用户名: 密码: 验证码:
大型液化天然气船超低温作用下结构安全问题研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
大型LNG船具有航速高、结构复杂、航行海域广和装载工况多样的特点,为确保船舶航行安全需要克服LNG超低温和晃荡载荷的作用。薄膜型货舱是目前主流的LNG船围护系统,其技术专利还都掌握在少数造船强国手中,提高液化天然气船自主研发水平是保障我国能源安全的切实需要。
     本论文以工程实际运用为研究背景,考虑漫长服役期中可能出现的各种海洋环境、潜在的事故工况等,对大型LNG船体结构在超低温作用下的安全性问题展开研究:分析了超低温作用下船舶系统的热传递问题,评估了材料性能随温度的非线性变化对结构强度计算的影响,研究了多种环境下船体结构强度问题,预报了LNG船潜在的事故工况及对结构强度的危害,分析了超低温、晃荡联合作用对LNG船结构强度的影响。论文开展的主要工作如下:
     (1)简要介绍了天然气产业现状、LNG海运市场潜力、LNG船技术难点、课题意义等,并针对LNG船结构安全研究所涉及的不同学术领域,介绍了目前国内外主要科研成果和研究进展。
     (2)提出了采用等效对流换热耦合系数来模拟船体内外壳之间热传递的思路。分析了多个环境温度下典型局部船舶系统的热传递规律,计算了船体内壳温度、封闭空间的热对流系数,修正了环境变化、加筋等因素对热对流系数的影响,开发了用于模拟船体内外壳之间对流关系的专用计算模块,并研究了船体不同部位处的等效对流耦合系数,研究结果表明采用搜索等效对流耦合系数的方法可以较准确模拟船体内外壳之间空气的传热作用。
     (3)提出了计及低温下材料非线性对LNG船结构热应力计算结果影响的修正方法。归纳总结了大量工程材料在温度变化情况下的极限强度、屈服强度、杨氏模量、热膨胀系数、导热系数等材料特性的变化规律,分析了影响LNG船强度计算的关键材料参数,采用非线性热-弹塑性耦合计算理论,对多工况下船体局部结构进行非线性分析,进而研究了材料温度非线性变化对结构强度计算结果的影响,回归得到线性热应力计算结果的修正公式。
     (4)考虑了货舱内温度分布变化和环境温度变化,研究了超低温作用下LNG船结构温度场和热应力问题。基于对货舱围护系统的热分析,研究了装载工况对船舶货舱内温度的影响,计算了多装载工况下货舱内温度分布规律,并推导了不同装载工况下货舱内不同位置处的温度计算公式,以大型LNG船常见的装载工况为研究条件,计算了船舶压载、满载情况下船体温度场分布,在此基础上研究了船体热应力问题,并对最终计算结果进行材料温度非线性修正。
     (5)假定了多种LNG船事故工况,研究了事故工况下的船体结构安全问题。根据货舱绝热层载荷、结构特点,分析了可能出现的局部绝热层失效形式,在此基础上假定了一系列潜在的事故工况,研究了绝热层失效对船体结构安全性的影响,模拟了LNG泄漏、超低温直接作用下船体结构响应问题,分析了参数变化对结构超低温响应的影响,并进一步研究了船体隔舱加热设备故障、薄膜损坏主绝热层失效等其他事故对船体结构安全的影响。
     (6)基于货舱内液体晃荡模拟,研究了超低温和晃荡联合作用下船体结构安全问题。根据LNG船的自身特点及航行规律,选取了4种纵向变速晃荡激励条件,采用有限体积法(VOF),模拟了不同激励条件下满载、压载时货舱内液体的晃荡问题,并以特定激励条件下的液体晃荡、超低温为研究背景,分析了二者联合作用下的大型LNG船结构安全问题,评估了晃荡和超低温因素对结构强度的影响。
     从理论和工程实际相结合的角度,论文针对LNG船服役期中超低温作用下可能面临的各种结构安全问题展开了深入研究,其研究方法、重要结论可以为我国自主研发LNG新船型、开发新型货舱围护系统提供有益参考。
High speed, complex structure, wide navigation area are the major characteristic of LNG carriers. In order to ensure the safety of the ship it is essential to overcome ultra-low temperature and sloshing problem. At present the core-technology of cargo maintenance system is controlled by several powerful shipbuilding countries. It is necessary to research on the LNG carrier technology independently to make sure the state energy security. This thesis combined theory with engineering practice and analysed the structure safety of LNG carrier under different marine environments and potential accident conditions.
     The main research contents of this thesis are summarized as below:
     (1) Briefly introduced the status of natural gas industry, the potential of natural gas shipping market, technical difficulties of LNG carriers, independent research achievement of LNG transport in China, etc. Then an overview of resent research and process in academic fields related to the LNG carrier structure was presented.
     (2) An equivalent coupling convection coefficient is proposed to simulate the heat transfer between outer and inner hull. Thermal analysis of LNG carrier under different ambient temperatures was carried out based on thermodynamics method. Inhull temperature and heat convection coefficient in closed ship structure was calculated taking into account the affect of environmental change and stiffened plate. Then an automatic calculation module was developed in software to calculate the equivalent coupling convection coefficient. The results show that equivalent coupling convection coefficient method was an effective way to simulate the heat transfer from outer hull to inner space.
     (3) A correction method to LNG structure strength is proposed to analyze the influence of the material nonlinearity at low temperatures. The variation of engineering material properties caused by temperature change (ultimate strength, yield strength, Young's modulus, thermal expansion coefficient, thermal conductivity coefficient, etc.) was summarised. Then a study on the materials properties which would affect the linear strength result was carried out. According to thermoelastoplastic method, a partial LNG carrier model was built to evaluate the influence of temperature nonlinear material properties on the structure strength analysis result. At last a correction formula was presented to revise the actual engineering calculation.
     (4) Taking account the change of temperature distribution in the cargo hold and the environmental temperature, the analysis on the temperature field and thermal stress of the LNG carrier structure under ultra-low temperature was done. The changed temperature field in cabin under different loading cases and different ambience temperatures was studied. Then the calculation formula of temperature in LNG cabin which was an important boundary condition of ship thermal analysis was concluded. And the temperature field and thermal stress of LNG carrier under different loading cases was calculated using finite element method. The result of thermal stress was revised by nonlinear material properties correction formula too.
     (5) Some potential accidents were assumed to study structure safety problem of the LNG carrier under special sailing conditions. Considering the structure characteristics and loads of the insulation, a strength analysis on insulation box was carried out. Then several partial insulation failure assumptions were presented to study the strength of LNG carrier with incomplete insulation. The partial model was built to study the structural response under the direct impact of ultra-low temperature caused by leakage of LNG. How the structural response as parameters changed was also studied. At last, the analysis on structure strength under two worse assumed accident conditions, including the fault of bulkhead heater and the failure of whole major insulation, was carried out to measure the safety of LNG carriers.
     (6) Considering the action of both ultra-low temperature and sloshing, the research on LNG carrier structure strength is carried out. Based on volume-of-fluid method (VOF), a computational fluid dynamics model was built to simulate the sloshing in LNG cabin under different loading cases and excitation conditions. Then a fitting formula on LNG sloshing pressure was generalized. Taking the sloshing pressure and ultra-low temperature as boundary conditions, the strength analysis of LNG carrier was carried out. At last an influence study on structure safety caused by sloshing and ultra-low temperature showed that LNG carrier strength was closely related to LNG motion and temperature.
     Base on theory and practical engineering, this thesis deeply worked on structural safety problem under loading conditions, ultra-low temperature, environment temperature, LNG sloshing, etc. The method and result of this thesis could be helphul for future work on developing new LNG carrier and new cargo maintenance system.
引文
[1] ABS. LNG Carrier Training Course.ABS,2003.
    [2] Abramson, H. N., Chu, W. H., Dodge, F. T.. Nonlinear effects in lateral sloshing. NASA,1966:79–103.
    [3] Adalsteinsson, D., Sethian, J.. A fast level set method for propagating interfaces. Journal of Computational Physics. 1995,118(2): 269-277.
    [4] Amabili M.. Vibrations of Circular Plates Resting on A Sloshing Liquid: Solution of the Fully Coupled Problem. Journal of Sound and Vibration, 2001,245(2):261-283.
    [5] Amabili M., Paidoussis, M. P., Lakis A. A.. Vibrations of Partially Filled Cylindrical Tanks with Ring-stiffeners and Flexible Bottom. Journal of Sound and Vibration. 1998,213(2), 259-299
    [6] Akiyama, Shigeru, Amada, et al.. Estimation of fracture conditions of ceramics by thermal shock with laser beams based on the maximum compressive stress criterion. JSME International Journal, Series 1: Solid Mechanics, Strength of Materials, 1992,35(1): 91-94.
    [7] Alberti, N., Fratini, L., Micari, F.. Numerical simulation of the laser bending process by a coupled thermal mechanical analysis. Laser Assisted Net Shape Engineering, Proceedings of the LANE’94, 1994(1):327–336.
    [8] Anifantis, N.K., Kakavas, P. A., Papanicolaou, G. C.. Thermal Stress Concentration Due to Imperfect Adhesion in Fiber-Reinforced Composites. Composites Science and Technology, 1997,51:687-696.
    [9] Arai, M.. Experimental and numerical studies of sloshing pressure in liquid cargo tanks. Journal of the Society of Naval Architects of Japan, 1984, 155: 114-121.
    [10] Azevedo, L. F. A., Sparrow, E. M.. Natural convection in open-ended inclinedchannels, ASME Journal of Heat Transfer, 1985,107:893-901.
    [11] Bishop R. E.,Price W. G., Wu Y. S.. A general linear hydroelasticity theory of floating structures moving in a seaway. Philosophical Transactions of the Royal Society, London, 1986, 316(1538):375-426.
    [12] Brown, D.L., Cortez, R., Minion L.. Accurate projection methods for the incompressible Navier-Stokes equations. Journal of Computational Physics, 2001 (168) 464-499.
    [13] Bystrzycki, J., Varin, R. A.. Environmental sensitivity and mechanical behavior of boron-doped Fe-45at.% intermetallic in the temperature range from 77 to 1000 K. Material science and engineering:A, 2001,270(2):151-161.
    [14] Carmignani, C., Mares, R., Toselli, G.. Transient finite element analysis of deep penetration laser welding process in a singlepass butt-welded thick steel plate. Computer Methods Applied Mechanics Engineering, 1999 (179) 197-214.
    [15] Carrera, Giovanni, Rizzuto, et al.. Simulation of mechanical and thermodynamic performances of a ship propulsion plant in transient conditions. American Society of Mechanical Engineers, 1997.
    [16] Chauvin, J. M.. Membrane tank LNG carriers. Revue Institut Francais Petrole, 1996,51 (5):691-710.
    [17] Chen C., Zhang C. X., Guo H. B., et al.. Failure of EB_PVD thermal barrier coatings subjected to thermo-mechanical loading [J]. Chinese Journal of Aeronautics, 2006, 19(Sup):82-85.
    [18] Cheng, P. J., Lin. S. C.. An analytical model for the temperature field in the laser forming of sheet metal. Journal of Materials Processing Technology, 2000,101:260–267.
    [19] Cheng, X. N., Dai, Q. X., Wang, A. D. et al.. Effect of alloying elements and temperature on impact toughenss of cryogenic austenitic steels. Materials science andengineering:A, 2001, 311(1-2):211-216.
    [20] Cho, H., Kardomateas, G. A.. Thermal shock stresses due to heat convection at a bounding surface in a thick orthotropic cylindrical shell. International Journal of Solids and Structures, 2001(38):2769-2788.
    [21] Chuang W. H., Thomas L., Rainer K. F.. Mechanical property characterization of LPCVD silicon nitride thin films at cryogenic temperature. Journal of Sicroelectromechanical Systems, 2004,13(5):870-879.
    [22] Colvin, R.A., Davies, E.J., Crane, L.W.. Physical Properties Of Sintered Low Alloy Steels. Powder Metallurgy. 1987,30(2): 111-117.
    [23] Dasgupta, A., Agarwal R. K., Bhandarkar S. M.. Three-Dimensional Modeling of Woven-Fabric Composites for Effective Thermo-Mechanical and Thermal Properties. Composites Science and Technology, 1996(56) 209-223.
    [24] Dasgupta, A., Agarwal, R. K.. Prediction of orthotropic thermal conductivity of plain-weave composites by homogenization techniques. Journal Composites Materials, 1992 (26) 2736-2758.
    [25] Donea, J.. Thermal conductivities based on variational principles. Journal Composites Materials, 1972 (6) 262-266.
    [26] Dong Y. L., Hang S. C.. Study on Sloshing in Cargo Tanks Including Hydroelastic Effects. Marine Science and Technology, 1999,4:27-34.
    [27] Enright, D., Fedkiw, R., Ferziger, J., et al.. A hybrid particle level set method for improved interface capturing. Journal of Computational Physics, 2002,183(1): 83-116.
    [28] Enright, D., Losasso, F., Fedkiw R.. A fast and accurate semi-Lagrangian particle level set method. Computers and Structures, 2005,83:479-490.
    [29] Farrington, H. O., Falk, P.T., Morrone, et al.. Stress analysis and life predictions of ship propulsion system gas turbine uptake structures. Naval Engineers Journal,1990,102(3): 263-274.
    [30] Fedkiw, R., Aslam, T., Merriman, B., et al.. A Non-Oscillatory Eulerian Approach to Interfaces in Multimaterial Flows (The Ghost Fluid Method). Journal Computational Physics, 1999,152(2): 457-492.
    [31] Fedkiw. R., Marquina. A., Merriman, B.. An Isobaric Fix for the Overheating Problem in Multimaterial Compressible Flows. Journal Computational Physics, 1999,148:545-578.
    [32] Fedkiw R., Liu X. D.. The Ghost Fluid Method for Viscous Flows. Solutions of PDE Conference, Arachaon, France, 1998:1-33.
    [33] Florio, L.A.,Harnoy, A.. Evaluation of isothermal and isoflux natural convection coefficient correlations for utilization in electronic package level thermal analysis. Annual IEEE Semiconductor Thermal Measurement and Management Symposium, 1997:24-31.
    [34] Florio, L.A., Harnoy, A.. Analysis of natural convection enhancement in electronics by cross-flow passages. International Journal of Heat and Technology, 2006,24(1):41-49.
    [35] Frank L., Ronald F., Stanley O.. Spatially Adaptive Techniques for Level Set Methods and Incompressible Flow. Computers & Fluids, 2005,35(10):995-1010.
    [36] Frost W.著,陈叔平等译.低温传热学.人民教育出版社, 1982.
    [37] Ganguli, A. A., Pandit, A. B., Joshi, J. B.. CFD simulation of heat transfer in a two-dimensional vertical enclosure. Chemical Engineering Research and Design, 2009,87(5):711-727.
    [38] Graham M., Barry W.. Liquefied Gas Handling Principle on Ships and in Terminals. Witherby&Co. Ltd. London,1999.
    [39] Greaves, D. M., Borthwork, A. G. L., Wu, G. X., et al.. A moving boundary finite element method for fully nonlinear wave simulations. Journal of Ship Research, 1997,41(3): 181-194.
    [40] GTT.. Thermal calculation of 130×103m3 LNG carrier. GTT Gas transport report,1991.
    [41] Gupta, N. K.. Estimation of stresses near edges and corners in large spent fuel shipping containers. American Society of Mechanical Engineers, Pressure Vessels and Piping Division (Publication) PVP, 1996(334): 45-50.
    [42] Hamlin, N. A., Lou, Y K., Maclean, W. M., et al. Liquid sloshing in slack tanks--theory, observation and experiments. Trans SNAME, 1986,94:159-195.
    [43] Hebel, T.. Better Way to Relieve Stress. American machinist &: automated manufacturing, 1986,130(12): 70-72.
    [44] Henze, Marc, Weigand, et al.. Natural convection inside air ships. Collection of Technical Papers - 9th AIAA/ASME Joint Thermophysics and Heat Transfer Conference Proceedings, 2006,4: 2558-2567.
    [45] Hiraga, K., Ishikawa, K., Ogata, T., et al. Low Temperature Mechanical and Physical Properties of Age-Hardened Fe-Ni-Cr-Mn Alloys. Austenitic Steels at Low Temperatures, 1983: 277-286.
    [46] Howard j.L.. LNG marine carrier construction. Marine Technology, 1972,9(3):281-291
    [47] Hsieh, S., Lin J.. Thermal–mechanical analysis on the transient deformation during pulsed laser forming. International Journal of Machine Tools & Manufacture, 2004,44: 191–199.
    [48] Hu, Z., Labudovic, M., Wang, H., et al.. Computer simulation and experimental investigation of sheet metal bending using laser beam scanning [J]. International Journal of Machine Tools & Manufacture 2001 (41) 589–607.
    [49] IMO. International Code for the Construction and Equipment of Ships Carrying Liquefied Gases in Bulk (IGC Code). IMO,1993.
    [50] Inoue, Yoshiyuki, Kamruzzaman, M.. Numerical simulation on mooring performance of LNG-FPSO system in realistic seas. Proceedings of the International Conference on Offshore Mechanics and Arctic Engineering– OMAE. 2005,2: 975-982.
    [51] Ji, Z., Wu, S.. FEM simulation of the temperature field during the laser forming of sheet metal. Journal of Materials Processing Technology,1998 ,74: 89–95.
    [52] Kobayashi, Y.. Analysis of Low Velocity Compressible Fluid in an Annular Space and Applications to the Spherical Tank Insulation System of LNG Carrier. Journal of the Society of Naval Architects of Japan, 1995,178:639-647.
    [53] Kozlov, A. V., Kirsanov, V. V.. Radiation defect formation and evolution in C0.03Cr20Ni16Mn6 steel under low-temperature neutron irradiation and their effect on physical and mechanical properties of the steel. Journal of Nuclear Materials, 1996,233-237(Pt B): 1062-1066.
    [54] Lau, J. H., Erasmus, Steve, Zou, Yida. Thermal stress and deflection analysis of a glass window (Circular plate) elastically restrained along its edge in a photonic device. Journal of Electronic Packaging, Transactions of the ASME, 2003,125(4): 602-608.
    [55] Lee G. S., Chang, Y. S., Kim, M. S., et al.. Thermodynamic analysis of extraction processes for the utilization of LNG cold energy. Cryogenics, 1996, 36 (1):35-40.
    [56] Lee W. S., Lin C. F.. Plastic deformation and fracture behaviour of Ti-6A1-4V alloy loaded with high strain rate under various temperatures. Materials science and engineering:A, 1998,241(1):48-59.
    [57] Li Z. C., Yong Yuejun, Wang Hongcai. The effect of low-temperature by liguid nitrogen on the mechanical properties of metals. Cryogenics and Superconductivity, 1987,15(4):1-7.
    [58] Li C. J.. Effects of temperature and loading rate on fracture toughness of structural steels. Materials and design, 2000,21(1):27-30.
    [59] LR.. Rules and Regulations for the Construction and Classification of Ships Carriages of Liquefied Gases in Bulk. London:Lloyd’sRegister of Shipping, 1995
    [60] Lua J.. Thermal–mechanical cell model for unbalanced plain weave woven fabric composites. Composites: Part A, 2007, (38):1019–1037.
    [61] Lua J., O’Brien J., Key C.. A temperature and mass dependent thermal model for fire response prediction of marine composites. Composites:Part A 2006,37(7):1005–1041.
    [62] Luo C. S., Paul E. DesJardin. Thermo-mechanical damage modeling of a glass-phenolic composite material. Composites Science and Technology, 2007, 67:1475-1488.
    [63] Ma, H. T., Li, J. D.. Integrated thermal-structural analytical technology for space structure with large-scale and complicated construction. Journal of Astronautics, 2008, 29(2):413-419.
    [64] McCarthby, R. W.. Thermomechanical forming of steel plates using laser line heat. Massachusetts Institute of Technology, 1985.
    [65] Menzemer, C.C., Srivatsan, T.S., Ortiz, R., et al.. Influence of temperature on impact fracture behavior of an alloy steel. Material and design, 2001,22(8):659-667.
    [66] Miettinen, J., Louhenkilpi. Calculation of thermophysical properties of carbon and low alloyed steels for modeling of solidification processes. Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science, 1994,25(6):909-916.
    [67] Mihalef, V., Metaxas, D., Sussman, M.. Animation and control of breaking waves. In Proc. of the 2004 ACM SIGGRAPH/Eurographics Symp. on Comput. Anim. 2004: 315-324.
    [68] Mike H., Louis G.. Guidance on risk analysis and safety implication of a large liquefied natural gas (LNG) spill over water. Albuquerque, New Mexico: SandiaNational Laboratories, 2004.
    [69] Mikelis N. E., Robihsen D. W.. Sloshing in arbitrary shaped tanks. Journal of the Society of Naval Architects of Japan, 1985, 158:241-255.
    [70] Moatsos, I., Das, P. K. Modelling the effect of extreme diurnal temperature changes on ship structures for the assessment of structural reliability using load combination techniques. Proceedings of the International Offshore and Polar Engineering Conference, 2004:505-513.
    [71] Ostrach, S.. Natral Convection in Enclosure. Advances in Heat Transfer, 1972,8:161-227.
    [72] Paik, J. K., Choe, I. H., Thayamballi, et al. Predicting resistance of spherical-type LNG carrier structures to ship collisions. Marine Technology, 2002,39(2):86-94.
    [73] Pakdee, W., Rattanadecho, P.. Unsteady effects on natural convective heat transfer through porous media in cavity due to top surface partial convection. Applied Thermal Engineering, 2006,26(17-18): 2316-2326.
    [74] Patankar S. V.. A Numerical Method for Conduction in Composite Materials, Flow in Irregular Geometries and Conjugate Heat Transfer. In: Proc.6'h Int. Heat Transfer. Conf. Washington D.C.; Hemisphere, 1978.3: 297-302.
    [75] Patankar S. V., McGraw H.. Numerical Heat Transfer and Fluid Flow, John Benjamins Publishing Co.,1980.
    [76] Pei Y. Z., Bai Y., Shi Y. J., et al. Temperature distribution in a long-span aircraft hangar. Tsinghua Science and Technology, 2008,13(2):184-190.
    [77] Pitblado, R., Skramstad, E., Danielsen, H. K., et al.. Energy based risk methodology for collision protection of LNG carriers. AIChE Annual Meeting, Conference Proceedings. 2008.
    [78] Polisadov, V. N. Cast low- temperature steels. Russ Cast Prod. 1969,11:53-56.
    [79] Rahman, N., Kumar, S.. Evaluation of convective heat transfer coefficient duringdrying of shrinking bodies. Energy Conversion and Management, 2006,47(15-16): 2591-2601.
    [80] Reno, N., Sven G., Volker R., et al.. A Finite Element Based Level Set Method for Two-Phase Incompressible Flows. Computing and visualization in science, 2006,9(4):239-257.
    [81] Richter, F., Hemminger, W., Hanitzsch, E.. Physical properties in the temperature range from -180 to 400C of nickel alloy steels for low-temperature applications. Steel Research. 1991,62(9): 421-425.
    [82] Ronald P. K., Donald L. E.. Review lessons learned from LNG safety research. Journal of Hazardous Materials, 2006,140(3): 412-428.
    [83] Rowcliffe A. F., Robertson J. P., Klueh R. L., et al. Fracture toughness and tensile behavior of ferritic-matensitic steels irradiated at low temperatures. Journal of nuclear materials, 1998,258-263(2):1275-1279.
    [84] Sanea, Al., Sami A.. Convection regimes and heat transfer characteristics along a continuously moving heated vertical plate. International Journal of Heat and Fluid Flow. 2003,24(6): 888-901.
    [85] Sanea, Al., Sami A.. Mixed convection heat transfer along a continuously moving heated vertical plate with suction or injection. International Journal of Heat and Mass Transfer. 2004,47(6-7): 1445-1465.
    [86] Sandia. National Laboratiories Guidance on Risk Analysis and Safety Implications of a Large Liquefied Natural Gas Spill Over Water. Sandia Report, 2004: 31-43.
    [87] Sethian. J. A.. Level-set Methods: Evolving Interfaces in Geometry Fluid Mechanics. Cambridge University Press, 1996.
    [88] Sethian. J. A.. Fast Marching Level Set Method for Monotonically Advancing Fronts. Proceedings of the National Academy of Sciences of the United States of America. 1996,93:1591-1595.
    [89] Shang H. M., Wu Q. J., Tao W. S.. Experimental and numerical investigations of natural convection in vertical annuli. Journal of Xi’an Jiaotong University, 1989,23(1):9-18.
    [90] Shi, W. B., Thompson, P. A., Le Hire, J. C.. Thermal stress and hull stress monitoring. Transactions - Society of Naval Architects and Marine Engineers, 1996,104: 61-79.
    [91] Shin, H. S., Lee H. M., Kim M. S.. Impact tensile behavior of 9% nickel steel at low temperature. International journal of impact engineering, 2000,24(6-7):571-581.
    [92] Sima, J. H., Zhang, S. L.. Finite element calculation on unsteady temperature field and thermal stress. Journal of Ship Mechanics, 2006,10(4): 98-104.
    [93] Sparrow, E. M., Prakash, C.. Interaction between Internal Natural Convection in an Enclosure and an External Natural Convection Boundary-layer Flow. International Journal of Heat and Mass Transfer, 1981,24:895-907.
    [94] Sparrow, E. M., Tao W. Q.. Buoyancy-driven Fluid Flow and Heat Transfer in a Pair of Interacting Vertical Parallel Channels. Numerical Heat Transfer, 1981,5:39-58.
    [95] Spatig, P., Odette, G. R., Lucas, G. E.. Low temperature yield properties of two 7-9Cr ferritic/martensitic steels. Journal of Nuclear Materials, 1990,275(3):324-331.
    [96] Straffelini, G., Fontanari, V., Molinari, A.. Impact fracture toughness of porous alloys between room temperature and 600C. Materials science and engineering, 1999,272(2):389-397.
    [97] Subrahmanyam, A., Valleti, K. J., Srikant V., et al.. Effect of arc suppression on the physical properties of low temperature dc magnetron sputtered tantalum thin films. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films. 2007,25(2): 378-382.
    [98] Sussman M., Smereka P., Osher S.. A level set approach for computing solutions to incompressible two-phase flow. Journal of Computational Physics, 1994, 114:146-159.
    [99] Sussman M., Fatemi E.. An efficient interface-preserving level set redistancing algorithm and its application to interfacial incompressible fluid flow. SIAM Journal on Scientific Computing, 1999,20:1165-1191.
    [100] Sussman, M., Puckett, E. G.. A coupled level set and volume-of-fluid method for computing 3d and axisymmetric incompressible two-phase flows. Journal of Computational Physics, 2000, 162:301-337.
    [101] Tekriwal, P., Mazumder, J.. Transient and residual thermal strain-stress analysis of GMAW. Journal Engineering Materials Technology, 1991,113:336-343.
    [102] Tsai, C. P., Jeng, D. S.. Numerical Fourier solutions of standing waves in finite water depth. Applied Ocean Research, 1994, 16: 185-193.
    [103] Van Der Pijl, S.P., Segal, A., Vuik, C., et al. Modeling of Three-Dimensional Bubbly Flows with a Mass-Conserving Level-Set Method. Computational Fluid and Solid Mechanics, 2005(207-130):905-909.
    [104] Verdi, J. R.著,任泽霖译.工程传热学.人民教育出版社, 1982.
    [105] Wang, C., Fong S. W., Khoo B. C., et al.. Multiple Bubbles Dynamics using Level Set Indirect Boundary Element Method. XXI ICTAM Warsaw Poland, 2004(August): 15-21.
    [106] Wang Z., Wang, Z. J.. The Level Set Method on Adaptive Cartesian Grid for Interface Capturing.42nd Aerospace Sciences Meeting&Exhibit 4-8 January 2004.
    [107] Wilson. J. J.. An introduction to the marine transportation of bulk LNG and the design of LNG carriers. Cryogenics, 1974,14(3):115-120.
    [108] Wood J. R., Huang Y. L., Youngh Robert J., etc.. Measurement of Thermal Strains during Compressive Fragment in Single-Fibre Composites by Raman Spectroscopy.Composites Science and Technoloqy, 1995, 55(3): 223-229.
    [109] Yang Y. Z., Yang J. L., Fang D. N.. Research progress on thermal protection materials and structure of hypersonic vehicles . Applied Mathematics and Mechanics.2008, 29(1):51-60.
    [110] Yang Y., Zhou J. M.. Numerical simulation study of 3-D thermal stress field with complex boundary. Journal of Engineering Thermophysics, 2006, 27(3):487-489.
    [111] Yoshihiro Kobayashi,Member Anstein Sorensen,YoshinoriEzaki. Analysis of Vapor Insulation System for Cargo Tank of LNG and HZ Carrier. Journal of the Society of Naval Architects of Japan,1998
    [112]陈伯真,胡毓仁.船体温度分布及热应力计算.上海交通大学学报,1995,29 (3):33-37.
    [113]陈国邦.低温工程材料.浙江大学出版社,1998.
    [114]丁伯民.各有关规范防脆断措施的比较和合理性分析.化工设备设计,1994,34(3):8-18.
    [115]丁仕风,唐文勇,张圣坤.突变速情况下液化天然船液舱内晃荡问题仿真.上海交通大学学报, 2008,42(6):919-923
    [116]杜忠仁.薄膜型液化天然气船船体结构设计中几个特殊问题.上海造船,2002,(2).9-12.
    [117]房玉慧.不锈钢舱化学品船温度场及热应力分析.大连理工大学液体载货船运动响应的模型试验研究,2008.
    [118]方宝东,李应典,张建刚.新一代地球同步轨道气象卫星结构热变形分析.上海航天,2006,6:50-53.
    [119]冯武文,周昊,赵军.薄膜式液化天然气运输船船体温度分布的研究.造船技术,2006,(5):17-19,16.
    [120]高伟.液体载货船运动响应的模型试验研究.大连理工大学硕士学位论文,2008.
    [121]航天部第七情报网中国制冷学会第一专业委员会.国产材料低温性能数据汇编.低温工程杂志社,1987
    [122]洪汇勇,江玉国,魏伟坚,et al.. LNG船舶海上运输的风险分析及其控制.航海技术, 2008 (4),33-35.
    [123]洪汇勇.液化气船C型球罐货舱失效风险评估研究.大连海事大学硕士学位论文:,2006.
    [124]黄维新,于庭安,杨立兵,et al..液态天然气(LNG)储运安全因素分析.中国公共安全(学术版),2008,1(3):71-74.
    [125]李光正,李贵,张宁.封闭腔内自然对流数值方法研究.华中科技大学学报, 2002,19(4):20-22.
    [126]李光正,马洪林.封闭腔内高瑞利数层流自然对流数值模拟.华中科技大学学报, 2004,21(3):14-17.
    [127]李明珂.液化气船航运过程中的综合安全评价研究.大连海事大学硕士学位论文,2006.
    [128]李娜,李志信,过增元.封闭方腔内小尺度等温竖板自然对流的三维效应.上海理工大学学报, 2003,25(3):218-221.
    [129]李娜,过增元,李志信.方腔自然对流中力的尺度效应.清华大学学报, 2002,42(11):1508-1510.
    [130]李品友. LNG船MOSS型球形液舱预冷温度的计算和分析.上海海运学院学报,1996,(1):51-58.
    [131]李品友,顾安忠.液化天然气船液货翻滚及其预防.上海海运学院学报, 1999,(2).19-23.
    [132]林浩. LNG运输船No.96型货舱的传热学分析.上海海事大学硕士学位论文,2007.
    [133]胡毓仁,陈伯真,吕瑞锋.液化天然气船球形液舱系统热应力分析.中国造船,1990,(1):23-33.
    [134]祁江涛,顾民,吴乘胜. LNG船液舱晃荡的数值模拟.船舶力学,2008 12(4):541-549.
    [135]秦江阳,王印培,柳曾典.16MnR钢弹塑性断裂韧度Ji的韧脆转变温度特性.理化检验一物理分册,2000,36(12):531-534.
    [136]邱林.对液化天然气船海运安全性的初步探讨.航海技术,2004,(5):23-24.
    [137]屈金祥.航天器系统热分析综述.《红外》月刊,2004,10:20-27.
    [138]单浩明.液化气船装卸流程及海上运输安全性的研究.大连海事大学硕士学位论文,2002.
    [139]娜日萨. VLCC液舱晃荡仿真及结构强度评估方法研究.哈尔滨工程大学博士学位论文,2007.
    [140]唐万明. LNG运输船总纵极限承载能力研究.华中科技大学硕士学位论文,2006.
    [141]滕晓青,顾永宁.双壳型船体结构稳态温度场和热应力.中国造船,2000,41(2):58-65.
    [142]魏英杰,何钟怡.二阶全展开ETG有限元方法在方腔自然对流模拟中的应用.热能动力工程, 2004,19(2):137-140.
    [143]王元清.钢结构脆性破坏事故分析.工业建筑,1998,28(5):55-58.
    [144]王元清,王晓哲,武延民.结构钢材低温下主要力学性能指标的试验研究.工业建筑,2001,31(12):63-65.
    [145]王元清.钢结构在低温下脆性破坏(低温冷脆现象)研究.建筑低温技术1998,3:24-28.
    [146]王启杰.水平和倾斜放置时非等温矩形肋片通道自然对流散热研究.工程热物理学报,1989,10(1): 49-54.
    [147]伍国炎,翁德伟. LNG船船体用低温钢及其焊接.造船技术,1985,(9):31-36.
    [148]徐明海,王秋旺.方腔尺寸对封闭方腔内多块孤立平板自然对流换热影响的数值分析.工程热物理学报, 1999,20(6): 742-745.
    [149]尹晶.我国进口LNG海上运输的风险与防范.大连海事大学硕士学位论文:2003.
    [150]尹莲花,刘莉.飞航器热结构优化方法研究综述.战术导弹技术,2006,(5):53-58.
    [151]张彬,吴宛青,于桂峰.液化天然气船舶海上泄漏危害性与风险分析.大连海事大学学报,2006,(4):81-83,22.
    [152]章伟星,李科浚,周昊, et al..薄膜式LNG运输船温度场研究.天然气工业,2005,(10).111-112,16.
    [153]章伟星,周昊,蔡洙一, et al.. 138000m3LNG运输船液货舱维护系统的温度场分析.中国造船,2008,(1):77-83.
    [154]张英云.最新金属实用手册.江西科学技术出版社,1999.
    [155]中山健吾,薛秀荣.液化天然气船用铝合金与钢的爆炸焊接头(铝/钛/钢)的材料强度特性.材料开发与应用,1985,(3).17-24.
    [156]周昊. LNG船中封闭腔室对流系数的研究.北京化工大学硕士学位论文,2006.
    [157]卓宁,孙家庆.工程对流换热.机械工业出版社, 1982年
    [158]朱仁庆.液体晃荡数值模拟研究综述.中国造船,2004,45(2):16-27.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700