用户名: 密码: 验证码:
履带钻机负载敏感液压系统的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
全液压钻机由于具有结构紧凑、传动平稳、操纵简单以及容易实现无级变速等优点,在工程施工、地质勘探、瓦斯抽采等领域得到了广泛应用。国内钻机目前大多采用传统的定量泵+溢流阀的阀控液压系统,系统油液温度容易升高,能量损失较为严重,因而有逐渐被具有节能性的新型液压控制系统取代的趋势。目前全液压钻机中采用的节能控制系统一般为负载敏感液压系统。因此,非常有必要对负载敏感液压系统的动态特性展开研究。
     论文以负载敏感液压系统的动态特性为着眼点,结合ZDY6000L型履带式瓦斯抽采钻机的液压系统,从理论建模和数字仿真两个方面展开研究,主要工作如下:
     1.对履带钻机的液压系统进行理论分析和数学建模。履带钻机的液压系统主要有5个重要回路,结合钻机的不同工况,分析了各个回路的执行机构、工况特点和负载特性。在分析负载敏感液压系统工作原理的基础上,运用功率键合图的建模方法,对负载敏感液压系统的回转系统进行了建模,分别绘出了系统在恒流和恒压两个工作状态的功率键合图模型。并整理出了负载敏感液压系统的数学模型。
     2.对系统中关键液压元件负载敏感阀和限压阀进行建模,并建立负载敏感回转液压回路的简化模型。在对两个液压元件工作原理分析的基础上,使用仿真软件AMESim分别对这两个液压元件进行建模,并经过仿真表明所建立的液压元件的AMESim模型模拟工作特性与实际的液压元件工作特性相一致。利用AMESim软件建立了钻机负载敏感回转回路液压系统的模型(负载敏感阀的压差设定为2MPa),并对负载敏感液压系统的工作特性进行了仿真。仿真结果显示,钻机在待机状态时系统输出为低压小流量,正常工况时系统输出恒定流量且系统压力随负载压力的变化而变化并始终比负载压力高出某一固定值,超载工况时系统输出为高压小流量。仿真结果验证了钻机回转回路在应用负载敏感液压系统后稳定、节能的特点。
     3.系统研究了负载反馈油管对液压系统动态特性的影响。结合所建的回转系统AEMSim模型进行仿真,当油管直径为6mm时,负载反馈油管长度在0.5m到10m范围内负载反馈油管越长,系统响应速度越慢,但是稳定性越好;当油管长度超过10m时,系统失去负载敏感特性,响应速度变慢,稳定性变差。
     4.对ZDY6000L型履带钻机进行了实验研究。重点测试了钻机回转回路的工作特性以及应用负载敏感液压控制系统后的能量利用率,实验结果表明钻机在应用了负载敏感液压系统后回转系统稳定性好、回转效率较高。且系统在高压力工作区的效率要高于低压力工作区,特别是在大扭矩低速钻进工况效率较高,达到50%以上。
     本文以履带钻机负载敏感液压系统为研究对象,对其动态特性进行了仿真研究,该研究为负载敏感液压系统的设计提供了一定的依据,为进一步利用数字仿真法对负载敏感液压系统的动态特性研究奠定了基础。
Hydraulic drill is widely used in the area of construction, earth exploration and gas drainage due to the advantage of compact structures, stable motion, easy operation and feasibility to change the velocity. However, the domestic hydraulic systems mainly use the traditional pump-valve control system, resulting in the oil temperature rising and severe energy loss. Therefore, the traditional way of valve adjustment is going to be replaced by an ideal energy saving hydraulic system. The most popular energy saving control system nowadays is load sensing hydraulic system. Therefore, it is necessary to study such system and analyze the factors that may affect the dynamic performance of the system, providing some foundation to the future design.
     Taking the ZDY6000L crawler drill as an example, focusing on the dynamic performance of the load sensing hydraulic system, this paper mainly deals with the theoretical modeling and digital simulation. The main work is summarized below.
     Firstly the paper deals with theoretical analysis and mathematical modeling of the crawler drill's hydraulic system. The hydraulic system is mainly composed of five full circuits. Combined with drills' different condition, the paper analyzes the operation structure, work condition and load characteristics. Based upon the load sensing work principle analysis, with the power bond method, the model of the rotation part of the hydraulic system is built and the system's power bond model under constant current and constant voltage is depicted. Mathematical model of the load sensing hydraulic system is obtained.
     Secondly the paper builds the model for key hydraulic component of load sensing and pressure control valve and set up the simple model of load sensing rotation circuit. After we understand the working principle of the hydraulic components, commercial software package AMESim is used to build the model of these two components. Simulation results agree well with the real situation. The paper employs the AMESim to build the drill's load sensing hydraulic rotation circuits model and do the simulation to obtain the system's working performance (the pressure difference of load sensing valve is 2MPa). The simulation results shows that: 1) the output of the system of waiting-for-work condition is low pressure and small amount of flow rate; 2) the output of the normal working condition is constant amount of flow rate and pressure changing with the load pressure, always higher than the load pressure by certain amount; 3) the output of the overload condition is also high pressure and small amount of flow rate. The simulation confirms the stability and energy saving characteristics of the drill's rotation circuits after the application of the load sensing hydraulic system.
     Thirdly the paper involves with the effect of load feedback pipe on dynamic performance of hydraulic system. Simulation is made on the model of rotation system in AMESim environment. The results indicate that while the pipe length is in the range of 0.5m to 10m, the longer the feedback pipe, the slower the response, the better the stability of the system; while the pipe length is longer than 10m, the system lost load sensing attributes, the response trend to slow and the stability is getting worse.
     Fourthly the paper shows the experiments study on ZDY6000L crawler drill. We mainly test the drill's rotation circuits' performance and energy utilization rate when we apply the load sensing hydraulic control system. The experiments show that the drill's performance, including stability and high rotation efficiency, is much better. Furthermore, the system's working efficiency is higher at high pressure work place than that of low pressure, especially at the high torque and low velocity working condition, even up to 50%.
     In conclusion, this paper mainly focuses on the crawler drill's load sensing hydraulic system, simulates the dynamic performance, and provides the fundamental information of designing the load sensing system and numerical simulation of dynamic performance of the load sensing hydraulic system.
引文
[1]武汉地质学院.岩心钻探设备及原理,地质出版社,1980,12.
    [2]于萍,孙友宏等.谈液压技术在钻掘设备中的应用,探矿工程,2000年增刊.
    [3]桂暖银.岩芯钻机的负载特性及交流变频调速驱动系统的研究[博士论文].中国地质大学(北京),1994,5:1-35.
    [4]庞海荣.全液压钻机电液比例技术的应用研究[硕士论文].煤炭科学研究总院西安分院,2003,7:1-7.
    [5]朱齐平.进口工程机械使用维修手册主编,辽宁科学技术出版社,2001,4第一版.
    [6]单志刚.金刚石钻进过程微机监测识别系统的研究[博士论文].中国地质大学(武汉),1992,6:1-34.
    [7]杨华勇,曹剑,徐兵等.多路换向阀的发展历程与研究展望.机械工程学报,2005,41(10):1-5.
    [8]王庆丰,魏建华,吴根茂等.工程机械液压控制技术的研究进展与展望.机械工程学报,2003,39(12):51-56.
    [9]Henke R W.Evolution of load-sensing hydraulics.Diesel Progress International Edition,1998,17(4):53-55.
    [10]Yao B,Chris D.Energy-saving adaptive robust motion control of single-rod hydraulic cylinders with programmable valves.In:Proc.of the American Control Conference,Anchorage,AK.2002,5:4819-4824.
    [11]Marc E M.Control of mobile hydraulic cranes.In:Proc.of first FPNI-PhD symposium,Hamburg.2000,9:475-483.
    [12]张红彦.液压钻机节能控制系统研究[硕士论文].吉林大学,2004,6:2-3.
    [13]胡志坚.钻机负载自适应液压控制系统的研究[博士论文].吉林大学,2007,6:4-7.
    [14]徐绳武.从节能看液压传动控制系统发展的三个阶段.液压气动与密封,2005,5:21-28.
    [15]高峰.液压挖掘机节能控制技术的研究[博士论文].浙江大学,2001,8.
    [16]乔建刚.杨敦荣.液压挖掘机的节能技术.现代机械,2002,2:78-79.
    [17]日立建机.EX200-2使用说明书.
    [18]纪云锋.液压挖掘机动力系统的节能控制研究.长沙:中南大学机电工程学院,2004.
    [19]JOHNPM,DUNLAPIL.Load sensing hydraulic control system for variable displacement pum:US,6216456B1[P].2001,4.
    [20]徐鹏'液压节能技术的应用与发展.农业机械化研究,2006,9:206-207.
    [21]Lantto,B.,Palmberg,J.O.and Krus,P.1990.Static and Dynamic Performance of Mobile Load-sensing Systems with Two Different Types of Pressure-Compensated Valves.SAE Technical Paper Series.SAE.
    [22]Lantto,B.,Krus,P.and Palmberg,J.O.1991.Interaction between Loads in Load sensing Systems.Proceeding of the 2nd Tampere International Conference on Fluid Power.Linkoping,Sweden.
    [23]孔晓武.带长管道的负载敏感系统研究[博士论文],浙江大学,2003,6:17-20.
    [24]孔晓武.考虑管路效应的负载敏感泵动态特性分析,工程设计学报,2005,8:219-221.
    [25]徐成富.负载敏感控制在掘进机液压系统中的应用,煤炭技术,2006,8:27-28.
    [26]张潘,王国志,邓斌等.装载机转向负荷敏感型变量泵的动态仿真,建筑机械,2006,1:70-73.
    [27]刘榛,卢堃,陆初觉.负载敏感变量泵中负载敏感阀的设计与分析,兰州理工大学学报,2005.31(6):55-58.
    [28]Paolo Casoli,Andrea Vacca,Germano Franzoni,Simulation Modelling Practice and Theory,Volume 14,Issue 8,2006,12:1059-1072.
    [29]刘榛.电液比例负载敏感径向柱塞变量泵控制的研究[硕士论文],兰州理工大学,2005,5.
    [30]王进军.电液比例负载敏感控制变量柱塞泵技术研究[硕士论文],浙江大学,2006,8.
    [31]安高成,刘小红,王明.电液比例负载敏感控制径向柱塞泵仿真分析与实验研究,流体传动与控制,2006,1(14):8-10.
    [32]郝鹏,何清华,张大庆.负载敏感系统测试及特性分析,中国工程机械学报,2006,4(3):317-321.
    [33]陈惠卿.液压油(液)产品规格的发展.液压气动与密封,2004,5:1-5.
    [34]杨尔庄.环保节能和液压技术.液压气动与密封,2005,5:7-15.
    [35]姜继海,赵春涛,孟兆生.二次调节静液传动在城市公交车辆驱动中的节能技术研究.中国机械工程,2001,12(3):270-272.
    [36]刘宇辉,蒲红,张艳萍等.二次调节静液传动技术的发展及应用.佳木斯大学学报(自然科学版),2001,19(1):52-56.
    [37]彭干沽,曹干平,阎祥安等.液压系统负载感应控制与节能.工程机械,1999,9:35-37.
    [38]Bagat A,Drban P.Load-sensing system of compensation of pressure and flow.HYDRAULICS &PNEUMATICS,1983,(6):24.
    [39]赵庆龙,胡大邦,丙卞等.变频液压调速系统速度控制研究,液压气动与密封,2003,1:5-7.
    [40]刘国文,俞浙青.浅谈几种液压节能技术的原理及应用,液压与气动,2005,1:4-6.
    [41]江木正夫,萧欣志.日本液压技术动向,液压气动与密封,2004,1:11-14.
    [42]杨尔庄.日本工业的液压系统节能化动向,液压气动与密封,2004,4:1-4.
    [43]冯德强.钻机设计,中国地质大学出版社,1992,8.
    [44]孙宝山.ZDY6000L型煤矿用履带式全液压坑道钻机使用说明书,煤炭科学研究总院西安分院,2005.12.
    [45]祖炳洁,郭文武,王海花.负荷传感与压力补偿的技术应用与性能分析,建设机械技 术与管理,2005,10:80-83.
    [46]路甬祥.车辆与工程机械的液压技术进展,浙江大学学报,1993年增刊.
    [47]江国耀摘译.工程机械液压传动发展动向,国外工程机械,1990,16(4).
    [48]董光源.负荷传感控制液压系统,工程机械,1995(1):20-38.
    [49]夏必忠.功率键合图在液压系统动态特性数字仿真研究中的应用,湛江师范学院学报(自然科学版).1997,6.
    [50]李永堂,雷步芳,高雨茁.液压系统建模与仿真,冶金工业出版社(北京),2003.
    [51]陈英.典型液压系统在功率键合图中的应用,吉林工程技术师范学院学报(自然科学版),2007,(23)6:62-64.
    [52]卢堑等.电液比例负载敏感径向柱塞泵恒流特性的研究,工程机械,1993,11.
    [53]Duqiang Wu.Modeling and experimental evaluation of a load-sensing and pressure compensated hydraulic system.Ph.D Thesis,University of Saskatchewan,Canada,2003.6.
    [54]薛定宇,陈阳泉.系统仿真技术与应用,清华大学出版社,2002.
    [55]Gunnar Grossschmidt,Mait Harf.Modeling and simulation of hydraulic load-sensing systems using objected-oriented programming environment,Proceeding 19th European conference on modeling and simulation,2005.
    [56]Osama Gad,M.Galal Rabie,Refaat M.El-Taher.Prediction and Improvement of Steady-State Performance of a Power Controlled Axial Piston Pump,Journal of Dynamic systems,Measurement,and Control,ASME,2002,9.
    [57]P.Kaliafetis,Th.Costopoalos.Modeling and simulation of an axial piston variable displacement pump with pressure control,Mech.Mach.Theory,1995,4.
    [58]王勇,张勇,李从心.液压仿真软件的研究进展.系统仿真学报,1998,10(5):54-57.
    [59]陈鹰.面向创新的液压仿真技术.液压气动与密封,2003(4):16-20.
    [60]陈鹰,谢英俊,徐立.液压仿真技术的新进展.液压与气动,1997(7):4-6.
    [6l]李吉,李华聪.仿真软件AMESim应用研究[J].航空计算技术,第36卷,第一期,2006(1):56-58.
    [62]秦家升,游善兰.AMESim软件的特征及其应用,工程机械2004(12):6-8.
    [63]付永领,祈晓野.AMESim系统建模和仿真,北京航空航天大学出版社,2006,6.
    [64]吴晓光,宋海涛,殷新胜等.基于AMESim的履带钻机负载敏感系液压统仿真分析,机床与液压,2008,36(3):163-164.
    [65]Kong Xiaowu,Wei Jianhua,Qiu Minxiu,Wu Genmao,Improvement of Fluid Pipe Lumped Parameter Model,Chinese Journel of Mechanical Engineering,2004(1).
    [66]孔晓武.负载敏感系统中反馈管路的动态特性,机床与液压,2005(8):70-72.
    [67]胡少韵,丁景样.15000Nm坑道钻机实验台的研制,西安:煤炭科学研究总院西安研究院,2007,6.
    [68]刘凤琴,范国强.煤矿坑道钻机性能检测试验台,煤田地质与勘探,2003,31(5):59-61.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700