用户名: 密码: 验证码:
膏体推进剂流变与输送特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
以微小型姿控膏体推进剂火箭发动机应用为背景,对膏体推进剂流变学特性、供给方式、管道输送特性和流动数值仿真方法进行了研究,为发动机输送系统设计及优化奠定了理论及实验基础。
     本文首先对四种膏体推进剂配方样品和三种模拟液样品开展了流变学测试研究,分析稳态和动态测试结果曲线可以得到如下结论:配方中增稠剂含量对膏体推进剂粘度和流动特性有显著影响,并且这种影响在不同剪切速率下表现一致。配方中氧化剂和还原剂的种类对样品粘度有明显调节作用,但在高剪切速率下这种调节作用减弱。动态测试结果表明,膏体推进剂的应力松弛过程与初始应变有关,初始应变越大,应力松弛过程速度越快,曲线也越陡。蠕变/恢复结果表明,在流动中膏体推进剂的粘性表现比弹性表现更明显。模拟液的流变测试结果显示增加固体颗粒含量在不同温度下都使样品粘度增加,但对储能模量和损耗模量等动态特性没有明显影响。温度对模拟液的影响同时表现在粘度和特征剪切速率两方面。
     在总结现有膏体推进剂供给系统的基础上,针对姿控发动机应用特性提出了新型膏体推进剂供给方式,以转速控制代替截面控制达到流量调节的目的。为了验证新型供给方式,建立了模拟供给实验平台,并作为管道流动试验的供给系统。
     对膏体推进剂及模拟液进行了管道流动试验,试验分两部分:一是PIV测速试验,得到了模拟液之一—丁羟(HTPB)圆管内速度分布,经比较与理论结果符合较好。二是推进剂及模拟液的管道测压试验,通过对直管输送研究,验证了沿程阻力系数与广义雷诺数的关系符合λ=64/Re_g;对突变截面和弯管道的研究表明,局部阻力系数与广义雷诺数的关系近似满足指数为-1的幂函数规律,随着雷诺数的增大,局部阻力系数减小。对于变截面管道,截面变化比β越接近1,局部阻力越小,对于弯管管道,弯径比d/R越大,局部阻力越小。通过拟合试验数据建立了局部阻力系数计算经验公式。综合流变学测试数据和管道流动数据,得到了膏体推进剂及模拟液的本构关系及相关参数。以0.001 1/s剪切速率下的粘度作为样品零剪切粘度,得到了不同温度下样品相对粘度与固体颗粒体积分率的关系:η/η_r=1+6.92φ+126.9φ~2,与文献表达式对比可以看出,膏体推进剂模拟液的相对粘度的增长随固体体积分率增长较快。
     以直管道和变截面管道为研究对象,探讨了膏体推进剂管道流动数值模拟方法及过程,研究结果表明,在考虑了壁滑移特性后,数值仿真方法能较准确预测直管流动阻力,但对变截面管道局部阻力的预测与试验值相差较大。
On the background of the application of microminiature pasty propellant rocket, the rheological characteristic of pasty propellant,the supply method,the pipe transportation and the numerical simulation for pipe flow are studied in this paper. The purpose is to establish theoretical and the experimental foundation for the design and the optimization of pasty propellant expulsion system.
     The research work is started from rheology tests for four kinds of formulations of pasty propellant samples and three kinds of formulations of pasty propellant simulants. From the steady and dynamic test results,following conclusions can be made.The content of thickening agent has clear influence on viscosity and flow characterisitc of pasty propellant,and this influence shows accordance at different shear rate interval. The species of oxidizer and reducer affect sample's viscosity,but at high shear rate, the fluent tends to weaken.The stress relaxation process of pasty propellant is related to initial strain.The initial strain is bigger,the stress relaxation speed is high,and the curve is also steeper.The creep and recovery test show that the recovery quantity takes up a small proportion in totally strain.So viscosity characteristic is more important than elasticity in flow.As to simulants,increasing the volume fraction of solid particle makes the viscocity of simulants increase.But there is no clearly different about dynamic characteristic of two kinds of HTPB/salt suspension. Temperature changes both of viscosity and the key shear rate at which the simulants converts from Newtonian to non-Newtonian behavior.
     Based on summarying of existing supply systems,a new kind of supply method is proposed for aerospace attitude control use.In the new system,the flow rate is managed with controlling rotation speed of moto instead of changing the coss area of flow.In orde to test the new supply method,an artificial experimental system is setup and serves as supply system for pipe flow experments.
     The pipe flow experiments are conduced with pasty propellant and three kinds of simulants.The tests include two sections:one is using PIV technology to study velocity profile of HTPB flowing in round pipe.The results appear that the velocity profile has the parabolic shape and is accord with theoretical result well.Another section is pipe flow experiments with pressuer and volume flow rate measurement. Based on the straight pipe experiments,conclusion can be made that the energy loss coefficient of pasty propellant for laminar flow has the same forms as Newtonian fluid, that isλ=64/Re_g.The energy loss caused by contraction/expansion and 90°bend is also researched.The empirical formula for local engery loss coefficient K is derived by analysis and fitting experimental data.In the laminar region with low Reynolds number,local engery loss coefficient decreases when Reynolds number increases.As to sudden area change,local engery loss coefficient decreases along with the ratio of the cross-sectional areasμtending to 1.As to 90°bend component,local engery loss coefficient decreases with increasing of ratio of curvature and diameter R/d.On the basis of rheolohical tests and pipe flow tests,the constitutive Equations of pasty propellant and simulants are established with consideration of temperature influence. Taking shear viscosity at shear rate 0.01 1/s as zero shear viscosity,the relative viscosity of pasty propellant simulants varies with solid volume content in accord with the equation:η//η_r=1+6.92φ+126.9φ~2.Comparing with literature,the result indicates that the pasty propellant simulants' relative viscosity increase with solid volume content more quickly than other kinds of suspension.
     Taking straight pipe and contraction/expansion pipe as research object,numerical simulation of pasty propellant flowing in pipe is investigated.Camparing simulation result with experimental result,the conclusion can be made that,with considerion of wall slip condition,numerical method can predict laminar flow route loss accurately, but cann't pridict the local loss well.
引文
1.张淑慧,胡波,孟雅桃.推力可控固体火箭发动机应用及发展.固体火箭技术,2002,25(4)
    2.宋明德.一种新型膏体脉冲火箭发动机的理论和试验研究:[博士学位论文]西安:西北工业大学,1997
    3.孙运明.姿态控制发动机应用技术研究.西安:中国宇航学会固体火箭推进专业委员会2001年年会论文集,2001:131-133
    4.V.Kukushkin,A.Ivanchenko.The Pasty Propellant Rocket Engines Development.AIAA93-1754
    5.V.H.Kukushkin.State and Prospects of Solid Propellant Rocket Development.AIAA92-3872
    6.卢平.水煤膏输送特性及其直接数值模拟的研究:[博士学位论文]南京:东南大学,2002.1
    7.Robert H.Fdsbee.Advanced Propulsion For The XXIst Century.AIAA 2003-2589
    8.闫大庆,周宏民,单建胜.凝胶╱膏状推进剂研究发展状况.火箭推进,2003,29(1):38-46
    9.沈海琴.膏体推进剂火箭发动机研究进展.化学推进剂与高分子材料,2004,2(4):32-35
    10.Benveniste Natan,Shai Rahimi.The Status of Gel Propellants in Year 2000.Combustion of Energetic Materials,2001
    11.莫红军.特种推进剂研究进展(Ⅰ)-凝胶推进剂技术.兵器工业第二零四研究所信息中心.2004.3
    12.Mueller,D.C.and Turns,S.R..Ignition and Combustion Characteristics of Metallized Propellants -Phase Ⅱ,Annual Report-1993,NASA Lewis Research Center,NASA-CR-195107
    13.Mueller,D.C.,Turns,S.R..Some Aspects of the Secondary Atomization of Aluminum/Hydrocarbon Slurry Propellants.Journal of Propulsion and Power,1993,9(3):345-352
    14.Erin G.Nieder et al..Metallized Gelled Monopropellants.NASA92-62557
    15.Wickman et al.Gelled liquid oxygen/metal powder monopropellants.AIAA 92-3450
    16.K.Hodge,T.Crofoot,and S.Nelson.Gelled Propellants for Tactical Missile Applications.AIAA 89-2976
    17.W.K.Yasuhara,S.R.Finato,and A.M.Olson.Advanced Gel Propulsion Controls For Kill Vehicles.AIAA 93-2636
    18.Topic 19:power,propulsion and thermal technology.NASA Small Business Innovation Research(SBIR) Program,(1997 phase Ⅰ February 12,1998)
    19.刘凯强,王宁飞等.小分子有机胶凝剂和凝胶推进剂的研究进展.火炸药学报,2003,26(4):23-27
    20.宋明德,叶定友,吴心平.膏体推进剂脉冲火箭发动机新方案的理论和试验研究.推进技术,1999,20(1):1-5
    21.徐庆华.烯酰类膏状含能材料的制备与表征.[硕士学位论文]青岛:青岛大学,2007.6
    22.肖金武,张文刚.PEPA/AP膏体推进剂配方研究.固体火箭技术,2001,24(4):46-49
    23.徐庆华.烯酰类膏状含能材料的制备与表征.[硕士学位论文]青岛:青岛大学,2007.6
    24.何金选,陶永杰.用于膏体推进剂基质的多乙烯多胺二硝酰胺酸盐的合成及性能测试,2004年全国含能材料发展与应用学术研讨会论文集(上册),2004
    25.符全军等.UDMH/NTO双组元凝胶推进剂的制备及性能研究.火箭推进,2006,32(1)
    26.杨伟东.凝胶推进剂模拟液直管流动特性初步研究.火箭推进,2007,33(5)
    27.左博.凝胶推进剂直圆管中剪切速率与表观粘性实验研究.火箭推进,2007,33(4)
    28.张蒙正,杨伟东.凝胶推进剂直圆管流动特性图探讨.火箭推进,2007,33(5)
    29.梁小强.凝胶试验系统的设计及试后处理工艺.火箭推进,2006,32(4)
    30.李越森.膏体推进剂应用特性的初步研究.中国宇航学会1998年联合推进会议论文集,1998:161~165
    31.李越森,王德升等.脉冲式膏体推进剂发动机试验研究.航空动力学报,1998,13(3)
    32.张明信,张胜勇等.膏体推进剂点火和燃烧特性的实验研究.固体火箭技术,2003,26(2)
    33.沈铁华.膏体推进剂发动机实验.推进技术,2004,25(2)
    34.江体乾.化工流变学.上海:华东理工大学出版社,2004
    35.杨朝初,毕勤成,林宗虎.微/小通道内非牛顿流体多相流动与传热研究展望.化学工程,35(5),2007:75-78
    36.徐桂云,张永忠.润滑脂流变和输送特性研究.徐州:中国矿业大学出版社,2005
    37.Savvas G.Hatzikiriakos,John M.Dealy.Wall slip of Molten high density polyethylenes.Ⅱ.Capollary rheometer studies.J.Rheol.,1992,36(4):703-740
    38.Ulku Yilmazer,Dilhan M.Kalyon.Slip Effects in Capillary and Parallel Disk Torsional Flows of Highly Filled Suspensions.J.Rheol.,1989,33(8):1197-1212
    39.Morgan Gudding,Sigsten Akesson.Measurements of 3-D Velocity Fields in Microgeometries.[MASTER'S THESIS]Luleal University of Technology,2002
    40.R.Okuda,Y.Sugii,K.Okamoto.Velocity Measurement of Blood Flow in a Microtube Using Micro PIV System.Proceedings of PSFVIP-4,June 3-5,2003
    41.Sangho Kim.A Study of Non-newtonian Viscosity and Yield Stress of Blood in a Scanning Capillary-Tube Rheometer.[DOCTOR'S THESIS]Drexel University,2002
    42.F.J.H.Gijsen,E.Allanie et al.The influence of the non-Newtonian properties of blood on the flow in large arteries:unsteady flow in a 90° curved tube.Journal of biomechanics,1999,32:705-713
    43.Subhashini Vashisth,Vimal Kumar,and Krishna D.P.Nigam.A Review on the Potential Applications of Curved Geometries in Process Industry.Ind.Eng.Chem.Res.2008,47(10):3291-3337
    44.Subhashini Vashisth and K.D.P.Nigam.Experimental Investigation of Pressure Drop during Two-Phase Flow in a Coiled Flow Inverter.Ind.Engo Chem.Res.2007,46(14):5043-5050
    45.Yuan Wang,Godwin A.Chukwu.Unsteady Axial Laminar Couette Flow of Power-Law Fluids in a Concentric Annulus.Indo Eng.Chem.Res.1996,35(6),2039-2047
    46.张友波,李长俊,杨静.多相流管道压降组合模型的建立.油气储运,2005,24(7):4-5
    47.喻西崇,冯叔初.起伏多相管流压降计算方法的研究.油气田地面工程,2000,19(5):1-2
    48.岳湘安,陈家琅,黄匡道.幂律流体在偏心环空中轴向层流的速度分布.水动力学研究与进展A辑,1998,3(3):1-9
    49.韩洪升,张艳娟,张明慧等.用PIV技术测量幂律流体同心环空螺旋流的流 场.海洋石油,2007,27(4):64-67
    50.王克亮.幂律流体在螺旋管道内的流动.[博士学位论文]大庆:大庆石油学院,2004
    51.徐佳莹,马雅玲,陶文铨等.非牛顿流体在周期性渐扩渐缩通道内层流流动与换热的实验研究.工程热物理学报,2000,21(2):206-210
    52.李鹏,慕晶吓等.HDPE及其共混物的挤出压力振荡现象.合成树脂及塑料,2006,23(2):56-60
    53.吴其晔,巫静安.高分子材料流变学.北京:高等教育出版社,2002
    54.Roman S.Voronov and Dimitrios V.Papavassiliou.Review of Fluid Slip over Superhydrophobic Surfaces and Its Dependence on the Contact Angle.Ind.Eng.Chem.Res.2008,47(8):2455-2477
    55.王克俭,周持兴.考虑壁面滑移的Z-W流变模型及其应用.高分子通报,2003(1):8-17
    56.Munstedt H,Schnidt M,Wassner E M.Stick and slip phenomena during extrusion of polyethylene melts as investigated by laser-Doppler velocimetry.J.Rheol.,2000,44(2):413.
    57.闵希华.含蜡原油管道加剂运行优化研究.[博士学位论文],南充:西南石油学院,2004
    58.周蓉,陈次昌等.油品减阻剂在长输管道中的性能研究.西南石油大学学报,2007,29(6)
    59.关中原,税碧垣,朱峰.兰成渝管道减阻剂工业应用试验研究.油气储运,2008,27(2):31-36
    60.曹登巨,何建川,余志海.减阻剂在陇东油区的应用分析.油气储运,2008,27(1):32-35
    61.张国庆,张云涛,夏丽等.石油钻采工艺,2006,28(增刊):53-55
    62.叶霞,周明,蔡兰等.超疏水光栅微结构表面减阻试验研究.中国机械工程,2007,18(23)
    63.叶霞,周明,袁润.粘度对超疏水固体表面减阻影响的实验研究.润滑与密封,2007,32(12):56-57
    64.曲爱兰,文秀芳等.复合SiO_2粒子涂膜表面的超疏水性研究.无机材料学报,2008,23(2):373-378
    65.金美花,廖明义,江雷.超疏水性聚二甲基硅氧烷膜的制备及其表面吸附性研究.高等学校化学学报,2007,28(5):996-998
    66.金美花,冯琳,封心建等.阵列聚合物纳米柱膜的超疏水性研究.高等学校化 学学报,2004,25(7):1375-1377
    67.缪协兴,王钦方等.润滑脂在钢管中流动的壁滑移实验和研究.哈尔滨工业大学学报,2007,39(7):1172-1176
    68.张晓光,张兴敢等.润滑脂壁滑移管流测试系统的设计.南京大学学报(自然科学版),2006,42(4)
    69.Lu Yong,Lu Ping,Zhang Mingyao.Atomization parameters of coal water paste measured by PIV technique.Journal of Southeast University(English Edition),2005,21(2):180-183
    70.卢平,章名耀.水煤膏管内层流和过渡区的阻力特性.热能动力工程,2004,19(3):260-264
    71.卢平,章名耀,徐跃年.增压流花床用水煤膏管内流动滑移效应研究.热能动力工程,2002,17(97):31-33
    72.张红平,欧阳洁等.聚合物熔体双尺度模型和SIMPLER方法在收缩流中的应用.高分子材料科学与工程,2007,23(4):15-19
    73.刘春泽,程林松等.聚合物溶液在波纹管中的流动规律.西安石油大学学报,2006,21(2):37-40
    74.A.Seeger,K.Affeld et.al.X-Ray-based assessment of the three-dimensional velocity of the liquid phase in a bubble column.Experiments in Fluids,2001,31:193-201
    75.YUSUF ULUDAG.Investigating Complex Flows by Nuclear Magnetic Resonance Imaging.[DOCTOR'S THESIS],UNIVERSITY OF CALIFORNIA DAVIS,2001
    76.Susan J.Muller.Velocity measurements in complex flows of non-Newtonian fluids.Korea-Australia Rheology Journal,2002,14(3):93-105
    77.Laurent Jossic,Albert Magnin.Structuring of gelled suspensions flowing through a sudden three-dimensional expansion.Journal of Non-Newtonian Fluid Mechanics,2005,127:201-212
    78.张敏.双组分聚合物异型材共挤出过程的数值模拟研究.[博士学位论文]济南:山东大学,2007
    79.SasmalG P.A finite volume approach for calculation of viseoslastic flow through an abrupt symmetric contraction.Journal of Non-Newtonian Fluid Mechanics,1995,56(1):15-47
    80.S.-C.Xue,N.Phan-Thien,R.I.Tanner.Numerical study of secondary flows of viscoelastic fluid in straight pipes by an implicit finite volume method.Journal of Non-Newtonian Fluid Mechanics,1995,59(2-3):191-213
    81.K.A.Missirlis,D.Assimacopoulos,E.Mitsoulis.A finite volume approach in the simulation of viscoelastic expansion flows.Journal of Non-Newtonian Fluid Mechanics,1998,78(2-3):91-118
    82.Kent T.Chojnacki,Douglas A.Feikema.Atomization Studies of Gelled Liquids.AIAA 94-2773
    83.Kent T.Chojnacki,Douglas A.Feikema.Atomization Studies of Gelled Bipropellant Simulants Using Planar Laser Induced Fluorescence.AIAA 95-2423
    84.Helmut K.Ciezld,Ansgar Robers,Günter Schneider.Investigation of the Spray Behavior of Gelled JET A-1 Fuels Using an Air Blast and an Impinging Jet Atomizer.AIAA2002-3601
    85.N.Jayaprakash,S.R.Chakravarthy.Impingement Atomization of Gel Fuels.AIAA2003-316
    86.《固体推进剂技术》专著编辑委员会.复合固体推进剂.宇航出版社,1994
    87.Shai Rahimi et al.Preparation and Characterizationof Gel Propellants and Simulants.AIAA 2001-3264
    88.James M.Green,Douglas C.Rapp et al.Flow Visualization of a Rocket Injector Spray Using Gelled Propellant simulants.AIAA91-2198
    89.Kai F.Grythe,Finn K.Hansen et al.NMR self-Diffusion and Viscosity of Polyurethane Formulations for Rocket Propellants.J.Phys.Chem.B,2004,108:12404-12412
    90.王秀和等,永磁电机,北京:中国电力出版社,2007年8月第一版
    91.机械设计手册编委会,机械设计手册,单行本,弹簧、摩擦轮及螺旋传动、轴.北京:机械工业出版社,2007年8月第四版。
    92.成大先,机械设计手册,单行本,联接与紧固。北京:化学工业出版社,2004年1月第一版
    93.范洁川.近代流动显示技术.北京:国防工业出版社,2002年
    94.洪呈.粒子图像测速应用系统的研究与实现.[硕士学位论文]南京:南京理工大学,2007
    95.周长发.精通Visual C++图像处理编程.北京:电子工业出版社,2004年第二版
    96.陆宗骐.C/C++图像处理编程.北京:清华大学出版社,2005年第一版,
    97.翁木云,何明一.图像综合特征及其在图像检测与匹配中的应用.中国图象图形学报,2007,12(1)
    98.沈海滨,赖汝.基于图像中心矩的快速模版匹配算法.计算机应用,2004,24(11)
    99.柳林霞,陈杰,窦丽华.不变矩理论及其在目标识别中的应用.火力与指挥控制,2003,28(2)
    100.Kazuhisa Yuki,Masumi Okumura et.al.Flow visualization and heat transfer characteristics for sphere-packed pipes.AIAA2006-3796
    101.Ronald G.Larson.The Structure and Rheology of Complex Fluids.New York -Oxford OXFORD UNIVERSITY PRESS,1999
    102.Shi-Qing Wang,Patrick A.Drda.Superfluid-Like Stick-Slip Transition in Capillary Flow of Linear Polyethylene Melts.I.General Features.Macromolecules,1996,29(7).
    103.L.A.Archer,R.G.Larson,Y.L.Chen Direct measurements of slip in sheared polymer solutions.Journal of Fluid Mechanics,1995(301)
    104.K.B.Migler,H.Hervet,L.Leger.Slip transition of a polymer melt under shear stress.Phys.Rev.Lett.1993(70):287-290
    105.H.Müller-Mohnssen,D.Weiss,A.Tippe.Concentration dependent changes of apparent slip in polymer solution flow.Journal of Rheology.1990,34(2).
    106.Melanie M.Britton and Paul T.Callaghan.Nuclear magnetic resonance visualization of anomalous flow in cone-and-plate rheometry.Journal of Rheology,1997,41(6).
    107.James F.Steffe.Rheological Methods in Food Process Engineering,Second Edition.Freeman Press,1996
    108.Veruscha Fester et al.Energy losses of non-Newtonian fluids in sudden pipe contractions.Chemical Engineering Journal.(2008),doi:10.1016/j.cej.2008.03.003(in press).
    109.Shai Rahimi,Benveniste Natan.The Injection Process of Gel Fuels.AIAA97-2972
    110.Dilhan M.Kalyon,Piraye Yaras,Bimur Aral,et al.Rheological behavior of a concentrated suspension:A solid rocket fuel stimulant.J.Rheol.,1993,37(1)
    111.I.J.Rao,K.R.Rajagopal.The effect of the slip boundary condition on the flow of fluids in a channel.Acta Mechanica.1999,135:113-126
    112.Yogesh M.Joshi,Ashish K.Lele et al.A unified wall slip model.Journal of Non-Newtonian Fluid Mechanics,2000,94:135-149

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700