用户名: 密码: 验证码:
黄河口及其邻近海域泥沙输运及其动力地貌过程
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
黄河1855年入渤海形成了巨大的扇形堆积体——黄河三角洲,在过去的150多年里,由于人为或者自然原因,黄河在三角洲上频繁决口改道,流路变迁,且每次改道入海泥沙都会在河口处形成大沙嘴,废弃后在海洋动力作用下不断蚀退,黄河三角洲发育演变是陆海相互作用的结果。经过60多年的发育,黄河口及其邻近海域逐渐形成了不同水动力控制的演变体系,即现行河口属于河控型,废弃刁口河口和神仙沟属于波流控制型。不同海域由于动力控制体系不同,其泥沙输运以及沉积动力过程具有明显差异,另外,20世纪80年代以来由于全球变化引起黄河流域降水量减少,流域人类活动增强,导致黄河入海水沙锐减,这些因素导致了该区域动力地貌过程明显的时空变化特征。
     本文基于2004到2011年黄河口及其邻近海域多次水文泥沙同步观测资料、悬沙、表层沉积物及短柱样等大面积采样数据,系统地研究了黄河口及其邻近海域动力沉积特征、沉积环境、悬沙输移扩散过程及其动力机制,并结合研究区域不同时期岸线、卫星遥感数据以及水下三角洲地形数据分析了该区域动力地貌演变时空变化规律,探讨了入海泥沙扩散、海岸带泥沙输运和沉积动力等过程对海岸冲淤演化的控制效应,揭示了海岸冲淤演变对泥沙输运的响应机制,结果表明:
     黄河口及其邻近海域表层沉积物以粘土质粉砂为主,还包括砂、粉砂质砂、砂质粉砂、粉砂以及粉砂质粘土等类型,且大致以5m等深线为界,其以浅区域砂组分含量较多,以深区域粉砂和粘土组分含量增多;由于受到波浪和潮流冲刷和分选作用,从近岸向海侧表层沉积物粒径大体呈细化趋势;从该区域表层沉积物时间变化来看,研究区域内表层沉积物中粉砂组分含量增多,粘土、砂组分含量减少,整体来说,近岸表层沉积物粒径变粗,而深水区沉积物粒径变细。运用端元分析模型从动力组分的角度反演了研究区域内的沉积环境,从各海域反演结果来看,三端元模型基本可以反映各海域的沉积动力环境,各海域端元分布大体与表层沉积物中粘土、粉砂、砂组分含量分布基本一致,在不同海域代表了不同动力组分。
     从研究区域水动力分布来看,在刁口河到神仙沟海域,十八井外海域实测潮流流速较大,刁口河外和五号桩外实测潮流流速相对较小,十八井外和五号桩外海域欧拉余流和拉格朗日余流较大,刁口河外斯托克斯余流较大;在孤东到现行河口海域,河口处潮流流速较大,孤东海域较小;孤东海域欧拉余流和拉格朗日余流较大,而河口区斯托克斯余流较大。各海域余流引起的单宽净输水量分布与其拉格朗日余流分布相对应。
     从研究区域悬沙分布及其输运过程来看,在刁口河到神仙沟海域,刁口河外水体含沙量最高,五号桩外最低;由于近岸波浪动力作用泥沙运动活跃,近岸水体含沙量高,深水区水体含沙量较底,另外,局部区域在潮流作用下会发生底沙再悬浮现象,但持续时间较短;在孤东到现行河口海域,河口水体含沙量较高,孤东水体含沙量相对较少,由于河口区域潮流流速较大,存在潮流作用下底沙再悬浮现象,而孤东海域再悬浮能力较弱。对比调水调沙期、后河口水动力和悬沙输运特征,调水调沙过程加强了河口落潮动力,抑制了涨潮动力,促进了河口切变锋的发育,并且由于大量淡水入海,加大了河口盐度垂向梯度,分层现象明显;调水调沙期间河口悬沙浓度较大,在输移过程中以沉降作用为主,河口以淤积为主,而调水调沙结束后悬沙浓度降低幅度较大,且与流速大小成正比,泥沙再悬浮作用较强。在黄河三角洲滨海区悬沙输运过程中,平流输沙、潮汐捕集输沙、垂向净环流输沙为主要的输沙因子,且平流输沙起主导作用,但不同区域各种输沙因子作用程度略有不同。
     黄河三角洲岸线变化主要受行水河口、入海水沙、海洋动力及人类活动的影响,在大部分区域岸线变化受到入海水沙和海洋动力间的制衡作用,而在局部区域由于人工护岸大堤的建设以及围海造田、滩涂养殖、建造虾池鱼池和盐田等人类活动的开展,这些岸段岸线变化缓慢甚至出现土地面积增加。研究区域水下三角洲地貌演变具有明显的时空变化特征,即空间上表现出地域性和转换性,时间上表现出阶段性,总体来讲,研究区域水下三角洲北部侵蚀速率和南部淤积速率均减缓,逐渐向冲淤动态平衡状态发展。
     黄河三角洲动力地貌演变与入海泥沙、泥沙输运及沉积动力过程息息相关。在废弃的刁口河和神仙沟水下三角洲主要受到波浪、潮流等海洋动力的影响,近岸区域,波浪扰动作用强烈,泥沙运动活跃,造成近岸水下岸坡侵蚀强烈,再悬浮的泥沙在潮流作用下离岸向深水区域输运,使深水区域处于淤积状态;在现行河口,入海泥沙和泥沙输运对河口水下三角洲的演变产生重要影响,入海径流带来大量泥沙在河口处淤积,造成水下三角洲特别是前坡段淤积严重,由于河口存在切变锋的阻挡作用,入海泥沙主要在近岸区域特别是10m等深线以浅区域淤积,部分悬浮泥沙在余流的作用下向西北方向输运;老河口处由于遭到废弃,水下岸坡在波浪作用下不断受到侵蚀。
The Yellow River delta was developed by the sediment load delivered by Yellow River into Bohai Sea since1855. Due to the human activities or natural causes, the Yellow River course was shifted frequently in the delta over the past150years. In different distributary course, the Yellow River sediment into the sea built up the large sand spit in the estuary. Once abandoned, the sand spit was eroded by ocean dynamic. It can be inferred that the evolution of the Yellow River delta was the result of interaction between land and ocean. The Yellow River estuary and its adjacent sea are controlled by different water dynamic with development since1953. The present estuary was river-dominated, and the Diaokou and Shenxian promontories are wave-tide-dominated. Therefore, the process of sediment transport and sediment dynamic is different in different sea area, what's more, the sediment load delivered into the sea decrease dramatically since1980s due to the human activities and decrease in basin precipitation. These factors resulted in the spatial and temporal variability of dynamic morphology evolution.
     The hydrological and sediment observations were conducted in the Yellow River estuary and its adjacent sea, and the samples of suspended sediment, surface sediment and short length core were collected in the sea area form2004to2011. Base on these data, the dynamic sediment characteristic, sediment environment, transport process of suspended sediment and its dynamic mechanism were studied systematically in the Yellow River estuary and its adjacent sea. Additionally, the spatial and temporal characteristics of morphology evolution in the study area were analyzed based on the satellite remote data of modern Yellow River delta and the bathymetry data in the subaquatic delta. Furthermore, the controlling effects of sediment diffusion into the sea, sediment transport in coastal area and sediment dynamic process on the evolution of coast in the study area. These results can be concluded as follows:
     The surface sediment type is dominated by clayey silt in the study area. The content of sand is more in the area above~5m isobaths, and the contents of silt and clay are more in the area below~5m isobaths. Because of scouring and sorting by wave and tide, the grain size decreases from shore side to ocean side. As to the temporal change of surface sediment in the study area, the silt fraction increase but both clay and sand fraction decrease with time gonging on. In all, the grain size of surface sediment in the shore side increases, and the grain size in the deep water area decrease with time. The sediment environment was studied by method of End member model in the respective of dynamic component. The results indicate that three end members can reflect the sediment dynamic environment in study area. The distribution of end members in study area corresponds to the distribution of clay, silt and sand faction, and the end member represents different dynamic component in different sea area.
     From the respective of distribution of water dynamic in the sea area from Diaokouhe to Shenxiangou, the tide velocity is bigger in the sea area off Shibajing, and it is relative small in the sea area off Diaokouhe and Wuhaozhuang. The residual current of Euler and Lagrange is bigger in the sea area off Shibajing and Diaokouhe, and the residual current of Stokes is bigger in the sea area off Diaokouhe. As to the sea area from Gudong to present estuary, the tide velocity and the residual current of Stokes is big in the present estuary, and the tide velocity and residual current of Euler and Lagrange is small in the sea area off Gudong. The distribution of net water flux per width is consistent with the distribution of residual current of Lagrange in the study area.
     From the respective of the distribution of suspended sediment in the sea area from Diaokouhe to Shenxiangou, the suspended sediment concentration was high in the sea off Diaokouhe and Shibajing, and suspended sediment concentration was low in the sea off Wuhaozhuang. And the suspended sediment concentration was high in the shallow water and low in the depth water because the influence of wave dynamic on surface sediment is strong in the shallow water. Additionally, the surface sediment resuspends under the influence of tide current in this sea area, but the last time of resuspension is short. As to the sea area from Gudong to present estuary, suspended sediment concentration is high in the present estuary and low in the sea area off Gudong. And the sediment resuspension occurs in the present estuary because of big tide velocity, but the capability of sediment resuspension is weak under the influence of tide current. The hydrodynamics and transport process of suspended sediment is analyzed with comparing their characteristics in and after the water-sediment regulation period in July,2009. The results show that the process of water-sediment regulation intensifies the ebb dynamics but weakens the flood dynamics, and facilitates the formation of tidal shear front. And during the period of water-sediment regulation, the vertical salinity gradient increases and the water stratification is evident in the estuary; additionally, the suspended sediment concentration is high, and the sedimentation process is dominant in the transport process of the suspended sediment. After the water-sediment regulation, the suspended sediment concentration decreases greatly and is in direct proportion to current velocity; what's more, the sediment re-suspension is predominant in the process of suspended sediment transport. Furthermore, during the transport process of suspended sediment in the study area, the sediment transportation by advection current, tidal trapping and net vertical circumfluence is remarkable, and the advection current plays in key role in the sediment transportation, but the influence degree of these factors is different in different sea area.
     The change of coastline of Yellow River delta was influenced by estuary, water discharge and sediment load into the sea, ocean dynamic and human activities. The change of coastline of most area in the delta is result of interaction between sediment load into the sea and ocean dynamic. Otherwise, the coastline in some area change slowly because the construction of levee protecting the alongshore, and it extend towards sea due to the human activities including the enclosing tideland for cultivation and building shrimp and fish ponds and salt fields. The spatial and temporal changes of evolution of subaqueous delta are clear. The spatial change is characteristic of regional and switching between scouring and silitation, and the temporal change is characteristic of phase nature. In all, both the erosion rate in the north area of subaqueous delta and silitation rate in the south area decrease with time, and the evolution of subaqueous delta have been developing into dynamic equilibrium of scouring and silitation.
     The evolution of dynamic morphology of the Yellow River delta is influenced by the sediment into sea, sediment transport and sediment dynamic process. In the abandoned Diaokouhe and Shenxiangou area, the evolution of subaqueous delta is mainly shaped by wave and tide current. In the alongshore area, the movement of sediment is actively because of strong disturbance of wave dynamic, resulting in the strong erosion of slope below water; the resuspension sediment is transported by tide current towards depth water, causing the silitation in the depth water. The evolution of subaqueous delta in the present estuary is influenced by the sediment delivered by river into sea and sediment diffusion. Large amount of sediment delivered by Yellow River into the sea is deposited in the estuary, resulting in the strong silitation in the subaqueous delta especially in the front slope. Because the barrier effects of tidal shear front in the present estuary, the sediment delivered into the sea is mainly deposited in the sea area above~10m isobaths, and some suspended sediment diffuses northwestern under influence of residual current; in the abandoned old estuary, the subaqueous delta is eroded by wave dynamic.
引文
Bernabou, A.M., Medial, R., Vidal, C.A.,2003.Morphological mode of the beach profile integrating wave and tidal influences[J]. Marine Geology,197:95-116.
    Bi, N.S., Yang, Z.S., Wang H.J., et al.,2010. Sediment dispersion pattern off the present Huanghe (Yellow River) subdelta and its dynamic mechanism during normal river discharge period [J]. Estuarine, Coastal and Shelf Science,86:352-362.
    Blair, T.C., McPherson, J.G.,1999.Grain-size and textural classification of coarse sedimentary particles [J].Journal of Sedimentary Research,69:6-19.
    Blewett, O., Huntley, D.,1998. Measurement of suspended sediment transport processes in shallow water off the Holderness Coast, UK [J]. Marine Pollution Bulletin,37:134-143.
    Cacchione, D.A., Drake, D.E., Kayen, R.W.,1995.Measurements in the bottom boundary subaqueous delta layer on the Amazon [J]. Marine Geology,25:235-257.
    Calliari, L.J., Wlnterwerp, J.C., Ernandes, E.F, et al.,2009.Fine grain sediment transport and deposition in the Patos Lagoon-Cassino beach sedimentary system [J]. Continental Shelf Research, 29:515-529.
    Carriquiry, J. D., Sanchez, A.,1999. Sedimentation in the Colorado River delta and upper gulf of California after nearly a century of discharge loss [J]. Marine Geology,158:125-145.
    Cui, B.L., Li, X.Y.,2011. Coastline change of the Yellow River estuary and its response to the sediment and runoff (1976-2005) [J].Geomorphology,127:32-40.
    Currana, K.J., Hilla, P.S., Milligan, T.G.,2007. Settling velocity, effective density, and mass composition of suspended sediment in a coastal bottom boundary layer, Gulf of Lions, France [J].Continental Shelf Research,27:1408-1421.
    Dam, J.A.V., Weltje, G.J.,1999.Reconstruction of the Late Miocene climate of Spain using rodent palaeocommunity successions:an application of end-member modeling [J].Palaeogeography, Palaeoclimatology, Palaeoecology,151:267-305.
    EAST, T.J,1985. A factor analytic approach to t he identification of geomorphic processes from soil particle size characteristics [J].Earth Surface Processes and Landforms,10:441-463.
    Fanos, A. M.,1995. The impacts of human activities on the erosion and accretion of the Nile Delta cost [J]. Journal of Coastal Research,11 (3):821-833.
    Flemming, B.W.,2000.A revised textural classification of gravel-free muddy sediments on the basis of ternary diagrams [J]. Continental Shelf Research,20:1125-1137.
    Folk, R.L.,1954. The distinction between grain size and mineral composition in sedimentary-rock nomenclature [J]. Journal of Geology,62:344-359.
    Folk, R. L., Ward, W.,1957. Brazos River bar:A study in the significance of grain size parameters [J]. Journal of Sedimentary Petrology,27(1):3-26.
    Friedman, G.M.,1979.Differences in size distribution of populations of particles among sands of various origins [J].Sedimentary,26:3-32.
    Friendrichs, C.T., Wright L.D, and 2004.Gravity-drvien sediment transport on the continental shelf:implications for equilibrium profiles near river mouth [J]. Costal Engineering,51:759-811.
    Gao, S., Collins, M.,1991. A critique of the"McLaren Method"for defining sediment transport paths [J]. Journal of Sedimentary Petrology,61:143-146.
    Gao, S., Collins, M.,1992.Net sediment transport patterns inferred from grain-size trends, based upon definition of Transport Vectors" [J]. Sedimentary Geology,80:47-60.
    Gao, S., Collins, M.,1994.Analysis of grain size trends for defining sediment transport pathways in marine environments [J]. Journal of Coastal Research,10(1):70-78.
    Goldstein, S.,1929.The steady flow of viscous fluid past a fixed spherical obstacle at small reynolds Numbers[J]. Pro. Royal Soc.London, Ser.A,123:225-235.
    Greenwood, B., Aagaard,T., Nielsen,J.,2004.Swash Bar Morphodynamics in the Danish Wadden Sea:Sand Bed Oscillations and Suspended Sediment Flux during an Accretionary Phase of the Foreshore Cycle Geografisk Tidsskrift Danish[J]. Journal of Geography,104(1):15-30.
    Grinsted,A., Moore,J.C., Jevrejeva,S.,2004, Application of the cross wavelet transform and wavelet coherence to geophysical time series[J]. Nonlin. Proc. Geophys.,11:561-566.
    Hamann,Y., Ehrmann,W, Schmiedl,G. et al,2008. Sedimentation processes in the Eastern Mediterranean Sea during the Late Glacial and Holocene revealed by end-member modelling of the terrigenous fraction in marine sediments [J]. Marine Geology,24897-114.
    Hansen, D.V, Rattray, M., New dimensions in estuary classification [J].Limnology and Oceanography,1966,11:310-326.
    Holmedal, L. E., Myrhaug, D.,2004. Bed load transport under irregular waves plus current from Monte Carlo simulations of parameterized models with application to ripple migration rates observed in the field [J]. Coastal Engineering,51:155-172.
    Holz, C., Stuut, J.W., Henrich, R.,2004.Terrigenous sedimentation processes along the continental margin off NW Africa:implications from grain-size analysis of seabed sediments [J].Sedimentology,51,1145-1154.
    Holz, C., Stuut, J.W., Henrich, R., et al,2007.Variability in terrigenous sedimentation processes off northwest Africa and its relation to climate changes:Inferences from grain-size distributions of Holocene marine sediment record [J]. Sedimentary Geology,202:499-508.
    Huang, H., Fan, H.,2004. Monitoring changes of near-shore zones in the Huanghe (Yellow River) delta since 1976[J]. Oceanologia et Liminologia Sinica,35:306-314.
    Huang, N.E., Shen, Z., Long, S.R., et al.,1998.The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis [J]. Proceedings of the Royal Society of Land A,454:903-955.
    Jay, D.A., Geyer, W. R., Uncles, R.J., et al.,1997. A review of recent development in estuarine scalar flux estimation [J]. Estuaries,20(2):262-280.
    Jimenez, J. A., Sanchez-Arcilla, A., Valdemoro, H. I.,1997. Processes reshaping the Ebro delta [J]. Marine Geology,144:59-79.
    John, P.,2001.Coastal management and sea-level rise [J]. Catena,42:307-322.
    Klovan, J.E.,1966. The use of factor analysis in determining depositional environments from grain size distributions [J]. Journal of Sedimentary Petrology,36 (1):115-125.
    Leussen, W.,1999.The variability of settling velocities of suspended fine-grained sediment in the Ems estuary [J]. Journal of Sea Research,41:109-118.
    Li, G., Yang, Z., Yue, S., et al.,2001. Sedimentation in the shear front off the Yellow River Mouth [J].Continental Shelf Research,21:607-625.
    Li, G.X. Wei, H.L., Han, Y.S., et al.,1998a. Sedimentation in the Yellow River delta, part Ⅰ: flow and suspended sediment structure in the upper distributary and the estuary [J]. Marine Geology,149:93-111.
    Li, G.X., Wei, H.L., Yue, S.H., et al.,1998b. Sedimentation in the Yellow River delta, part Ⅱ: suspended sediment dispersal and deposition on the subaqueous delta [J]. Marine Geology, 149:113-131.
    Li, G.X., Zhuang K.L., Wei H.L.,2000. Sedimentation in the Yellow River delta, Part III: Seabed erosion and diapirism in the abandoned subaqueous delta lobe [J]. Marine Geology, 168,129-144.
    Liu X.Q, Dong H.L., Yang X.D., et al,2009. Late Holocene forcing of the Asian winter and summer monsoon as evidenced by proxy records from the northern Qinghai-Tibetan Plateau[J]. Earth and Planetary Science Letters,280:276-284.
    Liu Z.F., Christine L.L.,2007. Sedimentary responses to the Pleistocene climatic variations recorded in the South China Sea [J]. Quaternary Research,68:162-172.
    Liu, C.M., Zheng, H.X.,2004. Changes in components of the hydrological cycle in the Yellow River basin during the second half of the 20th century [J]. Hydrological Processes,18 (12):2337-2345.
    Liu, F., Chen, S.L., Peng, J. et al.,2011. Temporal variability of water discharge and sediment load of the Yellow River into the sea during 1950-2008[J]. Journal of Geographical Sciences, 21(6):1047-1061.
    Liu, H., He, Q., Wang, Z.B.,2010. Dynamics and spatial variability of near-bottom sediment exchange in the Yangtze Estuary, China [J]. Estuarine, Coastal and Shelf Science,86:322-330.
    Maarten, G.., Kleinhans, G.,2006.Bed load transport on the shoreface by currents and waves [J]. Coastal Engineering,53:983-996.
    McLaren, P.,1981.An interpretation of trends in grain-size measurements [J]. Journal of Sedimentary Petrology,51:611-624.
    McLaren, P., Bowles, D.,1985.The effects of sediment transport on grain-size distributions [J]. Journal of Sedimentary Petrology,55:457-470.
    Mcmanus J. Grain size determination and interpretation[M]. Techniques in Sedimentology, Oxford:Backwell,1988,63-85.
    Michael, K.,2002. Using remote sensing data to detect seal level change. Pecora 15/Land Satellite Information Ⅳ/ISPRS Commission Ⅰ/FIEOS Conference Proceedings.
    Oseen, C.W.,1927. "Neuere Methoden und Ergebnisse in der Hydrodynamik",Akademische Verlagsgesellschaft, Leipzig.
    Palanquesa, A., Puiga P., Guillemin J., et al.,2002.Near-bottom suspended sediment fluxes on the microtidal low-energy Ebro continental shelf (NW Mediterranean) [J].Continental Shelf Research,22:285-303.
    Pedreros, R., Howa, H.L., Michel, D.,1996. Application of grain size trend analysis for the determination of sediment transport pathways in intertidal areas [J]. Marine Geology,135:35-49.
    Pejrup, M.,1988.The triangular diagram used for classification of estuarine sediments:a new approach [A]. In tide-influenced sedimentary environments and facies (de Boer, P.L., van Gelder, A.,Nio, S.D., editors) [C]. Reidel, Dordrecht, pp.289-300.
    Peng, J., Chen, S.L., Dong, P.,2010. Temporal variation of sediment load in the Yellow River basin, China, and its impacts on the lower reaches and the river delta [J]. Catena,83:135-147.
    Pino, Q.M., Perillo, G.M.E., Santamarina, P,1994. Residual fluxes in a cross-section of the Valdivia River Estuary, Chile [J]. Estuarine Coastal and shelf Science,38:491-605.
    Poizot, E., Mear, Y., Thomas, M., et al.,2006. The application of geostatistics in defining the characteristic distance for grain size trend analysis [J]. Computers & Geosciences,32(3),360-370.
    Prins, M. A., Vriend, M.,2007, Glacial and interglacial eolian dust dispersal patterns across the Chinese Loess Plateau inferred from decomposed loess grain-size records [J].Geochem. Geophys. Geosyst.8, Q07Q05, doi:10.1029/2006GC001563.
    Prins, M.A., Postma, G., Weltje, G.J.,2000.Controls on terrigenous sediment supply to the Arabian Sea during the late Quaternary:the Makran continental slope [J]. Marine Geology, 169:351-371.
    Qiao S.Q., Shi X.F., Zhu A.M.,2010. Distribution and transport of suspended sediments off the Yellow River (Huanghe) mouth and the nearby Bohai Sea [J].Estuarine, Coastal and Shelf Science,86:337-344.
    Qiao, L.L., Bao, X.W.,Wu, D.X., et al.,2008.Numerical study of generation of the tidal shear front off the Yellow River mouth[J]. Continental Shelf Research,28:1782-1790.
    Ramaswamy,V., Rao, P.S., Rao, K.H.,2004.Tidal influence on suspended sediment distribution and dispersal in the northern Andaman Sea and Gulf of Martaban[J]. Marine Geology, 208:33-42.
    Reineck, H.E., Siefert, W.,1980. Faktorender Schlickbildung im Sahlenburger Watt und Neuwerker Watt[J].Die KuK ste,35:26-51.
    Rodgers, J.,1950. The nomenclature and classification of sedimentary rocks [J]. American Journal of Science,248:297-311.
    Rouse, H.,1946. Elementary Mechanics of Fluids[J]. John Wiley and Sons,235-250.
    Rubey, W.W.,1933.Settling Velocities of Gravel, sand, and silt particles [J]. Amer.J.Sci, 25(148):325-338.
    Sebastien B., Christophe C., Alain T., et al,1987. Discrimination of grain2size subpopulations in pyroclastic deposits [J]. Journal of Geology,15:367-370.
    Shepard, F.P,1954.Nomencalature based on sand-silt-clay ratios [J]. Journal of sedimentary Petrology,24,151-158.
    Shi, Z.,2004. Behavior of fine suspended sediment at the North passage of the Changjiang Estuary, China [J]. Journal of Hydrology,293:180-190.
    Shiiiihs, M., Komar, P.D.,1994. Sediment beach morphology and sea cliff erosion within an Oregon coast littoral cell [J]. Journal of Coastal Research,10:144-157.
    Sternberg, R.W., Creager, J.S.,1965.An instrument system to measure boundary-layer conditions at the sea floor [J]. Marine Geology,3:475-482.
    Stokes, G.G.,1851.On the effect of the internal friction of fluid on the motion of pendulums, trans [J].Cambridge philo.Soc.,9(2):8-106.
    Sun, D.H., Bloemendal, J, Read, K, et al,2002. Grain2size dist ribution function of polymodal sediment s in hydraulic and aeolian environments and numerical partitioning of the sedimentary components [J]. Sedimentary Geology,152:263-277.
    Syvitski, J.P.M, Kettner, A.J., Harmon, M.T., et al.,2009. Sinking deltas due to human activities [J]. Nature Geoscience,2:681-689. doi:10.1038/ngeo629.
    Syvitski, J.P.M, Saito, Y,2007. Morphodynamics of deltas under the influence of humans [J]. Global and Planetary Change,57:261-282. doi:10.1016/j.gloplacha.2006.12.001.
    Talkea, S.A., Stacey, M.T.,2008.Suspended sediment fluxes at an intertidal flat:The shifting influence of wave, wind, tidal, and freshwater forcing [J]. Continental Shelf Research, 28(6):710-725.
    Torrence C, Compo G P. A practical guide to wavelet analysis [J]. Bull. Amer. Meteor. Soc., 1998,79(1):61-78.
    Wan, S.M., Li, A.C., Peter, D., et al,2007. Development of the East Asian monsoon: Mineralogical and sedimentologic records in the northern South China Sea since 20 Ma[J]. Palaeogeography, Palaeoclimatology, Palaeoecology,254:561-582.
    Wang, H.J, Yang, Z.S., Saito, Y., et al.,2007. Stepwise decreases of the Huanghe (Yellow River) sediment load (1950-2005):impacts of climate changes and human activities [J]. Global and Planetary Change,57 (3-4):331-354.
    Wang, H.J., Bi, N.S., Saito, Y., et al.,2010. Recent changes in sediment delivery by the Huanghe (Yellow River) to the sea:Causes and environmental implications in its estuary [J]. Journal of Hydrology,391:302-313. doi:10.1016/j.jhydrol.2010.07.030
    Wang, H.J., Yang Z.S., Li Y.H.,2007. Dispersal pattern of suspended sediment in the shear frontal zone off the Huanghe (Yellow River) mouth [J]. Continental Shelf Research,27:854-871.
    Wang, H.J., Yang, Z.S., Saito, Y., et al.,2006. Interannual and seasonal variation of the Huanghe (Yellow River) water discharge over the past 50 years:Connections to impacts from ENSO events and dams [J]. Global and Planetary Change,50:212-225.
    Wang, Z.H., Li, L.Q., Chen, D.C.,2007.Plume front and suspended sediment dispersal off the Yangtze (Changjiang) River mouth, China during non-flood season[J].Estuarine, Coastal and Shelf Science,71:60-67.
    Weltje, G.J., Prins, M.,2003. Muddled or mixed? Inferring palaeoclimate from size dist ributions of deep2sea clastics [J].Sedimentary Geology,162:39-62.
    Weltje, G.J.,1997. End-member modelling of compositional data:Numerical-statistical algorithms for solving the explicit mixing problem [J]. Journal of Mathematical Geology,29, 503-549.
    Weltje, G.J., Prins, M.,2007. Genetically meaningful decomposition of grain-size distributions [J]. Sedimentary Geology,202:409-424.
    Wiseman, W. J., Fan,Y. B.,Bornhold, B. D.,1986. Suspended sediment advection by tidal currents off the Huanghe(Yellow River)delta [J].Geo-Marine Letters,6:115-120.
    Wright, L. D.,Yang, Z.S., Bornhold, B.D., et al,1986. Hyperpycnal plumes and plume fronts over the Huanghe(Yellow River)delta front[J].Geo-Marine Letters,6(2):97-105.
    Wright, L..D, Wiseman, W.J., Yang, Z.S., et al,1990. Processes of Marine Dispersal and Deposition of Suspended Silts off the Modern Mouth of the Huanghe (Yellow River) [J].Continental Shelf Research CSHRDZ,10(1):1-40.
    Wright, L.D., Boon,J.D.,Kim, et al.,1991.Modes of Cross shore sediment transport on the shoreface of the Middle Atlantie Bight[J]. Mar.Geolog.96:19-52.
    Wright, L.D., Short, A.D,1984. Morphodynamic variability of surf zones and beaches:a synthesis [J]. Marine Geology 56, pp 93-118.
    Wright, L.D., Thom, B.G,1977. Costal depositional landforms:a morphodynamic approach [J]. Progress in Physical Geography 1, pp.412-459.
    Wright, L.D., Wiseman, W.J., Bornhold, B.D., et al.,1988.Marine dispersal and deposition of Yellow River silts by gravity-driven underflows[J].Nature,332(6165):629-632.
    Wu J.X., Wang, Y.H., Cheng H.Q.,2009.Bedforms and bed material transport pathways in the Changjiang(Yangtze) [J].Estuary Geomorphology,104:175-184.
    Wu, B.S., Wang, G.Q., Xia J Q et al.,2008. Response of bankfull discharge to discharge and sediment load in the Lower Yellow River [J].Geomorphology,100:366-376. doi:10.1016/j.geomorph.2008.01.007.
    Xu, J.X.,2003. Sediment flux to the sea as influenced by changing human activities and precipitation:example of the Yellow River, China [J]. Environmental Management,31:328-341.
    Xu, J.X.,2005. The water fluxes of the Yellow River to the sea in the past 50 years, in response to climate change and human activities [J]. Environmental Management,35(5),620-631.
    Yang, Z.S., Ji, Y.J., Bi, N.S., et al.,2010.Sediment transport off the Huanghe (Yellow River) delta and in the adjacent Bohai Sea in winter and seasonal comparison [J]. Estuarine, Coastal and Shelf Science, xxx:1-9.
    You Z.J.,2004. The effect of suspended sediment concentration on the settling velocity of cohesive sediment in quiescent water[J].Ocean Engineering,31:1955-1965.
    Yuksek,O.,Onsoy, H., Birben, A.R., et al 1996. Coastal erosion in eastern Black Sea region, Turkey [J]. Coastal Engineering,26(3-4):225-239.
    Zuhlsdorff, C., Wien, K., Stuut, J.B.W., et al,2007.Late Quaternary sedimentation within a submarine channel-levee system offshore Cap Timiris, Mauritania[J]. Marine Geology, 240:217-234.
    常军,刘高焕,刘庆生.黄河口海岸线演变时空特征及其与黄河来水来沙关系[J].地理研究,2004,23(5):339-346.
    陈建勇,戴志军,陈吉余等.杭州湾北岸弧形岸段悬沙净输移分析——以龙泉—南竹港岸段为例[J].泥沙研究,2009,2:53-59.
    陈沈良,谷国传,张国安.长江口南汇近岸水域悬沙沉降速度估算[J].泥沙研究,2003,6:45-51.
    陈沈良,张国安,陈小英等.黄河三角洲飞雁滩海岸的侵蚀及机理[J].海洋地质与第四纪地质,2005,25(3):9-14.
    陈沈良,张国安,杨世伦等.长江口水域悬沙浓度时空变化与泥沙再悬浮[J].地理学报,2004,59(2):260-266.
    陈述彭.论现代黄河三角洲持续发展能力[J].科技导报,1996,5:47-50.
    陈小英,陈沈良,刘勇胜.黄河三角洲滨海区沉积物的分异特征与规律[J].沉积学报,2006,24(5):714-721.
    陈小英.陆海相互作用下现代黄河三角洲沉积和冲淤环境研究[D].2009.
    陈子燊.珠江伶仃河口湾及邻近内陆架的纵向环流与物质输运分析[J].热带海洋,1993,12(4):47-54.
    戴昌达,雷莉萍.TM图像的光谱信息特征与最佳波段组合[J].环境遥感,1989,4(4):282-292.
    窦国仁.论泥沙起动流速[J].水利学报,1960,22-31.
    窦国仁.泥沙运动理论,第二篇[M].南京水利科学研究院,1963,1-38.
    窦国仁.再论泥沙起动流速[J].泥沙研究,1999,6:1-9.
    贺松林.中国海岸发育过程与演变规律[M].上海:上海科学技术出版社,1989,74-80.
    胡春宏,吉祖稳,王涛.黄河口海洋动力特性与泥沙的输移扩散[J].泥沙研究,1996,4:1-10.
    黄海军,李成治,郭建军.卫星影像在黄河三角洲岸线变化研究中的应用[J].海洋地质与第四纪地质,1994,14(2):29-37.
    黄世光,王志豪.近代黄河三角洲海域泥沙的冲淤特征[J].泥沙研究,1990,2:13-22.
    贾海林,刘苍字,杨欧.长江口北支沉积动力环境分析[J].华东师范大学学报(自然科学版).2001,1,90-96.
    贾建军,高抒,薛允.图解法与矩法沉积物粒度参数的对比[J].海洋与湖沼,2002,33(6):577-582.
    贾建军,汪亚平,高抒等.江苏大丰潮滩推移质输运与粒度趋势信息解译[J]. 2005,50(22):2546-2554.
    康兴伦,王品爱,袁毅等.黄河口海域沉积速率的研究[J].海洋科学,1988,5,25-30.
    李安龙,李广雪,曹立华等.黄河三角洲废弃叶瓣海岸侵蚀与岸线演化[J].地理学报,2004,59(5):731-737.
    李广雪,成国栋,魏合龙等.现代黄河口流场切变带[J].科学通报,1994,39(10):928-932.
    李广雪,薛春汀.黄河水下三角洲沉积厚度、沉积速率及砂体形态[J].海洋地质与第四纪地质,1993,13(4):5-44.
    李国胜,王海龙,董超.黄河入海泥沙输运及沉积过程的数值模拟[J].地理学报,2005,60(5):707-716.
    李九发,何青,张深.长江河口拦门沙河床淤积和泥沙再悬浮过程[J].海洋与湖沼,2000,31(1):101-109.
    李九发,李为华,应铭等.黄河三角洲飞雁滩沉积物颗粒度分布和粒度参数特征及水动力解释[J].海洋通报,2006(03):38-44.
    李平,朱大奎.波浪在黄河三角洲形成中的作用[J].海洋地质与第四纪地,1997,17(2):39-46.
    李栓科.近代黄河三角洲的沉积特征[J].地理研究,1989,8(4):45-55.
    李为华,李九发,戴志军等.黄河三角洲飞雁滩表层沉积物对水动力的响应[J].海洋地质与第四纪地质,2006,26(01):17-21.
    李向阳,陈沈良,胡静等.黄河三角洲孤东海域沉积物及水动力[J].海洋地质与第四纪地质,2008,28(1):43-49.
    李泽刚.黄河三角洲附近海域潮流分析[J].海洋通报,1984,3(5):12-16.
    李占海,陈沈良,张国安.长江口崇明东滩水域悬沙粒径组成和再悬浮作用特征[J].海洋学报,2008,30(6):154-163.
    刘凤岳.黄河三角洲滨海区流场分布及泥沙运动[J].海岸工程,1989,8(4):37-43.
    刘高峰,朱建荣,沈焕庭等.河口涨落潮槽水沙输运机制分析研究[J].泥沙研究,2005,(5):51-57.
    刘红.长江表层沉积物分布特性研究[D].华东的师范大学硕士论文,2006.
    刘涛,石学法,刘莹.基于“动力组分”思想的沉积物粒径趋势模型[J].海洋学报,2011,33(5):97-103.
    刘运令,汪亚平,高建华等.胶州湾铅210比活度的分布模式及百年尺度的沉积速率[J].海洋学报,2010,32(1):83-93.
    马菲,汪亚平,李炎等.地统计法支持的北部湾东部海域沉积物粒径趋势分析[J].地理学报,2008,63(11):1207-1217.
    庞家珍,姜明星.黄河河口演变Ⅰ——(一)河口水文特征[J].海洋湖沼通报.2003,(03):1-13.
    庞家珍,司书亨.黄河河口演变Ⅱ.河口水文特征及泥沙淤积分布[J].海洋与湖沼,1980,10(2-4):295-305.
    彭俊.黄河水沙变化过程及其三角洲沉积环境演变[D].华东师范大学博士论文,2011.
    彭俊,陈沈良.近60年黄河水沙变化过程及其对三角洲的影响[J].地理学报,2009,64(11):1353-1362.
    任杰,周作付,林卫强.伶仃洋低频水流与水沙纵向输运[J].海洋通报,2001,20(1):8-14.
    沙玉清.泥沙运动学引论[M].北京:中国工业出版社,1965,302.
    沈焕庭,李九发.长江河口水沙输运[M].北京:海洋出版社,2011.
    沈建,沈焕庭,潘安定等.长江口最大混浊带水沙输运机制分析[J].地理学报,1995,50(5):411-420.
    石学法,刘升发,乔淑卿等.东海闽浙沿岸泥质区沉积特征与古环境记录[J].海洋地质与第四纪地质,2010,30(4):19-30.
    时伟荣,李九发.长江河口南北槽输沙机制及浑浊带发育分析[J].海洋学报,1990,12(4):69-76.
    史文静.黄河口悬浮泥沙扩散规律及其数值模拟研究[D].中国海洋大学博士论文,2008.
    侍茂崇,赵进平,王喜瑞等.五号桩海区悬移质输运量的计算[J].山东海洋学院学报,1985,(6):113-126.
    侍茂崇,赵进平.黄河三角洲半日潮无潮区位置及水文特征分析[J].山东海洋学院学报,1985,15(1):127-136.
    唐存本.泥沙起动的规律[J].水利学报,1963.
    万延森.现代黄河河口三角洲沙体的沉积型式[J].海洋通报.1989,8(2):41-48.
    汪亚平,高抒,贾建军.胶州湾及邻近海域沉积物分布特征及运移趋势[J].地理学报,2000,55(4):449-458.
    王厚杰,杨作升,毕乃双.黄河口泥沙输运三维数值模拟Ⅰ——黄河口切变锋[J].泥沙研究,2006,2:1-9.
    王厚杰,杨作升,毕乃双等.2005年黄河调水调沙期间河口入海主流的快速摆动[J].科学通报,2005,50(23):2656-2662.
    王厚杰,原晓军,王燕等.现代黄河三角洲废弃神仙沟—钓口叶瓣的演化及其动力机制[J].泥沙研究,2010,4:51-60.
    王开荣.黄河调水调沙对河口及其三角洲的影响和评价[J].泥沙研究,2005(6):29-33.
    王涛,尹宝材,李平等.黄河三角洲近海冲淤变化对海动力条件的影响及风暴潮对拦门沙的作用[Z].郑州:黄河水利出版社,1995.
    王小雷,杨浩,赵其国等.云南抚仙湖近现代环境变化的沉积物粒度记录[J].2010,28(4):776-782.
    吴德安,张忍顺,严以新等.辐射沙洲东大港潮流水道悬沙输移机制分析[J].河海大学学报(自然科学版),2006,34(2):219-222.
    吴加学,沈焕庭.黄茅海河口湾泥沙输移研究——兼论McLaren模型在河口中应用的问题[J].泥沙研究,1999,3:26-32.
    武桂秋,夏东兴,王文海.现行黄河人海泥沙分布与海洋动力要素的关系[J].1994,13(1):24-30.
    武汉水利电力学院.河流动力学[M].北京:中国工业出版社,1961.
    谢小平,王兆印,沈焕庭.长江口九段沙现代潮滩沉积特征[J].沉积学报,2005,23(4):566-573.
    徐兴永,易亮,于洪军等.图解法和矩值法估计海岸带沉积物粒度参数的差异[J].海洋学报,2010,32(2):80-86.
    薛春汀,成国栋,周永青.黄河三角洲第四纪垦利组陆相沉积物与海平面变化的关系[J].海洋地质与第四纪地质,1988,8(2):103-112.
    薛允传,尹延鸿,高抒.黄河三角洲北部潮间带沉积物的粒度特征[J].海洋科学,2001,25(5):50-54.
    杨世伦,谢文辉,朱骏等.大河口潮滩地貌动力过程的研究——以长江口为例[J].地理学与国土研究,2001,17(3):44-48.
    杨世伦,朱骏,赵庆英.长江供沙量减少对水下三角洲发育影响的初步研究——近期证据分析和未来趋势估计[J].海洋学报,2003,25(5):83-91.
    杨旸,高抒,汪亚平.杭州湾北部潮流深槽区细颗粒物质输运与再悬浮过程[J].海洋学报,2008,30(2):92-101.
    杨作升,孙宝喜,沈渭铨.黄河口毗邻海域细粒级沉积物特征及沉积物入海后的运移[J].山东海洋学院学报,1985,15(2):121-129.
    叶和松,房宪英,黄易畅.黄河海港海域潮流、余流分析[J].海洋科学进展,1989,7(02):31-36.
    虞志英,张国安,金缪等.波流共同作用下废黄河河口水下三角洲地形演变预测模式[J].海洋与湖沼,2002,33(6):583-590.
    臧启运等.黄河三角洲近岸泥沙[M].北京:海洋出版社,1996.
    张富元,李粹中,王秀昌.东海表层沉积物粒度因子分析结果及其地质意义探讨[J].海洋实践,1982,3:5-11.
    张建华,徐丛亮,高国勇.2002年黄河调水调沙试验河口形态变化[J].泥沙研究,2004(5):68-71.
    张敬.长江口及邻近海域沉积速率比较研究[D].华东师范大学硕士学位论文,2008.
    张文静,朱首贤,丁平兴等.河口物质和水体长期输运分离的理论分析和观测验证Ⅱ:长江口悬沙、盐度和水体长期输运分离的观测验证[J].海洋学报,2009,31(4):22-28.
    张衍广,林振山,李茂玲等.基于EMD的山东省GDP增长与耕地变化的关系[J].地理研究,2007,26(6):1147-1155.
    张旸,陈沈良.苏北废黄河三角洲海岸时空演变遥感分析[J].海洋科学进展,2009,27(2):166-175.
    赵保仁,雷方辉.渤海的环流,潮余流及其对沉积物分布的影响[J].海洋与湖沼.1995,26(5):466-473.
    赵建春,李九发,李占海等.长江口南汇嘴潮滩短期冲淤演变及其动力机制研究[J].海洋学报,2009,31(4):103-111.
    仲德林,刘建立.黄河改道后河口至黄河海港海岸冲淤变化研究[J].海洋测绘,2003,23(1):49-52.
    周永东.黄河三角洲强侵蚀海岸侵蚀过程及机理研究[D].华东师范大学硕士论文,2010.
    朱首贤.流、浪模式和物质长期输运分离研究[D].华东师范大学博士论文,2005.
    佐藤昭二,田中则男.波浪作用下水平床面上泥沙运动[C].1962.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700