.高羊茅悬浮细胞系的建立及绿色植株的高频再生[J].草业学报,2003,12(3):95-99.
    [194]赵德修,乔传令,汪沂.水母雪莲的细胞培养和高产黄酮细胞系的筛选[J].植物学报,1998,40(6):515-520.
    [195]张俊莲.当归愈伤组织产生的影响因素分析[J].甘肃农业科技,1995,(11):8-10.
    [196]王莉.长鞭红景天细胞悬浮培养及其次生代谢调控研究[D].北京林业大学,2007.
    [197]孙敬三,桂耀林.植物细胞工程实验技术[M].北京:科学出版社,1995.
    [198]Tabata M, Dougall D K. Plant tissue culture and its biotechnological application[M]. Berlin: Springer-Verlag,1997.
    [199]Endress R. Plant cell biotechnology [M]. Berlin, Heidelberg:Springer-Verlag,1994.
    [200]Domenburg H, Knorr D. Strategies for the improvement of secondary metabolite production in plant cell cultures [J]. Enzyme and microbial technology,1995,17:674-684.
    [201]Ishida B K. Improved diosgenin production in Dioscorea deltoidea cell cultures by immobilization in polyurethane foam [J]. Plant Cell Rep,1988,7:270-278.
    [202]Nagella P, Murthy H N. Effects of macroelements and nitrogen source on biomass accumulation and withanolide-A production from cell suspension cultures of Withania somnifera (L.) Dunal [J]. Plant Cell Tiss Organ Cult,2011,104:119-124.
    [203]高艳丽,高山林,焦小珂,等.培养基中氮源对胀果甘草细胞悬浮培养生产黄酮类化合物的影响[J].海峡药学,2008,20(10):
    [204]Chen Y C, Yi F, Cai M, et al. Effect of amino acids, nitrate and ammonium on the growth and taxol production in cell cultures of Taxus yunnanensis [J]. Plant Growth Regul,2003,41: 265-268.
    [205]Crawford N M. Nitrate:nutrient and signal for plant growth [J]. The Plant Cell,1995,7: 859-868.
    [206]Bramble J L, Graves D J. Calcium and phosphate effects on growth and alkaloid production in Coffea arabica:experimental results and mathematical mode [J]. Biotechnol Bioeng,1991, 37:859.
    [207]高丽华,胡显文,刘波,等.钙、磷、镁和钾对雪莲细胞悬浮培养的影响[J].生物技术通讯,2003,14(5):396-398.
    [208]姜玲,章文才,柯云,等.几种大量元素对银杏愈伤组织细胞生长及黄酮醇糖苷含量的影响[J].园艺学报,2000,27(2):130-132.
    [209]潘学武,董妍玲,石亚亚,等.稀土元素铈对提高细胞培养喜树碱产量的研究[J].北方园艺,2010,17:91-93.
    [210]Ouyng J, Wang X D, Zhao B, et al. Effects of rare earth elements on the growth of Cistanche deserticola cells and the production of phenylethanoid glycosides [J]. Journal of Biotechnnology,2003,102:129-134.
    [211]Chen S, Zhao B, Wang X D, et al. Promotion of the growth of Crocus sativus cells and the production of crocin by rare earth elements [J]. Biotechnology Letters,2004,26:27-30.
    [212]范寰.Ce4+对悬浮培养长春花细胞次生代谢产物诱导作用的研究[D].天津大学,2006.
    [213]卞爱华,高文远,王娟.不同诱导子对甘草悬浮培养细胞中甘草酸积累的影响[J].中国药学杂志,2008,43(22):1690-1693.
    [214]范桂枝,翟俏丽,于海娣,等.白桦细胞悬浮培养产三萜及其营养成分消耗的动态[J].林业科学,2011,47(1):62-67.
    [215]余素萍,张劲松,杨焱,等.灵芝胞内三萜高产菌株的筛选及发酵条件的优化[J].微生物学通报,2005,32(1):57-61.
    [216]陆震鸣.樟芝深层液态发酵及其三萜类化合物的研究[D].江南大学,2009.
    [217]Qu W, Liang J Y, Li M R. Chemical Constituents from Houttuynia cordata [J]. Chin J Nat Med,2009,7(6):425-427.
    [218]尹海龙,李建,李箐晟,等.白英的化学成分研究[J].军事医学科学院院刊,2010,34(1):65-67.
    [219]周洪波,王峰,房志坚.金钮扣中三萜类化学成分研究[J].中国中药杂志,2011,36(15):2096-2098.
    [220]林朝展,祝晨蔯,邓贵华,等.枇杷叶紫珠化学成分研究[J].中药材,2010,33(6):897-900.
    [221]Chen J Y, Ya Q K, Lu W J, et al. Study on the chemical constituents of Baeckea frutescens [J]. Nat Prod Res Dev,2008, (20):827-829,835.
    [222]刘普,段宏泉,潘勤,等.委陵菜三萜成分研究[J].中国中药杂志,2006,31(22):1875-1879.
    [223]姚凌云,宋玉乔,李教社,等.中国沙棘叶化学成分的研究(Ⅱ)[J].沙棘,2003,16(2):33-34.
    [224]刘博,吴和珍.山茱萸药材中三萜类成分的研究[J].湖北中医药杂志,2010,32(12):75-76.
    [225]Yamagishi T, Zhang D C. The cytotoxic principles of Hyptis capitata and the structures of the new triterpenes hyptatic acid A and B [J]. Phytochemistry,1988,27(10):3213-3216.
    [226]Hua J J, Zhou L. Studies on constituents of triterpene acids from Eriobotrya japonica and their antiinflammatory and antitussive effects [J]. Chin Pharm J,2003,38(10):752-757.
    [227]封锡志.抱茎苦荬菜的化学成分和生物活性的研究[D].沈阳药科大学,2001.
    [228]陈光.柿叶化学成分及生物活性的研究[D].沈阳药科大学,2003.
    [229]赵春超.凤眼草和蓬子菜化学成分及生物活性研究[D].沈阳药科大学,2007.
    [230]吴彩娥,方升佐,徐琳,等.青钱柳叶三萜大孔吸附树脂纯化工艺[J].农业机械学报,2010,41(9):143-147.
    [231]Wada S, Tanata R. Betulinic acid and its derivatives, potent DNA topoisomerase Ⅱ inhibitors from the bark of Bischofia javanica [J].Chemistry & Biodiversity,2005, (2):689-694.
    [232]李旸,刘卓刚,吴斌.齐墩果酸的抗肿瘤作用机制[J].实用医学杂志,2010,26(20):3830-3832.
    [233]孟艳秋,李凤清,王向磊等.积雪草酸及其衍生物的研究进展[J].化学试剂,2010, 32(12):1089-1092,1107.
    [234]昌盛,李龙.齐墩果酸药理作用研究进展[J].广州化工,2011,39(14):30-32.
    [235]纵伟.大叶紫薇叶降血糖作用及机理的研究[D].江南大学,2005.
    [236]Anil Kumar K L, Marita A R. Troglitazone prevents and reverses dexamethasone induced insulin resistince on glycogen synthesis in 3T3 adipocyte [J]. British Journal of Pharmacology, 2000,130:351-358.
    [237]Palmer R M, Bain P A, Southorn B G. Dexamethasone-induced catabolism and insulin resistance in L6 myoblasts are reversed by the removal of serum [J]. Comparative Biochemistry and Physiology Part C:Comparative Pharmacology,1990,97(2):369-372
    [238]Xu A, Wang L C, Yu W, et al. Chronic treatment with growth hormone stimulates adiponectin gene expresssion in 3T3-L1 adipocytes. FEBS Letters,2004,572(1-3):129-134.
    [239]Tamori Y, Masugi J, Nishino N, et al. Role of peroxisome proliferator-activated receptor in maintenance of the characteristics of mature 3T3-L1 adipocytes. Diabetes,2002,51(7): 2045-2055.
    [240]Seber S, Ucak S, Basal O, et al. The effect of dual PPARα/γ stimulation with combination of rosiglitazone and fenofibrate on metabolic parameters in type 2 diabetic patients [J]. Diabetes Research and Clinical practice,2006,71(1):52-58.
    [241]Divid W, Yashomati M. Glut4 expression in 3T3-L1 adipocytes is repressd by proteasome inhibition, but not by inhibition of calpains [J]. Molecular and Cellular Endocrinology,2005, 232(1-2):37-45.
    [242]Fred H, Naeem Z, Knut T, et al. Resistin expression in 3T3-L1 adipocytes is reduced by arachidonic acid [J]. Journal of Lipid Research,2005,46:143-153.
    [243]魏明.番石榴叶三萜化合物(PGL-15)对3T3-L1脂肪细胞分化及糖脂代谢的影响及其作用机制[D].暨南大学,2010.
    [244]王树海,王文健,汪雪峰,等.黄芪多糖和小檗碱对3T3-L1脂肪细胞糖代谢及细胞分化的影响[J].中国中西医结合杂志,2004,24(10):926-928.
    [245]王林杰.羟基红花黄色素A对小鼠3T3-L1前脂肪细胞增殖和分化及细胞内脂代谢调节酶作用的研究[D].北京协和医学院,2008.
    [246]Bloomgarden Z T. Obesity, hypertension, and insulin resistance [J]. Diabetes Care,2002, 25(11):2088-2097.
    [247]Metzger D, Imai T, Jiang M, et al. Functional role of RXRs and PPARy in mature adipocytes [J]. Prostaglandins, Leukotrienes and Essential Fatty Acids,2005,73(1):51-58.
    [248]Liang K W, Lee W J, Lee W L, et al. Decreased ratio of high-molecular-weight to total adiponectin is associated with angiographic coronary atherosclerosis severity but not restenosis [J]. Clinica Chimica Acta,2009,405(1-2):114-118.
    [249]杨明会,柯新桥,巴元明主编.糖尿病[M].北京:中国医药科技出版社,2010.
    [250]Habib Z A, Havstad S L, Wells K, et al. Thiazolidinedione use and the longitudinal risk of fractures in patients with type 2 diabetes mellitus[J]. The Journal of Clinical Endocrinology & Metabolism,2010,95(2):592-600.
    [251]Horwich T B, Fonarow G C. Glucose, obesity, metabolic syndrome, and diabetes[J]. J Am Coll Cardiol,2010,55(4):283-293.
    [252]Kadowaki T. Insights into insulin resistance and type 2 diabetes from knockout mouse models [J]. J clin Invest,2000,106; 459-465.
    [253]Rui L, Fisher T L, Thomas J, et al. Regulation of insulin/insulin-like growth factor-1 signaling typroteasome-mediated degradation of insulin receptor substrate-2 [J]. J Biol chem, 2001,276:40362-40367.
    [254]Hribal M L, Fedetici M, Porzio O, et al. The Gly972→Arg972 amino acid polymorphoism in IRS-1 affects glucose metabolism in skeletal muscle cells [J]. J Clin Endocrinol Metal, 2000,85:2004-2013.
    [255]Zierath J R, Krook A, Wallberg-henriksson H. Insulin action and insulin resistance in human skeletal muscle [J]. Diabetologia,2000,43:821-835.
    [256]Baier L J, Wiedrich C, Hanson R L, et al. Variant in the regulatory subunit of phosphatidylinositol 3-kinase (p85a) [J]. Diabetes,1998,47; 973-975.
    [257]Ueki K, Yamamoto-Honda R, Kaburagi Y, et al. Potential role of protein kinase B in insulin-induced glucose transport, glycogen synthesis, and protein synthesis [J]. J Biol Chem, 1998,273:5315-5322.
    [258]Carvalho E, Rondinone C, Smith U. Insulin resistance in fat cells from Ibese Zuker rats-evidence for an impaired activation and translocation of protein kinase B and glycose transporter 4 [J]. Mol cell Bionchem,2000,206:7-26.
    [259]Thong F S, Dugani C B, Klip A. Turning signals on and off:Gult4 traffic in the insulin-signaling highway [J]. Physiology (Bethesda),2005,20:271-284.
    [260]Mercedes G, Ramon C, Angel G. adiponectin, the missing link in insulin resistance and obesity [J]. Clinical Nutrition,2004,23(5):963-974.
    [261]Lihn A S,(?)Stregard T, Nyholm B, et al. Adiponectin expression in adipose tissue is reduced in first-degree relatives of type 2 diabetic patients [J]. Am J Physiol Endocrinol Metab,2003, 284(2):E443-E448.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700