用户名: 密码: 验证码:
钢桁拱桥吊杆涡激振动仿真分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
现代结构向长、柔、细、弱阻尼方向发展,涡激振动问题越来越受到结构工程师的关注。涡激振动发生的风速较低,频度大,会对结构造成疲劳损伤,影响耐久性,给养护带来极大麻烦。
     本文对计算流体力学软件FLUENT自主进行了二次开发,扩展了FLUENT的功能。将振动方程的数值方法Newman法代码嵌入FLUENT软件中,建立了非定常钝体绕流粘性不可压缩流体的流固耦合数值模型,使之可以进行涡激振动仿真计算。本文对南京大胜关大桥吊杆进行涡激振动仿真计算,求出其最大振幅,锁定风速区间,设计出具有良好气动性能的截面并辅以增加阻尼装置以减小涡激振动的影响,具有非常重要的工程实用价值。本研究工作内容和主要结论为:
     1.研究改善结构气动力性能的方法。顺桥向来风时,长方形截面,切角长方形截面,圆角长方形截面的涡脱落规模依次减小,升力依次减小。其中圆角长方形截面的最大振幅和锁定区间均小于切角长方形截面。
     2.分析比较了抑制涡激振动的方法。首先考虑优化结构截面形状,在此基础上考虑增加结构阻尼。通过增加结构阻尼的方法可以抑制涡激振动。结构阻尼不但对涡激振动振幅大小有影响,也会对锁定风速区间有影响。随着阻尼的增加,结构最大振幅减小,所俘获的涡脱频率的范围较小,锁定区间的长度相应较小,当阻尼增大到一定值后,锁定风速区间消失。
     3.分析了风偏角对结构气动性能的影响。单根杆件,对于切角长方形截面,顺桥向来风时升力系数最大,随着风偏角的增加,升力系数有减小的趋势。横桥向来风时升力系数最小。对于圆角长方形截面,攻角的变化对升力系数的影响比较复杂,不是一种单调线性趋势。
     4.研究了两根杆件气流的相互影响。对于切角长方形截面,在单根杆件分析中,顺桥向来风是最不利风向,最大振幅达1m。但考虑了前面杆件尾流的影响后,最大振幅减小到25cm。随着风偏角的增加,后面杆件受前面杆件尾流影响有减小趋势,当风偏角达到20度后,与单根杆件绕流情况相似。
     5.分析了脉动风场对结构的影响。相对结构固有频率,当脉动风场周期较小,频率较大时。升力系数峰值恒定不变。对应一个主要频率;当脉动风场周期较大,频率较小时。升力系数峰值呈周期变化,对应多个主要频率,其涡激振动最大振幅小于均匀来风。
     6.将二维涡激共振达到稳态振幅后的涡激力作为简谐荷载加到三维杆件模型上进行了谐响应分析,得到与二维涡激振动相吻合的最大振幅。运用了软件WORKBENCH和CFX建立三维柱体流固耦合模型,进行吊杆三维涡激振动初步分析,计算得到起振风速时的振幅。
     通过风洞试验和仿真计算可以得到以下结论:
     本文数值仿真结果与节段模型风洞试验吻合良好。仅通过优化截面的形状截面来完全抑制涡激振动是很困难的,需辅以增加阻尼装置的措施。对于长方形截面,切角长方形截面和圆角长方形截面完全抑制涡激振动需增加的阻尼数量逐渐减小。单从增加阻尼的数量来看,圆角长方形截面方案优于切角长方形截面方案。若从制造便利考虑,长方形截面加阻尼装置方案最好。
The development trend of modern bridge leads structural components to longer, softer, thinner, and lower damping ratio. The problems caused by vortex-induced vibration are increasingly concerned by structural engineers. Vortex-induced vibration occurred in the lower wind speed causes fatigue damage to the bridge structures and affects the durability. It brings great difficulties to the maintenance.
     The computational fluid dynamics software FLUENT 6.3 was further developed and the functions were expanded in this project. The code of Newmark method was embedded in user defined function (UDF) of FLUENT 6.3. It established the fluid-solid coupling model of vortex-induced vibration in two dimensional incompressible uniform cross flow. The vortex-induced vibration of the hangers at Nanjing Dashengguan Bridge was simulated and calculated. The maximum amplitude and lock-in wind speed domains were determined. The section geometry with good aerodynamic performance was designed to reduce the vortex-induced vibration together with the devices of higher damping ratio. This project has very important practical value. The content and main conclusions as follows:
     1.This project studied the methods to improve aerodynamic performance. In the case of rectangular sectioned cylinder with sharp, chamfered and rounded corners , the vorticity and lift force become smaller , the maximum amplitude and lock-in domains decrease when the wind blow along the bridge.
     2.This project studied the methods to suppress the vortex-induced vibration. The optimization of hanger section geometry was considered first, then the influence of damping devices was considered. Structural damping ratio affect both vibration amplitude and lock-in wind speed domains. As the damping ratio increases, the maximum amplitude of the vortex-induced vibration and lock-in wind speed domains decrease. When the damping ratio increases to a certain value, the lock-in wind speed domains disappear.
     3.This project studied the effect of wind angle on aerodynamic characteristics. The lift force coefficient for a chamfered rectangle hanger decreases when the approaching wind angle increases. The lift force coefficient for a rounded rectangle hanger changes nonlinearly with the change of wind angle.
     4.This project studied the interactions between two hangers in flow. For a single chamfered rectangle hanger, the maximum amplitude reached 1 m when the most unfavorable wind approachs along the bridge. If the front hanger wake effect takes into account in a two-hanger system, the maximum amplitude of the rear hanger reduces to 25 cm. The wake effect of the front hanger to the rear hanger decreases when the approaching wind angle increases. When the wind angle reaches to 20 degrees, it is similar to a single hanger in flow.
     5.This project studied the hangers in fluctuating wind field. When fluctuating wind field has a short period and high frequency, the lift force coefficient peak is a constant and the fluctuating wind field corresponds to only one primary frequency. When fluctuating wind field has a long period and low frequency, the lift force coefficient peak changes periodically and the fluctuating wind field corresponds to several primary frequencies. The maximum amplitude of the resulting vortex-induced vibration is smaller than that casused by homogeneous flow.
     6.This project studied a three-dimensional model of vortex-induced vibration. With the softwares WORKBENCH and CFX a three-dimensional fluid-solid coupling model of vortex-induced vibration was esteblished to analyze and calculate the amplitudes when vortex-induced vibration begin. The force achieved from two-dimensional vortex-induced resonance vibration at steady-state was used as harmonic load applied on the three-dimensional hungers for harmonic response analysis. The resulting maximum amplitude coincides with that from two-dimensional vortex-induced vibration.
     Through the results from the wind tunnel test and simulated calculations, we obtained the following conclusions:The numberical simulation results are in good agreement with the wind tunnel test results. It is difficult to fully suppress vortex-induced vibration only by optimizing the section geometry. It is necessary to apply the devices to increase the damping ratio. The damping ratio demanded to fully suppress vortex-induced vibration gradually become smaller along with the change of the shape of the hanger section from rectangle to chamfered rectangle, and to rounded rectangle. Considering the number of damping ratio demanded, the rectangular sectioned cylinder with rounded corners is better than rectangular sectioned cylinder with chamfered corners. Considering manufacture convenience, the rectangle hangers with damping devices are the best plan.
引文
[1] 九江长江大桥技术总结.铁道部大桥工程局.武汉:武汉测绘科技大学出版社 1996
    [2] 西南交通大学.南京大胜关大桥吊杆减振制振气动措施风洞试验研究报告 2006
    [3] 童秉纲,张炳暄,崔尔杰.非定常流与涡运动.北京:国防工业出版社,1993
    [4] 白莱文斯.流体诱发振动.吴恕三,王觉 等译.北京:机械工业出版社,1981
    [5] Feng C. C. The Measurement of Vortex-Induced Effects in Flow Past Stationary and Oscillating Circulator and D-Section Cylinder, M. Sc.Thesis, 1968, University of British Colimbia.
    [6] 孙天风,崔尔杰.钝物体绕流和流致振动研究.空气动力学学报.1987,5(1):62-75
    [7] 陆夕云,童秉纲,庄礼贤.均匀来流中横向振动圆柱近迹涡结构的数值模拟. 力学学报,2003,25(5):537-546
    [8] Zhou C. Y., So R. M. C., Lam K. Vortex-induced vibrations of an elastic circular cylinder. Journal of Fluid and Structures, 3920: 163-168
    [9] 曹丰产.桥梁断面的气动导数和颤振临界风速的数值计算.空气动力学学报.2000,18(1):26-33
    [10] 曹丰产,项海帆.圆柱非定常绕流及涡激振动的数值计算.水动力学研究与进展(A辑),2001,16(1):11-118
    [11] 刘松,符松.纵向受迫振荡圆柱绕流问题的数值模拟.计算物理.2001,18(20):157-162
    [12] 李广望,任安禄,陈文曲.ALE方法求解圆柱的涡激振动.空气动力学报. 2004,22(3):283-288
    [13] 邓见.方柱绕流横向驰振及涡致振动数值模拟.浙江大学学报(工学版).2005, 39(4):595-599
    [14] 陈文礼,李惠.基于RANS的圆柱风致涡激振动的CFD数值模拟.西安建筑科 技大学学报(自然科学版)2006,38(4):509-513
    [15] 徐枫,欧进萍.方柱非定常绕流与涡激振动的数值模拟.东南大学学报(自然科学版).2005,35 Sup(Ⅰ):36-37
    [16] 方平治,顾明.高雷诺数下二维方柱涡激振动的数值模.同济大学学报.36(2),2008:161-165
    [17] 方平治,顾明.圆柱两自由度涡激振动的数值模拟研究.同济大学学报.36(3),2008:295-298
    [18] 何长江,段忠东.二维圆柱涡激振动的数值模拟.海洋工程.2008,26(1):57-63
    [19] 梁春艳 定常风和非定常风对二维方柱作用的数值模拟[硕士学位论文].哈尔滨:哈尔滨工业大学
    [20] 陆新征,叶列平,马千里等.CFRP索流固耦合风振研究.第十二届全国结构风工程学术会议论文集,西安,2005,69-75
    [21] 陈文礼,李惠.CFRP斜拉索三维涡激振动的数值模拟.第十三届全国结构风工程学术会议论文集.大连,2006,800-805
    [22] 李龙安.钢桁拱吊杆风致振动影响因素分析.桥梁建设.2008(3) 19-22
    [23] 李龙安.南京大胜关长江大桥吊杆风致振动的计算与控制方法研究.第十三届全国结构风工程学术会议论文集(中册).辽宁省,大连,2007,680-687
    [24] 高宗余,李龙安,方秦汉等.钢桁拱吊杆风致振动研究.武汉理工大学学报(交通科学与工程版).2007,31:281-284
    [25] Son, J. S., Hanratty T. J. Numerical solution for the floe around a cylinder at Reynolds number of 40,200 and 500. Journal of Fluid Mechanics, 1969, 35, 369-386.
    [26] Braza M., Chassaing P, Minh H. H. Numerical study and physical analysis of the pressure and velocity fields in the near wake of a circular cylinder. Journal of Fluid and Mechanics. 1986, 165: 79-130.
    [27] Murakami S. Numerical study on velocity-pressure field and wind forces for bluff bodies by k-e, ASM and LES. Journal of Wind Engineering and Industrial Aerodynamics. 1992, 44: 2841-2852.
    [28] Murakami S., Mochida A. On turbulent vortex shedding flow past 2D square cylinder predicted by CFD.Journal of Wind Engineering and Industrial Aerodynamics. 1995,54: 191-211
    [29] Larsen A., Walther J.H. Aeroelastic analysis of bridge girder sections based on discrete vortex simulations.Journal of Wind Engineering and Industrial Aerodynamics. 1997,67&68:253-265.
    [30] Schulz K.W., KallinderisY. Unsteady flow structure interaction for incompressible flows using deformable hybrid grids.Journal of Computational Physics.l998,143:569-597.
    [31] Tamura T. Reliability on CFD estimation for wind-structure interaction problems, Journal of Wind Engineering and Industrial Aerodynamics. 1999, 81: 117-143.
    [32] Braza M., Perrin R., Hoarau Y. Turbulence properties in the cylinder wake at high Reynolds numbers. Journal of Fluids and Structures .2006,22: 757-771
    [33] Barhoush H., Namini A.H., Skop R.A. Vortex shedding analysis by finite elements, Journal of Sound and Vibation 184(1) (1995) 111-127.
    [34] Zhou C.Y., So R.M., Lam K. Vortex-induced vibration of an elastic circular cylinder,Journal of Fluids and Structures 13(2)(1999) 165-189
    [35] Griffin O.M., Skop R.A., Koopman G.H. The vortex-excited resonant vibrations of circular cylinders, Journal of Sound and Vibration 31(2)(1973) 235-249
    [36] Evangelinos C, Lucor D., Karniadakis G.E.DNS-derived force distribution on flexible sylinders subject to vortex-induced vibration. Journal of Flurids and Structures 14(3) (2000) 429-440.
    [37] So R.M.C., Wang X.Q. Vortex-induced vibrations of two side-by-side Euler-Bernoulli beams, Journal of Sound and Vibration 259 (3) (2003) 677-700.
    [38] H.Al-Jamal, C.Dalton. Vortex induced vibrations using large eddy simulation at moderate reynolds number, Journal of Fluids and Structures 19(1) (2004) 73-92.
    [39] Jadic I., So R.M.C., Mignolet P. Analysis of fluid-structure interactions using a time-marching technique, Journal of Fluids and Structures 12(6) (1998) 631-654.
    [40] Evangelinos C. Parallel Simulations of Vortex-Induced Vibrations in Turbulent Flow: Linear and Non-Linear Models, Ph.D.Thesis, Brown University, 1999.
    [41] Tutar M., Holdo A.E. Large eddy simulation of a smooth circular cylinder oscillation normal to a uniform flow, Journal of Fluids Engineering 122(4) (2000)694-702.
    [42] Meneghini J.R., Bearman P.W. Numerical simulation of high amplitude oscillatory flow about a circular cylinder, Jounal of Fluids and Structures 9(4) (1995)435-455.
    [43] Sarpkaya T. Computational methods with vortices,Journal of Fluids Engineering 111(1) (1989) 5-52.
    [44] Sarpkaya T. Vortex element methods for flow simulation,Advances in Applied Mechanics 31(1994) 113-247.
    [45] Guilmineau E., P.Quetey.A. numerical simulation of vortex shedding from an oscillation circular cylinder, Journal of Fluids and Structures 16(6) (2002) 773-794.
    [46] Willden R.H.J., Graham J.M.R. Numerical prediction of VIV on long flexible circular cylinders, Journal of Fluids and Structures 15(3-4)(2001) 659-669.
    [47] Blackburn H.M., Govardhan R.N., Williamson C.H.K. A complementary numerical and physical investigation of vortex-induced, Journal of Fluids and Structures 15(3-4) (2000) 481-488.
    [48] Blackburn H.M., Henderson R.D. A study of the two-dimensional flow past an oscillation cylinder, Journal of Fluid Mechanics 385(1999) 255-286.
    [49] Nomura T. Finite element analysis of vortex-induced vibrations of bluff cylinders, Journal of Wind Engineering and Industrial Aerodynamics 46-47 (1993) 587-594.
    [50] Mittal S., Kumar V. Finite element study of vortex-induced cross-flow and in-line oscillations of a circular cylinder, International Journal for Numerical Methods in Fluids 31(1999) 1087-1120.
    [51] Mittal S., Kumar V. Flow-induced vibeations of a light circular cylinder at reynolds numbers 1000 to 10,000, Journal of Sound and Vibration 245(5) (2001) 923-946.
    [52] Wang X. Q., So R. M. C., Y. Liu. Flow-induced vibation of an Euler-Bernoulli beam, Journal of Sound and Vibration 243(2) (2001)241-268.
    [53] Tetsuro Tamura, Tetsuya Miyagi. The effect of turbulence on aerodynamic forces on a square cylinder with various corner shapes Journal of Wind Engineering and Industrial Aerodynamics 1999, 83: 135-145
    [54] King R., Johns D. J. Wake interaction experiments with two flexible cylinders in flowing water. Journal of Sound and Vibration, 1976, 45: 259-283
    [55] Bokaian A., Geoola F. Wake-induced galloping of two interfering circular cylinder. Journal of Fluid Mechanics, 1984, 146: 383-415
    [56] Zhou Y. Wang ZJ, So R. M. C., Xu SJ et al. Free vibrations of two side-by-side cylinders in a cross-flow. Journal of Fluid Mechanics, 2001, 443: 197-229
    [57] Zdravkovich M. M. Flow-induced oscillations of two interfering circular cylinders. Journal of Sound and Vibration, 1985, 101: 511-521
    [58] Zdravkovich M. M. Review of interference-induced oscillations in flow past two parallel circular cylinders in various arrangements. Journal of Wind Engineering and Industrial Aerodynamics, 1998, 28: 183-200
    [59] LiuY, So RMC, Lau YL and Zhou Y. Numerical studies of two side-by-side elastic cylinders in a cross-flow. Journal of Fluids and Structures, 2001, 15: 1009-1030
    [60] Zou J. F, Ren A. L., Deng J. Study on a forced system of two cylinders with various spacings. China Ocean Engineering, 2004, 18(3): 391-402
    [61] 陈文曲.二维串并列圆柱绕流与涡致振动研究[硕士学位论文]. 浙江:浙江大学,2006
    [62] 聂武,刘玉秋.海洋工程结构动力分析.哈尔滨:哈尔滨工程大学出版社,2002
    [63] 休斯 W.F.,布赖顿 J.A.著,徐燕侯等译.流体动力学[美] 北京:科学出版社, 2002
    [64] 王元汉,李丽娟,李银平. 有限元法基础与程序设计.广州:华南理工大学出版社,2002
    [65] 史里希廷 H.徐燕侯等译.边界层理论,上册,第七版,北京:科学出版社,1988
    [66] Dr. Hermann Schlichting. Translated by Dr. J. KESTIN, Seventh Edition Boundary-Layer Theory[M]. McGRAW-HILL BOOK COMPANY, 1979, 16-32.
    [67] 王福军.计算流体力学分析-CFD软件原理与应用.北京:清华大学出版社,2005
    [68] 温正,石良辰,任毅如.FLUENT流体计算应用教程.北京:清华大学出版社,2009
    [69] 张兆顺.湍流.北京:国防工业出版社,2002
    [70] Pietro Catalano. Numerical simulation of the flow around a circular cylinder at high Reynold numbers. International Journal of Heat and Fluid Flow. 2003, 24: 463-469.
    [71] Franke J., Frank W. Large eddy simulation of the flow past a circular cylinder at Re=3900. Journal of Wind Engineering and Industrial Aerodynamics. 2002, 90: 1191-1206.
    [72] Duraodf G., Plesniakrn W., Braunjc F. The effects of turbulence and periodic flows around a square cross-section cylinder. Exp. Fluids. 1988, 6: 298-304.
    [73] Lynd A, Rodi W. Phase-averaged turbulence meansurements in the separated shear region of flow around a square cylinder[A]. Proc 23~(rd) Cong Int. Ass Hydraulic Research. 1989: 21-25, 85-92.
    [74] Norberg C. Flow around rectangular cylinders: pressure forces and wake frequencies. Journal of Wind Engineering and Industrial Aerodynamics, 1993, 49: 187-196.
    [75] Bearman P. W., Obasaju E. D. An expermental study of pressure fluctuation on fixed and oscillating square section cylinders. Fluid Mech, 1982, 25: 481-494.
    [76] 孙德军,胡国辉,尹协远等.圆柱绕流低维Galerkin方法的推广.中国科技大学学报,1997,27(3):266-272
    [77] 程永光.基于插值的Lattice Boltzmann方法非均匀网格算法.武汉水利电力大 学学报.2000,33(5):26-31
    [78] Saha A. K., Biswas G, Muralidhar K. Three dimensional study of flow past a square cylinder at low Reynolds numbers. Int J Heat Fluid Flow, 2003, 24: 54-66
    [79] 王志远,吴文远.基于RNG k-ε湍流模型钝体绕流的数值模拟.上海理工大学学报.2004,26(6):519-523
    [80] Sohankar A., Davidsion L., Norberg C. Large eddy simulation of flow past a square sylinder: comparison of different subgrid scale models. Fluids Eng, 2000, 122: 39-47
    [81] Murakami S., Mochida A. Turbulent vortex shedding flow past 2D square cylinder predicted by CFD. Journal of Wind Engineering and Indurial Aerodynamics, 1995, 54/55: 191-211
    [82] Yu Da-hai, Ashan Kareem. Numerical simulation of flow around rectangular prism. Journal of Wind Engineering and Industrial Aerodynamics. 1997, 67-68: 195-208
    [83] Losc, Hoffmann K A, Dietiker J F. Numerical investigation of high Reynolds number flows over square and circular cylinders. Theomorhpic Heat Transfer. 2005, 19(1): 72-80
    [84] Bearman P. W., Trueman D. M. An investigation of the flow around rectangular cylinders. Aero. Quart. 1971. 23: 229-237
    [85] Bearman P. W., Gartshore, I. S., Maul et al. Experiments on flow-induced vibration of a square-section cylinder. Fluids Struct. 1987, 1: 19-34
    [86] Bosch G.., Rodi W. Simulation of vortex shedding past a square cylinder with different turbulence models. Int. J. Numer. Methods Fluids. 1998, 28: 601-616.
    [87] Durao D. F. G., Heitor M. V., Pereira J. C. F. Measurements of turbulent and periodic flows around a square cross-section cylinder. Exp. Fluids 1988, 6: 298-304
    [88] Dutta S., Muralidhar, K., Panigrahi P.K. Influence of the orientation of a square cylinder on the wake properties. Exp. Fluids 2003, 34: 16-23
    [89] Lankadasu A., Vengadesan S. Onset of vortex shedding in planar shear flow past a square cylinder International Journal of Heat and Fluid Flow 2008, 29: 1054-1059
    [90] Kawai H., Effect of corner modifications on aeroelastic instabilities of tall buildings Journal of Wind Engineering and Industrial Aerodynamics 1998, 74-76: 719-729
    [91] Park C. W., Lee S. J.. Effect of free-end corner shape on flow structure around a finite cylinder Joural of Fluid and Structures 2004, 19: 141-158
    [92] Otsuki Y., Washizu K., Tomizawa H., Ohya A. and Fujii K., Experiments on the aeroelastic instability of prismatic bars with rectangular sections, Proc. 3~(rd) Int. Conf. Wind Effect on Building and Structures, Tokyo, Saikon, Co. Ltd., Tokyo, pp. 891-898, 1971
    [93] 克莱斯,迪尔比耶.斯文,奥勒汉森著,薛素绎译.风对结构的作用北京:中国建筑工业出版社,2006
    [94] Skop R. A., Balasubramanian S. A new twiston an old model for vortex-excited vibrations. J. Fluids Struct. 1007, 11: 395-412.
    [95] 李廉锟.结构力学.第四版,下册,北京:高等教育出版社,2004.7

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700