用户名: 密码: 验证码:
长江口附近海域三维悬浮泥沙的数值模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文构建了长江口外海域三维悬浮泥沙输运数值模型,其中水动力模型中主要考虑了潮汐潮流、出入径流及风浪等作用,输运模型中考虑了粘性泥沙的絮凝、粘性和非粘性泥沙的再悬浮等过程。并与2006年8月份在长江口外海域获得的定点连续站测流资料及悬浮泥沙的观测资料进行了比较。为了进一步提高模式结果的精确性,采用将动力模式与实测资料相结合的趋近同化方法,在连续方程和泥沙输运方程中分别增加一个松弛项,将模拟结果向已有实测调和常数的控制点推算潮高值和悬沙浓度观测值趋近。将该方法运用到长江口外附近海域的悬浮泥沙数值模拟当中,并泥沙输运水平紊动扩散系数也做了合理的修改,其模拟结果也得到了不错的改进,所得结果适用于计算长江口外海域的水动力和泥沙输运情况。
     在数值模拟的基础上,分析了悬浮泥沙在长江口内外分布规律:悬浮泥沙浓度自近岸向外海降低,以123°E为界分为东、西两部分,西部浓度高东部浓度低,浓度锋面在苏北沿岸一带到达距岸150km处,长江口外123°E以东浓度一般不超过10mg/l,终年悬浮泥沙高值区见于河口区,一般超过300mg/l,以长江口、杭州湾悬浮泥沙浓度最高,闽浙沿岸的浓度等值线走向基本与岸线平行,锋面距岸大约80km左右;以30°N为界分南、北两部分,东海北部悬浮泥沙浓度高于陆架南部。悬浮泥沙浓度随时间的变化,河口近岸区远大于陆架区。总体看来长江入海泥沙主要向东南平流运移,苏北沿岸、长江口、杭州湾以及闽浙沿海分布着连续的浑水带,其中苏北沿岸、闽浙沿海的浑水带主要是靠泥沙的再悬浮作用和沿岸水流所携带的泥沙所致。
     在潮周期中,悬浮泥沙浓度的变化与流速大小密切相关,由于涨落潮的交替和流速的更迭使悬浮泥沙浓度出现明显的周期性变化,悬浮泥沙浓度在观测的24小时内出现两涨两落的变化趋势,而模拟的结果也与观测相吻合。悬浮泥沙浓度的峰值一般都滞后与流速峰值,滞后的时间由于海域和季节的不同而存在一定的差别,一般要滞后1~4小时。
Basing on ECOMSED model, a 3-D hydrodynamic-transport numerical model for the offshore area near Changjiang Estuary in the East China Sea has been developed. The hydrodynamic module is driven by tide and wind as well as inflow and outflow currents. Effect of wind generated waves also includes in the current modeling framework. Sediment module includes sediment resuspension, transport and deposition of cohesive and non-cohesive sediment. Settling of cohesive sediment in the water column is modeled as a function of aggregation and deposition. The numerical results are compared with observation data which measured during Aug, 2006 in the East China Sea. To improve the accuracy of results,This paper adds a nudging assimilation method to ECOMSED model, establishing a assimilation model, and tides and suspended sediment concentration in the offshore near Changjiang Estuary is simulated by this model. A relaxation term is added to the continuity equation and sediment transport equation respectively to nudge the calculated value to the observation data. Numerical experiments show that the data assimilation in numerical model which can improve the accuracy of results. Apply this method to the simulation of the suspended sediment in the Offshore Near Changjiang Estuary, and modify the horizontal diffusivity of the suspended sediment transport, and the result improves on. The result of simulation can describe the hydrodynamics and the sediment transport in the Offshore near Changjiang Estuary.
     The distribution of suspended sediment concentration shows that the sediment concentration reduces gradually from the seashore to the offshore area, and divided into the east and the west two parts by 123°E, and the west is higher, and the east is lower. The front of suspended sediment concentration is 150km far from shore in the Subei coastal area. Suspended sediment concentration eastern of 123°E is less than 10 mg/L. The higher concentration of suspended sediment concentration generally appears at the esturay area, and exceeds 300 mg/L. The Changjiang Esturay and the Hangzhou Bay is highest, and the counter of suspended concentration parallels seacoast line in the Minzhe coastal area. The front of suspended sediment concentration is about 80km far from shore. The concentration divideds into the south and the north two parts by 30°N, and the north is higher than the south. As a whole, the suspended sediment is advected to the south-east mainly, and the continuous muddy water is distributed in the Subei coastal area, the Changjiang Esturay, the Hangzhou Bay and the Minzhe coastal area. The muddy water in the Subei coastal area and the Minzhe coastal area depends on the resuspension and seacoast current taking. The muddy water in the Changjiang Esturay depends on sediment which is taked by Changjiang diluted water.
     Numerical results of concentration time series in the observation stations show two peaks and two valleys, according with the observation data. It is mainly affected by tidal current. The suspended sediment concentration is related to the tidal current during a tidal cycle, and the maximum concentration appears 1~4h after the current maximum velocity.
引文
1. 白玉川,蒋昌波.潮流波浪联合输沙及海床冲淤演变的理论体系与其数学模拟.海洋与湖沼 ,2000,31(2):186-196.
    2. 包芸.潮流物质输运过程数值模拟中的误差传递、放大及修正.水动力学研究与进展:A 辑 ,2004,19(3):389-393.
    3. 曹德明,方国洪.杭州湾和钱塘江潮波的一个联合数值模型.海洋学报 ,1988,16(5):521-530.
    4. 曹文洪, 张启.潮流和波浪作用下悬 移 质 挟 沙 能 力 的 研 究 . 泥 沙 研究 ,2000(5):16-21.
    5. 曹祖德,焦桂英,赵冲久.粉沙质海岸泥沙运动和淤积分析计算.海洋工程, 2004,22(1):59-65.
    6. 陈波,侍茂崇.广西主要港湾余流特征及其对物质输运的影响.海洋湖沼通报, 2003(1):13-21.
    7. 陈 鸣 , 李 士 鸿 . 长 江 口 悬 浮 泥 沙 遥 感 信 息 处 理 和 分 析 . 水 利 学 报 , 1991(5):47-51.
    8. 陈倩,黄大吉,章本照.浙江近海潮汐潮流的数值模拟.海洋学报, 2003,25(5):9-20.
    9. 陈沈良,谷国传.杭州湾口悬沙浓度变化与模拟.泥沙研究,2000(5):45-50.
    10. 陈沈良,谷国传,张国安.长江口南汇近岸水域悬沙沉降速度估算.泥沙研究, 2003(6):45-51.
    11. 陈 晓 宏 , 陈 永 勤 . 珠 江 口 悬 浮 泥 沙 迁 移 数 值 模 拟 . 海 洋 学 报 , 2003,25(2):120-127.
    12. 陈子燊.岬间海滩泥沙运动趋势与波能流分布的季节变化性.海洋通报, 1999,18(3):41-48.
    13. 程江,何青,王元叶,车越,张经.长江口徐六泾洪季水沙特性观测研究.海洋通报,2003,22(5):86-91.
    14.丁平兴,胡克林,孔亚珍,朱首贤.长江河口波-流共同作用下的全沙数值模拟. 海洋学报,2003,25(5):113-124.
    15.丁平兴,孔亚珍.波—流共同作用下的三维悬沙输运数值模型.自然科学进展, 2001,11(2):147-152.
    16. 堵盘军,胡克林,孔亚珍,丁平兴.Ecomsed 模式在杭州湾海域流场模拟中的应用. 海洋学报,2007,29(1):7-16.
    17. 方国洪.潮波方程的有限差分-最小二乘方法及其对模拟黄海 M2 潮的应用. 中国科学,1985,28(4):356-364.
    18. 方国洪,李身铎,曹德明.杭州湾潮流中湍应力和拖曳系数估算的三种方法. 科学通报,1985(17):1333-1336.
    19. 方 国 洪 , 杨 景 飞 . 渤 海 潮 运 动 的 一 个 二 维 数 值 模 型 . 海 洋 与 湖 沼 , 1985,6(5):337-346.
    20. 方国洪,杨景飞.台湾海峡潮汐和潮流的一个数值模型.海洋学报, 1985,7(1):12-20.
    21. 方 国 洪 , 杨 景 飞 . 东 海 东 部 和 南 部 潮 流 的 数 值 计 算 . 海 洋 学 报 , 1987,9(4):403-412.
    22. 龚政,张长宽,金勇,张东生.长江口斜压诊断模式三维流场数值模拟.水科学进展,2004,15(3):300-306.
    23. 管卫兵,潘建明.Pom 模式在河口湾污染物质输运过程模拟中的应用.海洋学报, 2002,24(3):9-17.
    24. 郭志刚,张东奇.冬、夏季东海北部悬浮体分布及海流对悬浮体输运的阻隔作用.海洋学报,2002,24(5):71-80.
    25. 胡国辉.水和泥沙交界面上输运过程的数值研究.水动力学研究与进展:A 辑, 2004,19(4):434-439.
    26. 胡四一,施勇.长江中下游河湖洪水演进的数值模拟.水科学进展, 2002,13(3):278-286.
    27. 贾建军,高抒.建立潮汐汊道 P-A 关系的沉积动力学方法.海洋与湖沼, 2005,36(3):268-276.
    28. 江文胜,孙文心.渤海悬浮颗粒物的三维输运模式Ⅰ.模式. 海洋与湖沼, 2000,31(6):682-688.
    29. 江文胜,孙文心.渤海悬浮颗粒物三维输运模式的研究Ⅱ.模拟结果. 海洋与湖沼,2001,32(1):94-100.
    30. 江文胜,王厚杰.莱州湾悬浮泥沙分布形态及其与底质分布的关系. 海洋与湖沼,2005,36(2):97-103.
    31. 蒋东辉,高抒.渤海海峡潮流底应力与沉积物分布的关系.沉积学报, 2002,20(4):663-667.
    32. 蒋国俊,姚炎明.浙江健跳港动力沉积过程及冲淤平衡机理.海洋学报, 2000,22(2):79-86.
    33. 蒋国俊,姚炎明.长江口细颗粒泥沙絮凝沉降影响因素分析.海洋学报, 2002,24(4):51-57.
    34. 金正华,王涛.浪,潮,风暴潮联合作用下的底应力效应.海洋与湖沼, 1998,29(6):604-610.
    35. 雷坤,杨作升.东海陆架北部泥质区悬浮体的絮凝沉积作用.海洋与湖沼, 2001,32(3):288-295.
    36. 雷坤,杨作升.东海不同底质类型海域春季悬浮体通量及影响因素.海洋与湖沼,2001,32(1):50-57.
    37. 李伯根,谢钦春,夏小明,李炎.椒江河口最大浑浊带悬沙粒径分布及其对潮动力的响应.泥沙研究,1999(1):18-26.
    38. 李朝新,刘振夏,胡泽建,谷东起,边淑华.泉州湾泥沙运移特征的初步研究. 海洋通报,2004,23(2):25-31.
    39. 李道季,李军,陈吉余,陈西庆,陈邦林.长江河口悬浮颗粒物研究.海洋与湖沼, 2000,31(3):295-301.
    40. 李东风,张红武,钟德钰,吕志咏.黄河河口水沙运动的二维数学模型.水利学报,2004(6):1-6.
    41. 李国胜,王海龙,董超.黄河入海泥沙输运及沉积过程的数值模拟.地理学报, 2005,60(5):707-716.
    42. 李 徽 翡 , 赵 保 仁 . 渤 、 黄 、 东 海 夏 季 环 流 的 数 值 模 拟 . 海 洋 科 学 , 2001,25(1):28-32.
    43. 李九发,何青,张琛.长江河口拦门沙河床淤积和泥沙再悬浮过程. 海洋与湖沼,2000,31(1):101-109.
    44. 李九发,沈焕庭,万新宁,应铭,茅志昌.长江河口涨潮槽泥沙运动规律. 泥沙研究,2004(5):30-40.
    45. 李军,高抒,曾志刚,贾建军.长江口悬浮体粒度特征及其季节性差异.海洋与湖沼,2003,34(5):499-510.
    46. 李孟国.海岸河口泥沙数学模型研究进展.海洋工程,2006,24(1):139-154.
    47. 李瑞杰,严以新,宋志尧.太平水道悬移质输运数学模型.泥沙研究, 2003(4):46-51.
    48. 李绍武,卢丽锋,时钟.河口准三维涌潮数学模型研究.水动力学研究与进展:A 辑,2004,19(4):407-415.
    49. 李身铎,曹徳明,方国洪.杭州湾潮流湍动应力和涡粘系数的估算.海洋学报, 1985,7(4):412-422.
    50. 李 身 铎 , 孙 卫 阳 . 杭 州 湾 潮 致 余 流 数 值 研 究 . 海 洋 与 湖 沼 , 1995,26(3):254-261.
    51.李义天,尚全民.一维不恒定流泥沙数学模型研究.泥沙研究,1998,(l):81-87
    52. 李占海,高抒,柯贤坤,汪亚平.江苏大丰海岸碱蓬滩潮沟及滩面的沉积动力特征.海洋学报,2005,27(6):75-82.
    53. 李占海,高抒,沈焕庭.大丰潮滩悬沙粒径组成及悬沙浓度的垂向分布特征. 泥沙研究,2006(1):62-70.
    54. 刘成,李行伟,韦鹤平,王兆印.长江口水动力及污水稀释扩散模拟.海洋与湖沼,2003,34(5):474-483.
    55. 刘高峰,沈焕庭,吴加学,吴华林.河口涨落潮槽水动力特征及河槽类型判定. 海洋学报,2005,27(5):151-156.
    56. 刘桦,吴卫,何友声,袁建忠.长江口水环境数值模拟研究—水动力数值模拟. 水动力学研究与进展:A 辑,2000,15(1):17-30.
    57. 刘启贞,李九发,陆维昌,李道季,沈焕庭.河口细颗粒泥沙有机絮凝的研究综述及机理评述.海洋通报,2006,25(2):74-80.
    58. 刘新成,卢永金,潘丽红,吴继伟.长江口和杭州湾潮流数值模拟及水体交换的定量研究.水动力学研究与进展:A 辑,2006,21(2):171-180.
    59. 刘志宇,魏皓.黄海潮流底边界层内湍动能耗散率与底应力的估计.自然科学进展,2007,17(3):362-369.
    60. 陆 建 宇 , 陆 永 军 . 瓯 江 河 口 挟 沙 能 力 的 初 步 探 讨 . 海 洋 工程,2002,20(1):46-51.
    61. 陆永军,董壮.强潮河口围海工程对水动力环境的影响.海洋工程, 2002,20(4):17-25.
    62. 吕海滨,刘刻福,王永吉,刘有刚,刘常乐.日照港深水航道泥沙运移及航道选址研究.海洋通报,2005,24(3):1-7.
    63. 吕咸青.数据同化反演风应力拖曳系数以及垂向涡动黏性系数的分布.海洋学报,2001,23(1):13-20.
    64. 吕咸青,方国洪.渤海 M2 分潮的伴随模式数值实验. 海洋学报, 2002,24(1):17-24.
    65. 吕新刚,沙文钰.Pom 模式边界条件的数值试验及其在环台湾岛海域风生流模拟中的应用.海洋通报,2003,22(1):17-23.
    66. 罗潋葱,秦伯强,朱广伟.太湖底泥蓄积量和可悬浮量的计算.海洋与湖沼, 2004,35(6):491-496.
    67. 茅志昌,沈焕庭.长江河口与瓯江河口最大浑浊带的比较研究.海洋通报, 2001,20(3):8-14.
    68. 潘存鸿,卢祥兴,韩海骞,王敏,曾剑,余祈文,陈甫源.潮汐河口支流建闸闸下淤积研究.海洋工程,2006,24(2):38-44.
    69. 潘久根.金沙江流域的河流泥沙输移特性.泥沙研究,1999(2):46-49.
    70. 攀社军,Mei CC.波浪边界层中细颗粒粘性泥沙的再悬浮和扩散输移.泥沙研究, 1999(2):20-27.
    71. 彭世银.深圳河河口围垦对防洪和河床冲淤影响研究.海洋工程, 2002,20(3):103-108.
    72. 秦伯强,DavidK.Stevens.一个三维水动力学模型及其在水环境中的适用性试验.水科学进展,2001,12(2):143-152.
    73. 申霞,姚琪,王鹏.动边界技术在 Pom 模型中的研究与应用.海洋通报, 2006,25(1):1-7.
    74. 沈 焕 庭 , 杨 清 书 . 长 江 河 口 径 流 与 盐 度 的 谱 分 析 . 海 洋 学 报 , 2000,22(4):17-23.
    75. 沈 焕 庭 , 张 超 . 长 江 入 河 口 区 水 沙 通 量 变 化 规 律 . 海 洋 与 湖 沼 , 2000,31(3):288-294.
    76. 沈 焕 庭 , 朱 建 荣 . 论 我 国 海 岸 带 陆 海 相 互 作 用 研 究 . 海 洋 通 报 , 1999,18(6):11-17.
    77. 施 勇 , 胡 四 一 . 感 潮 河 网 区 水 沙 运 动 的 数 值 模 拟 . 水 科 学 进 展 , 2001,12(4):431-438.
    78. 时钟.长江口细颗粒泥沙过程.泥沙研究,2000(6):74-83.
    79. 时钟.长江口北槽细颗粒悬沙絮凝体的沉降速率的近似估算.海洋通报, 2004,23(5):51-58.
    80. 时钟,陈伟民.长江口北槽最大浑浊带泥沙过程.泥沙研究,2000(1):28-29.
    81. 时钟,李世森.垂向二维潮流数值模型及其在长江口北槽的应用.海洋通报, 2003,22(3):1-8.
    82. 时钟,凌鸿烈.长江口细颗粒悬沙浓度垂向分布.泥沙研究,1999(2):59-64.
    83. 史峰岩,朱首贤.杭州湾,长江口余流及其物质输运作用的模拟研究Ⅰ.杭州湾,长江口三维联合模型.海洋学报,2000,22(5):1-12.
    84. 宋立松.分析潮汐河口稳定性的突变模型.水利学报,2001(9):10-15.
    85. 宋志尧.平面潮流数值模拟中底床摩阻系数的修正.水动力学研究与进展:A辑,2001,16(1):56-61.
    86. 孙健,陶建华.潮流数值模拟中动边界处理方法研究.水动力学研究与进展:A辑,2007,22(1):44-52.
    87. 孙琪,孙效功.窄缝法在河口区悬沙输运数值计算中的应用.海洋与湖沼 2001,32(3):296-301.
    88. 孙涛,陶建华.波浪作用下近岸区污染物输移扩散的数学模型及其实验验证. 海洋学报,2003,25(3):104-112.
    89. 孙效功,方明.黄,东海陆架区悬浮体输运的时空变化规律.海洋与湖沼, 2000,31(6):581-587.
    90. 孙英兰,张越美.胶州湾三维变动边界的潮流数值模拟.海洋与湖沼, 2001,32(4):355-362.
    91. 谈广鸣,赵连军,韦直林,舒彩文.海河口平面二维潮流水沙数学模型研究.水动力学研究与进展:A 辑,2005,20(5):545-550.
    92. 汤立群,金忠青.正交曲线坐标下河口二维潮流过程计算.水动力学研究与进展:A 辑,2003,18(2):196-204.
    93. 万新宁,李九发,沈焕庭.长江口外海滨典型断面悬沙通量计算.泥沙研究, 2004(6):64-70.
    94. 万新宁,李九发,沈焕庭.长江口外海滨悬沙分布及扩散特征.地理研究, 2006,25(2):294-302.
    95. 万修全, 鲍献文, 吴德星, 姜华. 渤海夏季潮致-风生-热盐环流的数值诊断计算. 海洋与湖沼,2004,35(1):41-47.
    96. 汪一航,魏泽勋.潮汐潮流三维数值模拟在庄河电厂温排水问题中的应用. 海洋通报,2006,25(1):8-15.
    97. 王桂芝,高抒.黄渤海水体交换、悬沙特征及其对渤海海峡沉积的影响.海洋通报,2002,21(1):43-48.
    98. 王凯,方国洪,冯士筰.渤、黄、东海 M2 潮汐潮流的三维数值模拟.海洋学报,1999,21(4):1-13.
    99. 王凯,李国胜等.大河三角洲河口海岸演化机理模型研究:(Ⅱ)模型构建与实证.地理研究,2003,22(2):140-150.
    100.王凯,叶冬.东海三定点周日海流观测的准调和分析.海洋科学.2007,31(8):18-25.
    101.王凯,占全安,施心慧.陆坡非旋转重力羽状流的数值模拟.海洋科学.2007,31(7):55-62.
    102.王凯,施心慧等.渤、黄、东海夏季环流的三维斜压模型.海洋与湖沼.2001,32(5):551-560
    103.王世俊,李春初,田向平.蕉门口发育演变及其对南沙港的影响.泥沙研究, 2004(3):59-63.
    104.王元叶,何青,程江,黄坚,张经.长江口床沙质与冲泻质划分的初步研究.泥沙研究,2004(1):43-49.
    105.吴加学,张叔英,任来法.长江口北槽抛泥流速和悬沙浓度时空分布观测.海洋学报,2003,25(4):91-103.
    106.吴自库,田纪伟,赵骞.南海潮波三维同化数值模拟.水动力学研究与进展:A辑,2004,19(4):501-506.
    107.肖尚斌,李安春.东海内陆架泥区沉积物的环境敏感粒度组分析.沉积学报, 2005,23(1):122-129.
    108.闫菊,王海,鲍献文.胶州湾三维潮流及潮致余环流的数值模拟.地球科学进展, 2001,16(2):172-177.
    109.杨景飞,方国洪.朝鲜海峡潮汐和潮流的数值计算.海洋与湖沼, 1987,18(2):197-207.
    110.杨连武,韩康.辽东湾顶极浅海潮流数值计算.水动力学研究与进展:A 辑, 1994(2):171-180.
    111.杨作升,郭志刚.黄东海陆架悬浮体向其东部深海区输送的宏观格局.海洋学报,1992,14(2):81-90.
    112.叶安乐,梅丽明.渤海东海潮波数值模拟.海洋与湖沼,1995,26(1):63-70.
    113.于克俊,方国洪.斜压海洋动力学的一种三维数值模式.地球科学进展, 1998,13(2):166-172.
    114.虞志英,樊社军.波流共同作用下废黄河河口水下三角洲地形演变预测模式. 海洋与湖沼,2002,33(6):583-590.
    115.张锦文,王骥.莱州湾海平面上升和潮差增大对工程设计标准的影响.海洋通报,1999,18(5):1-9.
    116.张士华,邓声贵.黄河水下三角洲沉积物输运及海底冲淤研究.海洋科学进展,2004,22(2):184-192.
    117.张心凤,蒋星科,徐峰俊.二维水沙模型在深圳港铜鼓航道选线研究中的应用. 水动力学研究与进展: A 辑,2004,18(z1):877-883.
    118.张学庆,孙英兰.胶南近岸海域三维潮流数值模拟.中国海洋大学学报, 2005,35(4):579-582.
    119.张越美,孙英兰.河口,陆架和海洋模式在胶州湾的应用.海洋环境科学, 2000,19(4):13-17.
    120.张越美,孙英兰.渤海湾三维变动边界潮流数值模拟.青岛海洋大学学报:自然科学版,2002,32(3):337-344.
    121. 赵 亮 , 魏 皓 , 赵 建 中 . 胶 州 湾 水 交 换 的 数 值 研 究 . 海 洋 与 湖 沼 , 2002,33(1):23-29.
    122.赵骞,田纪伟,曹丛华,王强.渤海、黄海、东海冬季海流场温度场数值模拟和同化技术.海洋学报,2005,27(1):1-6.
    123.周华君,李艳红.一种简洁有效的河道平面二维流动数值模型.水动力学研究与进展:A 辑,2003,18(1):115-120.
    124.周济福,李家春.河口混合与泥沙输运.力学学报,2000,32(5):523-531.
    125.周济福,王涛.径流与潮流对长江口泥沙输运的影响.水动力学研究与进展:A辑,1999,14(1):90-100.
    126.朱建荣,傅德健,吴辉,戚定满.河口最大浑浊带形成的动力模式和数值试验.海洋工程,2004,22(1):66-73.
    127.朱建荣,戚定满,肖成猷, 吴辉.径流量和海平面变化对河口最大浑浊带的影响.海洋学报,2004,26(5):12-22.
    128.朱建荣,吴辉,张衡,肖成猷.包括潮流作用的黄东海环流模式的开边界条件研究.自然科学进展,2004,14(6):689-693.
    129.朱建荣,杨陇慧,朱首贤.预估修正法对河口海岸海洋模式稳定性的提高.海洋与湖沼,2002,33(1):15-22.
    130.朱建荣,朱首贤.Ecom 模式的改进及在长江河口、杭州湾及邻近海区的应用. 海洋与湖沼,2003,34(4):364-374.
    131.朱首贤,丁平兴.杭州湾,长江口余流及其物质输运作用的模拟研究Ⅱ.冬季余流及其对物质的输运作用.海洋学报,2000,22(6):1-12.
    132.朱玉荣.潮流在长江三角洲形成发育过程中所起作用的探讨.海洋通报, 1999,18(2):1-10.
    133.朱志夏,韩其为.海岸悬沙运移数学模型.海洋学报,2002,24(1):101-107.
    134. 朱 志 尧 , 章 卫 胜 . 长 江 口 动 量 系 数 分 布 特 征 研 究 . 水 科 学 进 展 , 2003,14(3):354-357.
    135.左书华,李九发,万新宁,沈焕庭,付桂.长江河口悬沙浓度变化特征分析.泥沙研究,2006(3):68-75.
    136.Allen, J.S., P.A. Newberger, J. Federiuk. Upwelling Circulation on the Oregon Continental Shelf. J. Phys. Oceanogr., 1995, 35:1843-1889.
    137.Amos, C.L., Grant, J., Daborn, G.R., Black, K.. Sea Carousel–A Bentic, Annular Flume. Estuar. Coast. and Shelf Sci., 1992, 34:557-577.
    138 . Ariathuri, R., Krone.R.B. Finite Element Model for Cohesive Sediment Transport. ASCE, J. Hydr. Div., 1976, 102(3):323-338.
    139.Bagnold.R.A. An approach to the sediment transport problem from general physics, U S Geol Survey, Prof. Paper, 1996, 422.
    140.Bagnold.R.A. Experiments in a gravity-free dispersion of water flow, Proc., Royal Soc. London, Ser A, 1954. 225.
    141.Bagnold.R.A. The nature of saltation and of bedload transport in water, Proc., Royal Soc, London, Ser A, 1973, 332: 473-504.
    142.Bagnold.R.A. Bedload transport by natural rivers. Water Resources Research. 1977, 13(2): 303-312.
    143.Blumberg, A.F., G.L. Mellor. Diagnostic and Prognostic Numerical Circulation Studies of the South Atlantic Bight. J. Geophys. Res., 1983, 88: 4579-4592.
    144.Blumberg, A.F., G.L. Mellor. A Simulation of the Circulation in the Gulf of Mexico. Israel J. of Earth Sciences., 1985, 34:122-144.
    145.Blumberg, A.F., D.M.Goodrich. Modeling of Wind-Induced Destratification inChesapeake Bay. Estuaries., 1990, 13:1236-1249.
    146.Blumberg A.F., L.H. Kantha. Open Boundary Condition for Circulation Models. J. Hydraulic Engineering., 1985, 111:237-255.
    147.Burban P. Y., Y. Xu, J. McNeil., W. Lick. Settling Speeds of Flocs in Fresh and Sea Waters. J. Geophys. Res., 1990, 95(C10):18213-18220.
    148.Cao D, G. Fang. A Combined Numerical Tidal Model for the Hangzhou Bay and Qiantang River. Acta Oceanologica Sinica., 1989, 8(4):485-496.
    149.Cardenas, M., Gailani, J., Ziegler, C.K., Lick, W.. Sediment Transport in the Lower Saginaw River. Mar. Fresh. Res., 1995, 46:337-347.
    150.Chen, C., R.C. Beardsley, R. Limeburner. A Numerical Study of Stratified Tidal Rectification over Finite-Amplitude Banks. Part II: Georges Bank. J. Phys. Oceanogr., 1995, 25:2111 - 2128.
    151.Cheng, N. S. Simplified Settling Velocity Formula for Sediment Particle. ASCE J. Hydr. Engr.. 1997, 123:149-152.
    152.Choi B, G. Fang. A Review of Tidal Models for the East China and Yellow Seas. Journal of Korean Society of Coastal and Ocean Engineering, 1993, 5(2):151-171.
    153.Du T, G. Fang, X Fang. A Layered Numerical Model for Simulating the Generation and Propagation of Internal Tides over Continental Slope, II. Stability. Chinese Journal of Oceanology and Limnology., 1999, 17(3):252-257.
    154.Einstein.H. Formula for the transportation of bed load. Trans.Amer. S. Civil Engrs. 1942, 107: 561-597.
    155.Einstein.H.A. The bed load function for sediment transportation in open channel flows. U S Dept. Agri, Tech. Bull, 1950, 1026.
    156.Einstein.H.A., Ning Chien. Transport of sediment mixtures with large ranges of grain sizes. Missouri River Div.Sediment Series No 2. Missouri River Dir., U.S. Corps Engrs, 1953.
    157.Ezer, T., G.L. Mellor. A Numerical Study of the Variability and the Separation of the Gulf Stream, Induced by Surface Atmosphere Forcing and Lateral BoundaryFlows. J. Phys. Oceanogr., 1992, 22:660-682.
    158.Fang G, J.Yang. A Two-Dimensional Numerical Model of the Tidal Motions in the Bohai Sea Chinese Journal of Oceanology and Limnology, 1985, 3(2):135-152.
    159.Fang G, J.Yang. Numerical Computation of Tidal Currents in the Eastern and Southern Parts of the East China Sea Acta Oceanologica Sinica, 1988, 7(3):344-355.
    160.Fang G, J.Yang. Modeling and Prediction of Tidal Currents in the Korea Strait Progress in Oceanography, 1988, 21:307-308.
    161.Fang G, Y.Kwok, K.Yu, Y.Zhu. Numerical Simulation of Principal Tidal Constituents in the South China, Gulf of Tonkin and Gulf of Tailand Continental Shelf Research, 1999, 19:845-869.
    162.Fang Y, Q-H.Zhang, G.Fang. A Numerical Study on the Path and Origin of the Yellow Sea Warm Current. The Yellow Sea, 1997, 3(1/2):18-26.
    163.Gailani J., Lick W., Ziegler C.K., Endicott D. Development and Calibration of a Fine-Grained Sediment Transport Model for the Buffalo River. J. Great Lakes Res., 1996, 22:765-778.
    164.Gailani J., Ziegler C. K., Lick W. The Transport of Sediments in the Fox River. J. Great Lakes Res., 1991, 17:479-494.
    165.Galperin B., G.L. Mellor. A Time-Dependent, Three-Dimensional Model of the Delaware Bay and River System. Estuarine, Coastal Shelf Sci.,1990, 31:231-281
    166.Galperin B., L.H. Kantha, S. Hassid, A. Rosati. A Quasi-equilibrium Turbulent Energy Model for Geophysical Flows. J. Atmosph. Sci., 1988, 45:55-62.
    167.Garcia M., Parker G.. Entrainment of Bed Sediment into Suspension. ASCE J. Hydr. Engr., 1991, 117(4):414-435.
    168.Glenn S.M., Grant, W.D. A Suspended Sediment Stratification Correction for Combined Waves and Current Flows. J. Geophys. Res., 1987, 92(C8):8244-8264.
    169.Gilber. G.K. The Transportation of Debris by Running Waer. U.S.Geol.Sur. Porf.Paper, No.86, 1914.
    170.Graham D.I., James P.W., Jones T.E.R., Davies J.M., Delo E.A. Measurement and Prediction of Surface Shear Stress in Annular Flume. ASCE J. Hydr. Engr., 1992, 118(9):1270-1286.
    171.Grant W.D., Madsen O.S. Combined Wave and Current Interaction with a Rough Bottom. J. Geophys. Res., 1979, 84(C4):1797-1808.
    172.Hasselmann K., D. B. Ross, P. Muller, W. Sell. A Parametric Wave Prediction Model. J. Phys. Oceanogr., 1975, 6:200-228.
    173.Hawley N. Preliminary Observations of Sediment Erosion from a Bottom Resting Flume. J. Great Lakes Res., 1991, 17(3):361-367.
    174.Hayter E.J., Mehta A.J. Modeling Cohesive Sediment Transport in Estuarial Waters. Appl. Math. Model., 1986, 10:294-303.
    175.HEC-RAS. User’s manual of HEC-RAS river analysis system. USA: US Army Corps of Engineers Hydro logic.
    176.ISIS. ISIS river basin management software. UK: HR Wallingford, 1998
    177.Karim M.F, Holly F.M. Armoring and Sorting Simulation in Alluvial Rivers. ASCE J. Hydr. Engr., 1986, 112(8):705-715.
    178.Keith R Dyer. On Coastal and Estuarine Sediment Dynamics. Institute of Oceanographic Science, Bidston, UK , 1980, 72-73.
    179.Large W.G., S. Pond. Sensible and Latent Heat Flux Measurements over the Ocean. J. Phys. Oceanogr., 1982, 12:464-482.
    180.Li H, G.Fang. A Vertical Coordinate Tranformation for 3-D Numerical Modeling of Ocean Circulation. Chinese Journal of Oceanology and Limnology, 1995, 13(1):31-42.
    181.Lick W., Y. Xu, J. McNeil. Resuspension Properties of Sediments from the Fox, Saginaw, and Buffalo Rivers. J. Great Lakes Res., 1995, 21(2):257-274.
    182.Lick W., Lick J., Ziegler C.K. The Resuspension and Transport of Fine-Grained Sediments in Lake Erie. J. Great Lakes Res., 1994, 20(4):599-612.
    183.MacIntyre S., Lick W., Tsai C.H. Variability of Entrainment of Cohesive Sediments in Freshwater. Biogeochemistry., 1990, 9:187-209.
    184.Madala R.V., S.A. Piacsek. A Semi-Implicit Numerical Model for Baroclinic Oceans. J. Comput. Phys., 1997, 23:167-178.
    185.Mehta A.J., Partheniades E. An Investigation of the Depositional Properties of Flocculated Fine Sediments. J. Hydr. Res., 1975, 12(4):361-381.
    186.Mehta A J. On estuarine cohesive sediment suspension behavior, J.G.R., 1989, 95(C10) : 14303~14314.
    187.Mellor G.L., T. Yamada. Development of a Turbulence Closure Model for Geophysical Fluid Problems. Rev. Geophys. Space Phys., 1982, 20:851-875.
    188.Mellor G.L., A.F. Blumberg. Modeling Vertical and Horizontal Viscosity and the Sigma Coordinate System. Mon. Wea. Rev., 1985, 113:1379-1383.
    189.MIKE. MIKE 11: manualⅠ and Ⅱ . Danish: Danish Hydraulic Institute, 1989.
    190.Oey L.-Y., G.L. Mellor, R.I. Hires. Tidal Modeling of the Hudson-Raritan Estuary. Estuarine Coastal Shelf Sci., 1985a, 20:511-527.
    191.Oey L.-Y., G.L. Mellor, R.I. Hires. A Three Dimensional Simulation of the Hudson-Raritan Estuary. Part I: Description of the Model and Model Simulations. J. Phys. Oceangr., 1985b, 15:1676-1692.
    192.Oey L.-Y., G.L. Mellor, R.I. Hires. A Three Dimensional Simulation of the Hudson-Raritan Estuary. Part II: Comparison With Observations. J. Phys. Oceangr., 1985c, 15:1693-1709.
    193.Oey L.-Y, G.L. Mellor, R.I. Hires. A Three-Dimensional Simulation of the Hudson-Raritan Estuary, Part III: Salt Flux Analyses. J. Phys. Oceanogr., 1985d, 15: 1711-1720.
    194.Parchure T.M., Mehta, A.J. Erosion of Soft Cohesive Sediment Deposits. ASCE J. Hydr. Engr., 1985, 111(10):1308-1326.
    195.Phillips N.A. A Coordinate System Having Some Special Advantages for Numerical Forecasting. J. Meteorol., 1957, 14:184-185.
    196.Resio D. T., W. Perrie. Implication of an f -4 Equilibrium Range for Windgenerated Waves. J. Phys. Oceanography., 1989, 19:193-204.
    197.Schwab D.J., J.R. Bennett, P.C. Liu, M.A. Donelan. Application of a Simple Numerical Wave Prediction Model to Lake Erie. J. Geophys. Res., 1984, 89(C3): 3586-3592.
    198.SED ICOUP. Code subief de calcul de transport de sediments en suspension methode.et essays numeriques. France: Department Laboratoire National d’Hydraulique, 1993.
    199.Shrestha P. L., G. T. Orlob. Multiphase Distribution of Cohesive Sediments and Heavy Metals in Estuarine Systems. ASCE, J. of Environ. Engrg., 1996,122(8): 730-740.
    200.Simons T.J. Verification of Numerical Models of Lake Ontario, Part I. Circulation in Spring and Early Summer. J. Phys. Oceanogr., 1974, 4:507-523.
    201.Smagorinsky J. General Circulation Experiments with the Primitive Equations, I. The Basic Experiment. Mon. Weather Rev., 1963, 91:99-164.
    202.Smolarkiewicz P.K., W.W. Grabowski. The Multidimensional Positive Definite Advection Transport algoritym: Nonoscillatory Opinion. J. Comp. Phys., 1990, 86:355-375.
    203 . Smolarkiewicz P.K., T.L. Clark. The Multidimensional Positive Definite Advection Transport algoritym: Further Development and applications. J. Comp. Phys., 1986, 67:396-438.
    204.Smolarkiewicz P.K. A fully Multidimensional Positive Definite Advection Transport Algoritym with Small Implicit Diffusion. J. Comp. Phys., 1984, 54:325-362.
    205.Tsai C.H., Lick W. Resuspension of Sediments from Long Island Sound. Wat. Sci. Tech., 1987, 21(6/7):155-184.
    206.Van Niekerk A., Vogel K.R., Slingerland R.L., Bridge J.S. Routing of Heterogeneous Sediments over Movable Bed: Model Development. ASCE J. Hydr.Engr., 1992, 118(2):246-279.
    207.Van Rijn L.C. Sediment Transport, Part II: Suspended Load Transport. ASCE J. Hydr. Engr., 1984, 110(11):1613-1638.
    208.Van Rijn. L.C., Nieuwjaar M.W.C., Van der Kaay T., Nap E. Transport of Fine Sands by Currents and Waves. ASCE J. Hydr. Engr., 1993, 119(2):123-143.
    209.Wang J, G. Fang. The Extraction of Harmonic Tidal Constants from High and Low Water Chinese Journal of Oceanology and Limnology., 1986, 5(3):228-240.
    210.Ziegler C.K., Nisbet B.S. Long-Term Simulation of Fine-Grained Sediment Transport in Large Reservoir. ASCE J. Hyd. Engr., 1995, 121 (11):773-781.
    211.Ziegler C.K., Nisbet B.S. Fine-Grained Sediment Transport in Pawtuxet River, Rhode Island. ASCE J. Hyd. Engr., 1994, 120(5):561-576.
    212.Zhu Jianrong. Dynamic mechanism of the upwelling on the west side of the submerged river valley off the Changjiang mouth in summertime2003. Chinese science bulleting. 2003, l48 (24): 2754-2758.
    213 . Zhu Jianrong, Chen Changsheng . Prognostic Modeling Studies of the Keweenaw Current in Lake Superior. Part II: Simulation. J. P. O. 2001(31).
    214.Zhu Jianrong, Peter A. WildererEffect of extended idle conditions on structure and activity of granular activated sludge. Water Research, 2003(37): 2013–2018.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700