用户名: 密码: 验证码:
增压富氧气氛中煤燃烧及污染物生成特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,为了捕集和封存大型燃煤电站产生的CO2,富氧燃烧(又称O2/CO2燃烧)技术正获得国内外学者越来越多的关注。但现有富氧燃烧技术的空气分离制氧与高浓度CO2烟气压缩过程均在高压下进行,而富氧燃烧却在常压下进行,系统压力经历升—降—升,能量损失必然严重。增压富氧燃烧是一种基于常压富氧燃烧的新型高效燃烧技术,即从空分制氧、煤燃烧与锅炉换热,直到烟气压缩捕集CO2的全过程均维持在高压下完成。由于系统全过程整体增压,锅炉热效率和汽轮机的输出功率得到了提高,减少了CO2冷却压缩液化的电能消耗,在一定程度上抵消了系统增压所增加的功率消耗;同时增压富氧燃烧大大提高了烟气中水蒸汽的凝结温度,增加了从锅炉排烟中回收的热量,提高了机组的整体发电效率。由于反应条件与常规燃烧存在明显差别,增压富氧气氛中煤的燃烧及污染物生成特性尚不清楚。本文针对增压富氧条件下的煤燃烧过程开展了相关实验和理论研究,主要内容和成果如下:
     (1)利用常压热分析系统研究了煤粉热解行为与着火机理之间的关联特性,进而采用固定床反应器探讨了热解特性对燃煤NO生成规律的影响。煤粉中低温下的热解行为对其富氧气氛下的着火机理影响显著。热解特性不同的煤粉富氧燃烧时的着火机理有所区别。提高氧气浓度可改善煤粉的燃烧特性,但着火机理的转变对煤粉综合燃烧特性的影响较小。热解行为、氧气浓度和温度均对NO生成特性有一定程度影响。由于热解特性的差异,煤样燃烧时的NO释放过程和最终的燃料氮NO转化率差别明显。氧气浓度和温度对燃料氮NO转换率的影响主要取决于挥发分氮氧化反应与还原反应的相互竞争。
     (2)利用加压热分析系统对煤粉在增压富氧气氛中的燃烧特性进行了研究。随着压力的升高,煤粉的着火机理首先由多相着火转变为均相着火,然后又逐渐向多相着火过渡,并最终完全转变为多相着火。在均相着火时,压力升高后,挥发分燃烧速率逐渐加快,煤粉热解程度逐步加深。由于不同压力下着火机理的转变,煤粉的着火和燃尽温度以及相应的可燃性和燃尽特性指数并非随着压力的升高而单调变化,因而导致煤粉的综合燃烧特性指数随着压力的增加先升高后降低。此外,提高反应气氛中的氧浓度,可使煤粉的燃烧特性得到改善,但对着火机理无影响。
     (3)采用傅里叶红外变换多气体分析仪分析了增压富氧燃烧时燃料氮的迁移特性,同时结合扫描电子显微镜以及X-射线衍射物相分析对燃煤成灰的形貌特征与矿物转变过程进行了研究。由于氮氧化合物前驱体的生成机理不同,压力升高后,其转化率变化规律并不一致。随着压力升高后挥发分产量的增加,燃料氮的NO和NO2转化率迅速升高,虽然在3MPa时NO2的转化率略有降低,但燃料氮的NOx转化率仍是单调上升的。因为压力升高后燃烧过程中生成的高孔隙率焦炭破碎更为频繁,所以煤粉燃尽后生成煤灰的粒径较小。在增压富氧燃烧时,煤粉着火机理的转变伴随着燃烧温度的变化。常压多相着火时的燃烧温度较高,煤灰中有很多莫来石等高温矿物,而压力升高后均相着火时的燃烧温度较低,煤灰中出现了大量伊利石等低温矿物。压力继续升高,均相着火开始向多相着火过渡,燃烧温度升高,低温矿物逐渐向高温矿物转化。
     (4)搭建小型增压富氧燃烧鼓泡床试验台,对增压富氧燃煤NO生成特性进行了研究。结果表明,氧气浓度对于增压燃烧时NO生成特性的影响至关重要。系统总压升高后,若氧气浓度较低,煤燃烧过程中消耗的氧气无法及时补充,导致颗粒周围的还原性气氛较强,燃料氮的NO转化率逐渐下降;若氧气浓度较高,消耗的氧气能快速得到补充,颗粒周围的氧化性气氛较强,随着系统总压的升高,燃料氮的NO转化率逐渐增加。
     (5)基于精确求解的实际气体混合物物性,建立了煤粉颗粒初始加热阶段的传热模型,对煤粉颗粒周围气体的瞬时传热过程进行了分析。随着压力的升高,煤粉颗粒周围气体的温度逐渐上升,周围气体对颗粒的加热作用更强,颗粒温升更迅速,从而使得煤粉热解提前。环境气温的升高可在一定程度上提高煤粉颗粒周围的瞬态气温以及颗粒本身的温度,但气氛的改变对此影响较小。
In recent years, to capture and storage CO2generated from large scale stationary power plants, oxy-fuel combustion (O2/CO2combustion) has caused wide attention of scholars both at home and abroad. However, both air separation unit (ASU) and the compression unit (CPU) for oxy-fuel combustion are operated at evaluated pressure, whereas the combustion is nonpressurized, thus serious energy loss occurs due to the change of operating pressure in different subsystems. Pressurized oxy-fuel combustion (POFC) is a novel and efficient combustion technology that derived from basic oxy-fuel combustion. In the POFC cycle, the ASU, combustion and heat transfer and CPU are all operated under pressure. By operating at elevated pressure, the thermal efficiency of the boiler increased and the power consumption of CO2condensation reduced which in turn make up for the power consumption of pressurization. In addition, more latent heat from flue gas can be recovered owing to higher condensation temperature of water vapor under pressure, and hence a larger fraction of thermal energy of the flue gases can be recovered to generate steam and the plant efficiency is improved. There are uncertainties regarding the characteristics of combustion and pollutant emission in pressurized oxy-fuel atmosphere due to the markedly different reaction conditions between POFC and traditional combustion. Therefore, both experimental and theoretical analysis are developed to investigate the burning process of pulverized coal in pressurized oxy-fuel atmosphere, main contents and results of the study include as follows:
     (1) The associative characteristics between pyrolysis behavior and ignition mechanism of pulverized coal were studied with a thermal analysis system at atmospheric pressure, and then the effect of pyrolysis characteristic on NO formation were discussed in a fixed-bed reactor. The pyrolysis behavior of pulverized coal at low and moderate temperatures has significant effects on the ignition mechanism in oxy-fuel atmosphere. The ignition mechanism varies with the pyrolysis characteristic of pulverized coal during oxy-fuel combustion. The combustion performance can be improved by increasing oxygen concentration, but the transformation of ignition mechanism has little influence on the combustion characteristic of pulverized coal. Pyrolysis behavior, oxygen concentration and temperature all have an influence on the NO formation laws. During burning process, there are obvious differences on both of the release procedures of NO and the NO conversion rates of coals with different pyrolysis characteristics. The impact of oxygen concentration and temperature on the NO conversion rate depends primarily on the volatile-N oxidation and reduction reactions competing with each other.
     (2) The combustion characteristics of pulverized coal in pressurized oxy-fuel atmosphere were investigated with a pressurized thermal analysis system. With the increase of pressure, the heterogeneous ignition first converts to homogeneous ignition, then begins to change to heterogeneous ignition gradually, and finally becomes heterogeneous ignition. When the pulverized coal ignites homogeneously, the burning rate of volatile increases with the rise in pressure and more volatile is generated. For the change of the ignition mechanism at different pressures, the ignition temperature and burnout temperature and the corresponding flammability index and burnout index don't change linearly with pressure to a maximum value. As a result, the combustibility index increases firstly and then reduces with the rise in pressure. In addition, the increase of oxygen concentration can enhance the intensity of combustion but does not affect the ignition mechanism of pulverized coal.
     (3) The conversion of fuel-N of POFC was studied with Fourier transform infrared spectroscopy (FTIR), and the morphological features and mineral conversions were investigated with the combination of scanning electron microscopy (SEM) and X-ray diffractometer (XRD). The conversion rates of precursors are different from each other with the rise in pressure due to the different formation principles. Along with the increase of pressure and the yield of volatiles, the conversion rates of NO and NO2rise rapidly. Although the NO2conversion rate drops somewhat, the NOx conversion rate rises linearly with pressure to a maximum value. With the increase of pressure, the porous char particles fracture frequently which lead to a large number of fine ash particles. The combustion temperatures may be different due to the different ignition mechanisms. Because of the higher combustion temperature of heterogeneous ignition at atmospheric pressure, some minerals, such as mullite, generate in the ash, while some other minerals, such as illite, are found in the ash owing to the lower combustion temperature of homogeneous ignition at elevated pressure. As the pressure continues rising, with increase of combustion temperature the homogeneous ignition transforms to the heterogeneous ignition and low temperature minerals converts to high temperature minerals.
     (4) The emission characteristics of NO were investigated with a test bench of pressurized bubbling fluidized bed. The results indicate that oxygen concentration has a significant effect on NO emission characteristics. With the increase of system pressure, because of the low oxygen concentration the oxygen consumed during combustion process can not get prompt supplement. As a result, the conversion rate of NO gradually decreases due to the strongly reducing atmosphere around particles. However, the oxygen consumed can get prompt supplement with high oxygen concentration. Thus the NO conversion rate increases by degrees due to the strongly oxidation atmosphere.
     (5) Based on the exact solution of physical properties of actual gas mixtures, a heat transfer model of initial heating stage was set up to study the transient heat transfer around a particle. The gas temperature around the particle increases gradually with the rise in pressure, which leads to remarkable effect of the heating of gas on the particle. Therefore, the particle temperature increases quickly and the pyrolysis of pulverized coal moves up. The increase of environmental temperature can raise the transient gas temperature around the particle and particle temperature, but the change of atmosphere has little effect.
引文
[1]International Energy Agency (IEA), World Energy Outlook 2008[R]. Pairs, FRA:IEA Publications,2008.
    [2]International Energy Agency (IEA), World Energy Outlook 2007:China and India insights[R]. Pairs, FRA:IEA Publications,2007.
    [3]Buhre B. J. P., Elliott L. K., Sheng C. D., et al. Oxy-fuel Combustion Technology for Coal-fired Power Generation [J]. Progress in Energy and Combustion Science,2005, 31(4):283-307.
    [4]Wall T. F. Combustion Processes for Carbon Capture[J]. Proceedings of the Combustion Institute,2007,31(1):31-47.
    [5]World Coal Insitute (WCI), The Coal Resources-A Comprehensive Overview of Coal[R]. London, UK:WCI Publications,2009.
    [6]周志军,周宁,陈瑶姬,等.低挥发分煤燃烧特性及NOx生成规律的试验研究[J].中国电机工程学报,2010,30(29):55-61.
    [7]于岩.02/C02燃烧技术中NOx排放特性的实验研究及机理分析[D].保定:华北电力大学,2004.
    [8]Zheng L. Oxy-fuel Combustion for Power Generation and Carbon Dioxide (CO2) capture[M]. Cambridge, UK:Woodhead Publishing Limited,2011:1-13.
    [9]Jordal K., Anheden M., Yan J., et al. Oxyfuel Combustion for Coal-fired Power Generation with CO2 Capture-Opportunities and Challenges[C]. The 7th International Conference on Greenhouse Gas Control Technologies, Vancouver, Canada.2004.
    [10]毛玉如.循环流化床富氧燃烧技术的试验和理论研究[D].杭州:浙江大学,2003.
    [11]Wall T., Liu Y., Spero C., et al. An Overview on Oxyfuel Coal combustion-State of the Art Research and Technology Development[J]. Chemical Engineering Research and Design,2009,87(8):1003-1016.
    [12]Toftegaard M. B., Brix J., Jensen P. A., et al. Oxy-fuel Combustion of Solid Fuels[J]. Progress in Energy and Combustion Science,2010,36(5):581-625.
    [13]Haslbeck J., Capicotto P., Juehn N., et al, Pulverized Coal Oxycombustion Power Plants. Vol.1:Bituminous Coal to Electricity[R]. Washington D.C, US:National Energy Technology Laboratory (NETL),2008.
    [14]Xu B., Stobbs R. A., White V., et al, BERR Carbon Abatement Technologies Programme:Future CO2 Capture Technology Options for the Canadian Market[R]. AEA Energy & Environment,2007.
    [15]Darde A., Prabhakar R., Tranier J. P., et al. Air Separation and Flue Gas Compression and Purification Units for Oxy-coal Combustion Systems[J]. Energy Procedia,2009, 1(1):527-534.
    [16]Okawa M., Kimura N., Kiga T., et al. Trial Design for a CO2 Recovery Power Plant by Burning Pulverized Coal in O2/CO2[J]. Energy Conversion and Management, 1997,38:S123-S127.
    [17]Andersson K., Johnsson F. Process Evaluation of an 865MWe Lignite Fired O2/CO2 Power Plant[J]. Energy Conversion and Management,2006,47(18-19):3487-3498.
    [18]Varagani R., Chatel-Pelage F., Pranda P., et al. Performance Simulation and Cost Assessment of Oxy-combustion Process for CO2 Capture from Coal-fired Power Plants[C]. The 4th Annual Conference on Carbon Sequestration, Alexandria, EGY, 2005.
    [19]Dillon D., White V., Allam R., et al. Oxy-combustion Processes for CO2 Capture from Power Plant[R]. IEA greenhouse gas R&D research and development programme,2005.
    [20]Pomalis R., Zheng L., Clements B. ThermoEnergy Intergrated Power System Economics[C]. The 32nd International Technical Conference on Coal Utilization and Fuel Systems, Clearwater, US,2007.
    [21]Zheng L., Pomalis R., Clements B. Technical Feasibility Study of TIPS Process and Comparison with other CO2 Capture Power Generation Process[C]. The 32nd International Technical Conference on Coal Utilization and Fuel Systems, Clearwater, US,2007.
    [22]Horn F. L, Steinberg M. Control of carbon dioxide emissions from a power plant (and use in enhanced oil recovery)[J]. Fuel,1982,61(5):415-422.
    [23]Kimura N., Omata K., Kiga T., et al. The Characteristics of Pulverized Coal Combustion in O2/CO2 Mixtures for CO2 Recovery[J]. Energy Conversion and Management,1995,36(6-9):805-808.
    [24]樊越胜,邹峥,高巨宝,等.煤粉在富氧条件下燃烧特性的实验研究[J].中国电机工程学报,2005,25(24):118-121.
    [25]樊越胜,邹峥,高巨宝,等.富氧气氛中煤粉燃烧特性改善的实验研究[J].西安交通大学学报,2006,40(1):18-21.
    [26]李庆钊,赵长遂.O2/CO2气氛煤粉燃烧特性试验研究[J].中国电机工程学报,2007,27(35):39-43.
    [27]Fan Y. S., Zou Z., Cao Z. D., et al. Ignition Characteristics of Pulverized Coal under High Oxygen Concentrations[J]. Energy & Fuels,2008,22(2):892-897.
    [28]Huang X., Jiang X., Han X., et al. Combustion Characteristics of Fine- and Micro-pulverized Coal in the Mixture of O2/CO2[J]. Energy & Fuels,2008,22(6): 3756-3762.
    [29]刘彦丰,阎维平,宋之平.炭/碳粒在CO2/O2气氛中燃烧速率的研究[J].工程热物理学报,1999,(06):769-772.
    [30]Hecht E. S., Shaddix C. R., Molina A., et al. Effect of CO2 Gasification Reaction on Oxy-combustion of Pulverized Coal Char [J]. Proceedings of the Combustion Institute,2010,33(2):1699-1706.
    [31]Kiga T., Takano S., Kimura N., et al. Characteristics of Pulverized-coal Combustion in the System of Oxygen/Recycled Flue Gas Combustion[J]. Energy Conversion and Management,1997,38:S129-S134.
    [32]钟孝蛟,刘豪,赵然,等.02/CO2气氛下火焰传播速度影响因素分析[J].中国电机工程学报,2011,(23):54-60.
    [33]Croiset E., Thambimuthu K., Palmer A. Coal Combustion in O2/CO2 Mixtures Compared with Air[J]. The Canadian Journal of Chemical Engineering,2000,78(2): 402-407.
    [34]Andersson K., Johnsson F. Flame and Radiation Characteristics of Gas-fired O2/CO2 Combustion[J]. Fuel,2007,86(5-6):656-668.
    [35]Liu H., Zailani R., Gibbs B. M. Pulverized Coal Combustion in Air and in O2/CO2 Mixtures with NOx Recycle[J]. Fuel,2005,84(16):2109-2115.
    [36]Croiset E., Thambimuthu K. V. NOx and SO2 Emissions from O2/CO2 Recycle Coal Combustion[J]. Fuel,2001,80(14):2117-2121
    [37]Liu H., Okazaki K. Simultaneous Easy CO2 Recovery and Drastic Reduction of SOx and NOx in O2/CO2 Coal Combustion with Heat Recirculation[J]. Fuel,2003,82(11): 1427-1436.
    [38]毛玉如,方梦祥,王勤辉,等.O2/CO2气氛下循环流化床煤燃烧污染物排放的试验研究[J].动力工程,2004,24(3):411-415.
    [39]张利琴,宋蔷,吴宁,等.煤烟气再循环富氧燃烧污染物排放特性研究[J].中国电机工程学报,2009,29(29):35-40.
    [40]段伦博,周骛,卢骏营,等.CO2浓度对煤焦燃烧及污染物排放特性影响的试验研究[J].动力工程,2009,29(6):571-575.
    [41]李庆钊,赵长遂,武卫芳,等.O2/CO2气氛下燃煤NO排放特性的实验研究[J].中国电机工程学报,2009,29(23):33-39.
    [42]Zhang Y., Zhang J., Sheng C., et al. Reduction of Recycled NOx by Simulated Coal Volatiles in Oxy-fuel Combustion[J]. Energy & Fuels,2011,25(6):2608-2615.
    [43]Duan L., Zhao C., Ren Q., et al. NOx Precursors Evolution During Coal Heating Process in CO2 Atmosphere[J]. Fuel,2011,90(4):1668-1673.
    [44]Fassbender A. G. Power System with Enhanced Thermodynamic Efficiency and Pollution Control[P]. US:6196000,2001-3-6.
    [45]Fassbender A. G. Pressurized Oxy-fuel Combustion for Multi-pollutant Capture[C]. The 30th International Technical Conference on Coal Utilization and Fuel Systems, Clearwater, US,2005.
    [46]Henry R. Modeling of Pressurized Oxy-fuel for Recovery of Latent Heat and Carbon Capture Using Usibelli Coal[C]. The 32nd International Technical Conference on Coal Utilization and Fuel Systems, Clearwater, US,2007.
    [47]Zheng C., Zheng L., Pomalis R. Conceptual Design and Experimental Study Overview:Flue Gas Treatment and CO2 Recovery Experimental System for High Pressure Oxygen Fired Coal Combustion[C]. The 33rd International Technical Conference on Coal Utilization and Fuel Systems, Clearwater, US,2008.
    [48]Zheng L., Pomalis R., Clements B., et al. Optimization of a High Pressure Oxy-fuel Combustion Process for Power Generation and CO2 Capture[C]. The 35th International Technical Conference on Clean Coal and Fuel Systems, Clearwater, US, 2010.
    [49]Zheng L., Pomalis R., Clements B. Technical and Economic Feasibility Study of a Pressurized Oxy-fuel Approach to Carbon Capture. Part 1:Technical Feasibility Study and Comparison of the ThermoEnergy Tntegrated Power System with a Conventional Power Plant and Other Carbon Capture Processes[R]. Natural Resources Canada:CANMET Energy Research Centre,2007.
    [50]Yang T., Hunt P., Lisauskas R., et al. Pressurized Oxycombustion Carbon Capture Power System[C]. The 35th International Technical Conference on Clean Coal and Fuel Systems, Clearwater, US,2010.
    [51]Malavasi M., Salvia G.D., Rossetti E. Combustion Process[P]. US:20100248168, 2010-09-30.
    [52]Malavasi M., Rossetti E. High-efficiency Combustors with Reduced Environmental Impact and Processes for Power Generation Derivable Therefrom[P]. US: 20070240425,2007-10-18.
    [53]Malavasi M., Rossetti E. Method and Plant for the Treatment of Materials in Particular Waste Materials and Refuse[P]. US:20070039527,2007-02-22.
    [54]Hong J. Techno-economic Analysis of Pressurized Oxy-fuel Combustion Power Cycle for CO2 Capture[D]. Cambridge, US:Massachusetts Institute of Technology, 2009.
    [55]Hong J., Chaudhry G., Brisson J. G., et al. Analysis of Oxy-fuel Combustion Power Cycle Utilizing a Pressurized Coal Combustor[J]. Energy,2009,34(9):1332-1340.
    [56]Hong J., Field R., Gazzino M., et al. Operating Pressure Dependence of the Pressurized Oxy-fuel Combustion Power Cycle[J]. Energy,2010,35(12):5391-5399.
    [57]Zebian H. Multi-Variable Optimization of Pressurized Oxy-coal Combustion[D]. Cambridge, US:Massachusetts Institute of Technology,2011.
    [58]Zebian H., Gazzino M., Mitsos A. Multi-variable Optimization of Pressurized Oxy-coal Combustion[J]. Energy,2012,38(1):37-57.
    [59]Sun C. L., Xiong Y. Q., Liu Q. X., et al. Thermogravimetric Study of the Pyrolysis of Two Chinese Coals under Pressure[J]. Fuel,1997,76(7):639-644.
    [60]Gadiou R., Bouzidi Y., Prado G. The Devolatilisation of Millimetre Sized Coal Particles at High Heating Rate:the Influence of Pressure on the Structure and Reactivity of the Char[J]. Fuel,2002,81(16):2121-2130.
    [61]Lu Y. Laboratory Studies on Devolatilization and Char Oxidation under PFBC Conditions:1. Volatile Release and Char Reactivity[J]. Energy & Fuels,1996,10(2): 348-356.
    [62]Saastamoinen J. J., Aho M. J., Hamalainen J. P., et al. Pressurized Pulverized Fuel Combustion in Different Concentrations of Oxygen and Carbon Dioxide [J]. Energy & Fuels,1996,10(1):121-133.
    [63]Yang H., Chen H., Ju F., et al. Influence of Pressure on Coal Pyrolysis and Char Gasification[J]. Energy & Fuels,2007,21(6):3165-3170.
    [64]Zeng D., Fletcher T. H. Effects of Pressure on Coal Pyrolysis and Char Morphology[J]. Energy & Fuels,2005,19(5):1828-1838.
    [65]熊源泉,刘前鑫,章名耀,等.煤的加压热解试验研究[J].燃烧科学与技术,1997,3(2):25-32.
    [66]熊源泉,郑守忠,章名耀.加压条件下半焦燃烧特性的试验研究[J].锅炉技术,2001,32(11):12-14,25.
    [67]孙晨亮,熊源泉,刘前鑫,等.各种因素对煤加压热解影响的试验研究[J].热能动力工程,1997,12(3):34-37,80.
    [68]Lee C. W., Scaroni A. W., Jenkins R. G. Effect of Pressure on the Devolatilization and Swelling Behaviour of a Softening Coal during Rapid Heating[J]. Fuel,1991, 70(8):957-965.
    [69]杨海平,陈汉平,鞠付栋,等.典型煤种加压热解与气化实验研究[J].中国电机工程学报,2007,27(26):18-22.
    [70]杨海平,陈汉平,鞠付栋,等.热解条件及煤种对煤焦气化活性的影响[J].中国电机工程学报,2009,29(2):30-34.
    [71]Bateman K. J., Germane G. J., Smoot L. D., et al. Effect of Pressure on Oxidation Rate of Millimetre-sized Char Particles[J]. Fuel,1995,74(10):1466-1474.
    [72]Alvarez E. Combustion of Spanish Coals under Simulated Pressurized-fluidized-bed-combustion Conditions[J]. Fuel,1999,78(3):335-340.
    [73]MacNeil S., Basu P. Effect of Pressure on Char Combustion in a Pressurized Circulating Fluidized Bed Boiler[J]. Fuel,1998,77(4):269-275.
    [74]Monson C. R., Germane G. J., Blackham A. U., et al. Char Oxidation at Elevated Pressures[J]. Combustion and Flame,1995,100(4):669-683.
    [75]Tidona R. J. Laser-initiated Combustion of Single Coal Particles in Quiesent Oxygen Environments[J]. Combustion and Flame,1980,38:335-337.
    [76]Sun C. L., Zhang M. Y. Ignition of Coal Particles at High Pressure in a Thermogravimetric Analyzer[J]. Combustion and Flame,1998,115(1-2):267-274.
    [77]陈晓平,谷小兵,段钰锋,等.气化半焦加压着火特性及燃烧稳定性研究[J].热能动力工程,2005,20(2):153-157.
    [78]陈晓平,谷小兵,段钰锋,等.半焦加压燃烧特性研究[J].工程热物理学报,2004,25(2):345-347.
    [79]段钰锋,周毅.半焦加压燃烧特性的试验研究[J].燃烧科学与技术,2006,12(4):353-357.
    [80]Roberts D. G., Harris D. J. Char Gasification with O2, CO2, and H2O:Effects of Pressure on Intrinsic Reaction Kinetics[J]. Energy & Fuels,2000,14(2):483-489.
    [81]Lin S. Y., Suzuki Y, Hatano H., et al. Pressure Effect on Char Combustion in Different Rate-ontrol Zones:Initial Rate Expression[J]. Chemical Engineering Science,2000,55(1):43-50.
    [82]章名耀.增压流化床联合循环发电技术[M].南京:东南大学出版社,1998:163-178.
    [83]Cai H. Y, Guell A. J., Dugwell D. R., et al. Heteroatom Distribution in Pyrolysis Products as a Function of Heating Rate and Pressure[J]. Fuel,1993,72(3):321-327.
    [84]Laughlin K. M, Gavin D. G, Reed G. P. Coal and Char Nitrogen Chemistry during Pressurized Fluidized Bed Combustion[J]. Fuel,1994,73(7):1027-1033.
    [85]Nichols K. M., Hedman P. O., Smoot L. D. Release and Reaction of Fuel-nitrogen in a High-pressure Entrained-coal Gasifier[J]. Fuel,1987,66(9):1257-1263.
    [86]Hamalainen J. P. Effect of Fuel Composition on the Conversion of Fuel-N to Nitrogen Oxides in the Combustion of Small Single Particles[D]. Jyvaskyla, FIN: University of Jyvaskyla,1995.
    [87]Hamalainen J. P., Aho M. J. Conversion of Fuel Nitrogen through HCN and NH3 to Nitrogen Oxides at Elevated Pressure[J]. Fuel,1996,75(12):1377-1386.
    [88]Tian F. J., Wu H. W., Yu J. L., et al. Formation of NOx Precursors during the Pyrolysis of Coal and Biomass. Part Ⅷ. Effects of Pressure on the Formation of NH3 and HCN during the Pyrolysis and Gasification of Victorian Brown Coal in Steam[J]. Fuel,2005,84(16):2102-2108.
    [89]Gurgel Veras C. A., Saastamoinen J. J., De Carvalho Jr J. A. Effect of particle Size and Pressure on the Conversion of Fuel N to NO in the Boundary Layer during Devolatilization Stage of Combustion[J]. Symposium (International) on Combustion, 1998,27(2):3019-3025.
    [90]Croiset E., Heurtebise C., Rouan J. P., et al. Influence of Pressure on the Heterogeneous Formation and Destruction of Nitrogen Oxides during Char Combustion[J]. Combustion and Flame,1998,112(1-2):33-44.
    [91]Lin S., Suzuki Y., Hatano H. Effect of Pressure on NOx Emission from Char Particle Combustion[J]. Energy & Fuels,2002,16(3):634-639.
    [92]Mallet C. Formation of NO NO2 and N2O from Gardanne Lignite and Its Char under Pressurized Conditions[J]. Energy & Fuels,1997,11(4):792-800.
    [93]Richard J. R., Majthoub M. A., Aho M. J., et al. The Effect of Pressure on the Formation of Nitrogen Oxides from Coal Char Combustion in a Small Fixed-bed Reactor[J]. Fuel,1994,73(7):1034-1038.
    [94]Aho M. J, Pirkonen P. M. Effects of Pressure, Gas Temperature and CO2 and O2 Partial Pressures on the Conversion of Coal-nitrogen to NO, N2O and NO2[J]. Fuel, 1995,74(11):1677-1681.
    [95]Lu Y., Jahkola A., Hippinen I., et al. The Emissions and Control of NOx and N2O in Pressurized Fluidized Bed Combustion[J]. Fuel,1992,71(6):693-699.
    [96]Svoboda K., Pohorel M. Influence of Operating Conditions and Coal Properties on NOx and N2O Emissions in Pressurized Fluidized Bed Combustion of Subbituminous Coals[J]. Fuel,2004,83(7-8):1095-1103.
    [97]Lu Y, Hippinen I., Jahkola A. Control of NOx and N2O in Pressurized Fluidized-bed Combustion[J]. Fuel,1995,74(3):317-322.
    [98]Lu Y. Laboratory Studies on Devolatilization and Char Oxidation under PFBC Conditions.2. Fuel Nitrogen Conversion to Nitrogen Oxides[J]. Energy & Fuels, 1996,10(2):357-363.
    [99]沈来宏,铃木善三.增压流化床N2O和NO排放特性的试验研究[J].中国电机工程学报,2001,21(4):40-43.
    [100]Baxter L. L. Char Fragmentation and Fly Ash Formation during Pulverized-coal Combustion[J]. Combustion and Flame,1992,90(2):174-184.
    [101]Helble J. J., Sarofim A. F. Influence of Char Fragmentation on Ash Particle Size Distributions[J]. Combustion and Flame,1989,76(2):183-196.
    [102]Raask E. Mineral Impurities in Coal Combustion:Behavior, Problems and Remedial Measures[M]. New York:Hemisphere,1985.
    [103]Kerstein A. R., Niksa S. Fragmentation during Carbon Conversion:Predictions and Measurements [J]. Symposium (International) on Combustion,1985,20(1): 941-949.
    [104]Benfell K. E., Liu G-S., Roberts D. G, et al. Modeling Char Combustion:The Influence of Parent Coal Petrography and Pyrolysis Pressure on the Structure and Intrinsic Reactivity of Its Char[J]. Proceedings of the Combustion Institute,2000, 28(2):2233-2241.
    [105]Wu H., Bryant G, Wall T. The Effect of Pressure on Ash Formation during Pulverized Coal Combustion[J]. Energy & Fuels,2000,14(4):745-750.
    [106]Jing N., Wang Q., Luo Z., et al. Effect of Different Reaction Atmospheres on the Sintering Temperature of Jincheng Coal Ash under Pressurized Conditions[J]. Fuel, 2011,90(8):2645-2651.
    [107]景妮洁,王勤辉,骆仲泱,等.气化条件下压力影响灰熔融特性的实验研究[J].热科学与技术,2010,9(1):75-78.
    [108]Wu H., Bryant G, Wall T. The Adelaide International Workshop on Thermal Energy Engineering and the Environment[M]. Adelaide, ASU:University of Adelaide, 1998.
    [109]蔡正千.热分析[M].北京:高等教育出版社,1993:1-7.
    [110]宋春常.钙基脱硫剂煅烧及碳酸化特性实验研究[D].保定:华北电力大学,2010.
    [111]朱群益,秦裕琨,吴少华,等.不同热天平煤粉燃烧特性试验差异的原因的分析[J].热能动力工程,2002,17(4):363-366.
    [112]GB/T 212-2008,煤的工业分析方法[S].北京:中国标准出版社,2008.
    [113]王贤华,鞠付栋,杨海平,等.神府煤加压热解特性及热解动力学分析[J].中国电机工程学报,2011,31(11):40-44.
    [114]Porada S. The Influence of Elevated Pressure on the Kinetics of Evolution of Selected Gaseous Products during Coal Pyrolysis[J]. Fuel,2004,83(7-8): 1071-1078.
    [115]魏砾宏,李润东,李爱民,等.煤粉热解特性实验研究[J].中国电机工程学报,2008,(26):53-58.
    [116]胡荣祖,史启祯.热分析动力学[M].北京:科学出版社,2001:25-46.
    [117]Jamil K., Hayashi J. I., Li C. Z. Pyrolysis of a Victorian Brown Coal and Gasification of Nascent Char in CO2 Atmosphere in a Wire-mesh Reactor [J]. Fuel, 2004,83(7-8):833-843.
    [118]任庚坡,张超群,魏砾宏,等.超细褐煤粉的热解特性及其热解机理[J].热能动力工程,2005,20(4):407-410,444.
    [119]岑可法,姚强,骆仲泱,等.高等燃烧学[M].杭州:浙江大学出版社,2002:299-307.
    [120]Shaw D. W., Zhu X., Misra M. K., et al. Determination of Global Kinetics of Coal Volatiles Combustion [J]. Symposium (International) on Combustion,1991,23(1): 1155-1162.
    [121]Li Q. Z., Zhao C. S., Chen X. P., et al. Comparison of Pulverized Coal Combustion in Air and in O2/CO2 Mixtures by Thermo-gravimetric Analysis[J]. Journal of Analytical and Applied Pyrolysis,2009,85(1-2):521-528.
    [122]孙学信.燃煤锅炉燃烧试验技术与方法[M].北京:中国电力出版社,2002: 59-82.
    [123]Normann F., Andersson K., Leckner B., et al. Emission Control of Nitrogen Oxides in the Oxy-fuel Process[J]. Progress in Energy and Combustion Science,2009, 35(5):385-397.
    [124]Hayashi J., Hirama T., Okawa R., et al. Kinetic Relationship between NO/N2O Reduction and O2 Consumption during Flue-gas Recycling Coal Combustion in a Bubbling Fluidized-bed[J]. Fuel,2002,81(9):1179-1188.
    [125]杨冬,路春美,王永征.不同种类煤粉燃烧NOx排放特性试验研究[J].中国电机工程学报,2007,27(5):18-21.
    [126]董洪彬,曹欣玉,牛志刚,等.烟煤挥发分和焦炭分解燃烧过程中NO释放特性[J].煤炭学报,2005,30(1):95-99.
    [127]Hu Y., Naito S., Kobayashi N., et al. CO2, NOx and SO2 Emissions from the Combustion of Coal with High Oxygen Concentration Gases[J]. Fuel,2000,79(15): 1925-1932.
    [128]Sun S. Z., Cao H. L., Chen H., et al. Experimental Study of Influence of Temperature on Fuel-N Conversion and Recycle NO Reduction in Oxyfuel Combustion[J]. Proceedings of the Combustion Institute,2011,33(2):1731-1738.
    [129]Lee B. H., Song J. H., Kim R. G, et al. Simulation of the Influence of the Coal Volatile Matter Content on Fuel NO Emissions in a Drop-Tube Furnace[J]. Energy & Fuels,2010,24(8):4333-4340.
    [130]王宏,董学文,邱建荣,等.燃煤在02/C02方式下NOx生成特性的研究[J].燃料化学学报,2001,29(5):458-462.
    [131]Harding A. W., Brown S. D., Thomas K. M. Release of NO from the Combustion of Coal Chars[J]. Combustion and Flame,1996,107(4):336-350.
    [132]Pershing D. W., Wendt J. O. L. Pulverized Coal Combustion:The Influence of Flame Temperature and Coal Composition on Thermal and Fuel NOx[J]. Symposium (International) on Combustion,1977,16(1):389-399.
    [133]Molina A., Shaddix C. R. Ignition and Devolatilization of Pulverized Bituminous Coal Particles during Oxygen/Carbon Dioxide Coal Combustion[J]. Proceedings of the Combustion Institute,2007,31(2):1905-1912.
    [134]阎维平,董静兰.增压富氧煤燃烧烟气焓值计算方法的研究[J].华北电力大学学报(自然科学版),2010,37(1):1-4.
    [135]董静兰,阎维平,李皓宇,等.基于实际气体的增压富氧燃煤烟气焓值的计算[J].动力工程学报,2010,30(9):673-677.
    [136]Perry R. H., Green D. W, Maloney J. O. Perry's Chemical Engineers' Handbook[M]. New York, US:McGraw-Hill Companies,1997:(2)370-(2)371.
    [137]Chen H., Luo Z., Yang H., et al. Pressurized Pyrolysis and Gasification of Chinese Typical Coal Samples[J]. Energy & Fuels,2008,22(2):1136-1141.
    [138]Sheng C. Char Structure Characterised by Raman Spectroscopy and Its Correlations with Combustion Reactivity[J]. Fuel,2007,86(15):2316-2324.
    [139]Hecker W. C., McDonald K. M, Reade W., et al. Effects of Burnout on Char Oxidation Kinetics[J]. Symposium (International) on Combustion,1992,24(1): 1225-1231.
    [140]李庆钊,赵长遂,武卫芳,等.02/C02气氛下煤粉燃烧反应动力学的试验研究[J].动力工程,2008,28(3):447-452.
    [141]Nichols K. M, Hedman P. O., Blackham A. U. Reduction of Fuel-NO by Increased Operating Pressure in a Laboratory-scale Coal Gasifier[J]. Fuel,1990,69(11): 1339-1344.
    [142]姚多喜,支霞臣,郑宝山.煤中矿物质在燃烧过程中的演化特征[J].中国煤田地质,2003,15(2):14-15,52.
    [143]邓芙蓉.利用TG-DS、XRD、SEM等多种手段研究煤灰的熔融特性[D].杭州:浙江大学,2005.
    [144]张彦文,杨景标,蔡宁生.煤粉热解组分析出特性的实验研究和DAEM模拟[J].热能动力工程,2008,23(6):661-665,693.
    [145]陈洁,张军,张永春,等.O2/CO2气氛下焦炭氮转化的实验研究[J].工程热物理学报,2011,32(1):145-148.
    [146]赵炜,常丽萍,谢克昌,等.煤燃烧过程生成氮氧化物前驱体的研究[J].燃料化学学报,2004,32(4):385-389.
    [147]Ledesma E. B., Li C. Z., Nelson P. F., et al. Release of HCN, NH3, and HNCO from the Thermal Gas-Phase Cracking of Coal Pyrolysis Tars[J]. Energy & Fuels,1998, 12(3):536-541.
    [148]Li C. Z., Buckley A. N., Nelson P. F. Effects of Temperature and Molecular Mass on the Nitrogen Functionality of Tars Produced under High Heating Rate Conditions[J]. Fuel,1998,77(3):157-164.
    [149]Tan L. L., Li C. Z. Formation of NOx and SOx Precursors during the Pyrolysis of Coal and Biomass. Part Ⅱ. Effects of Experimental Conditions on the Yields of NOx and SOx Precursors from the Pyrolysis of a Victorian Brown Coal[J]. Fuel,2000, 79(15):1891-1897.
    [150]Xie Z., Feng J., Zhao W., et al. Formation of NOx and SOx Precursors during the Pyrolysis of Coal and Biomass. Part IV. Pyrolysis of a Set of Australian and Chinese Coals[J]. Fuel,2001,80(15):2131-2138.
    [151]Aho M. J., Paakkinen K. M., Pirkonen P. M., et al. The Effects of Pressure, Oxygen Partial Pressure, and Temperature on the Formation of N2O, NO, and NO2 from Pulverized Coal[J]. Combustion and Flame,1995,102(3):387-400.
    [152]阎维平,鲁晓宇.富氧燃烧锅炉烟气CO2捕集中回收NO的研究[J].动力工程学报,2011,31(4):294-299.
    [153]Skreiberg (?)., Kilpinen P., Glarborg P. Ammonia Chemistry below 1400K under Fuel-rich Conditions in a Flow Reactor[J]. Combustion and Flame,2004,136(4): 501-518.
    [154]Cariappa C., Narney J. K., Laster W. R., et al. Effect of Carbon Monoxide on Nitric Oxide in Exhaust Gases[J]. Combustion Science and Technology,1994,100(1): 355-361.
    [155]Kasuya F., Glarborg P., Johnsson J. E., et al. The Thermal DeNOx process:Influence of Partial Pressures and Temperature[J]. Chemical Engineering Science,1995,50(9): 1455-1466.
    [156]Kjrgaard K., Glarborg P., Dam-Johansen K., et al. Pressure Effects on the Thermal De-NOx Process[J]. Symposium (International) on Combustion,1996,26(2): 2067-2074.
    [157]Suriyawong A., Gamble M., Lee M-H., et al. Submicrometer Particle Formation and Mercury Speciation under O2/CO2 Coal Combustion[J]. Energy & Fuels,2006, 20(6):2357-2363.
    [158]Helble J. J. Mechanisms of Ash Particle Formation and Growth during Pulverized Coal Combustion[D]. Cambridge, US:Massachusetts Institute of Technology,1987.
    [159]张堃.煤灰中成分的高温结渣特性及机理研究[D].杭州:浙江大学,2005.
    [160]郭治青.燃煤矿物转化及结渣特性研究[J].武汉:华中科技大学,2008.
    [161]Bryers R. W. Fireside Slagging, Fouling, and High-temperature Corrosion of Heat-transfer Surface due to Impurities in Steam-raising Fuels[J]. Progress in Energy and Combustion Science,1996,22(1):29-120.
    [162]盛昌栋,张军,徐益谦.煤中含铁矿物在煤粉燃烧过程中行为的研究进展[J].煤炭转化,1998,(03):20-24.
    [163]Wu H., Bryant G, Benfell K., et al. An Experimental Study on the Effect of System Pressure on Char Structure of an Australian Bituminous Coal[J]. Energy & Fuels, 2000,14(2):282-290.
    [164]Kaiho M., Toda Y. Change in Thermoplastic Properties of Coal under Pressure of Various Gases[J]. Fuel,1979,58(5):397-398.
    [165]Khan M. R., Jenkins R. G. Thermoplastic Properties of Coal at Elevated Pressures: 1. Evaluation of a High-pressure Microdilatometer[J]. Fuel,1984,63(1):109-115.
    [166]Bailey J. G, Tate A., Diessel C. F. K., et al. A Char Morphology System with Applications to Coal Combustion[J]. Fuel,1990,69(2):225-239.
    [167]Huda M., Korai Y., Mochida I. Reactivities of Blair Athol and Nang Tong Coals in Relation to Their Behavior in PFBC boiler[J]. Fuel,2004,83(16):2151-2156.
    [168]Sheng C., Li Y. Experimental Study of Ash Formation during Pulverized Coal Combustion in O2/CO2 Mixtures[J]. Fuel,2008,87(7):1297-1305.
    [169]Andries J., Becht J. G. M., Hoppesteyn P. D. J. Pressurized Fluidized Bed Combustion and Gasification of Coal Using Flue Gas Recirculation and Oxygen Injection[J]. Energy Conversion and Management,1997,38:S117-S122.
    [170]项红卫.流体的热物理化学性质:对应态原理与应用[M].北京:科学出版社,2003.
    [171]Meng L., Duan Y-Y., Li L. Correlations for Second and Third Virial Coefficients of Pure Fluids[J]. Fluid Phase Equilibria,2004,226:109-120.
    [172]Chueh P. L., Prausnitz J. M. Third Virial Coefficients of Nonpolar Gases and Their Mixtures[J]. AIChE Journal,1967,13(5):896-902.
    [173]Orbey H., Vera J. H. Correlation for the Third Virial Coefficient Using Tc, Pc and ω as Parameters[J]. AIChE Journal,1983,29(1):107-113.
    [174]童景山,李敬.流体热物理性质的计算[M].北京:清华大学出版社,1982:59-106.
    [175]Poling B. E., Prausnitz J. M., O'Connell J. P. The Properties of Gases and Liquids[M]. New York, US:McGraw-Hill Companies,2001.
    [176]Abramowitz M., Stegun I. A. Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables[M]. New York:Dover Publications,1970.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700