用户名: 密码: 验证码:
高性能大功率天然气发动机燃烧系统开发研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
面对能源和环保两大问题的严峻挑战,世界各国都开始认真思考能源利用结构的调整和可持续发展问题。天然气具有资源丰富、排放污染低、价格低廉等方面的优点,日益受到重视,是一种很有发展前景的内燃机燃料,在满足能源需求方面越来越重要。我国自上世纪八十年代开始天然气发动机的研发和推广工作,并取得了巨大进步,但在高性能大功率天然气发动机研发方面与国外先进水平尚有不小的差距,导致了我国自主品牌高性能大功率天然气发动机的产品的欠缺,制约了在更广泛区域推广应用天然气应用。
     本文结合某大功率天然气发动机研发项目,采用理论分析、数值模拟和试验验证相结合的方法开展了整机性能开发研究,实现了该项目的预期研发目标;并对未来满足更高排放标准的发动机的研发途径进行了一些探索,论文的主要工作包括:
     (1)提出了基于热力学性能仿真与单缸机试验相结合的研究方法进行多缸大功率天然气发动机的整机性能开发,大大提高了开发进程和精度,并有效降低开发成本。参考同类型发动机的相关参数,并根据经验确定多缸整机的一些参数,建立整机热力学性能仿真模型;根据多缸机仿真结果建立单缸机热力学仿真模型,并设计开发单缸试验机,进行性能试验和部件开发试验,试验的初始参数和边界条件通过单缸机热力学仿真模型获得;应用单缸试验机测试得到的放热率等结果标定后再移植到多缸机热力学计算模型中,从而实现多缸机整机性能的精确预测。
     (2)结合CH4的简化化学反应动力学模型,通过三维数值分析手段,详细研究了预燃室式燃烧系统中预燃室与主燃烧室之间的喷孔对于燃烧的影响。当总流通截面积相等时,过多的小直径喷孔,由于节流严重;当喷孔个数较少时,火焰覆盖面不够,燃烧速度也会受到影响;对于该燃烧系统来说,相比10个和6个喷孔而言,8个2mm直径的喷孔能够获得最快速的燃烧。
     (3)通过研究发现,过小的喷孔截面直径不利于预燃室内的火焰向主燃烧室内的传播,稍大些的喷孔直径有利于主燃烧室内稀混合气的快速燃烧,但过大的直径由于预燃室内泄压过快也会影响主燃烧室内的燃烧速度。
     (4)对于不同夹角的研究表明,小的夹角使火焰在活塞运动轴线方向上传播较快;而大的夹角,在气缸半径方向上传播速度会快些。由于天然气发动机的缸径较大,并且没有组织缸内涡流,加上燃烧室形状为浅盆形,稍大些的夹角更有利于该气体发动机缸内稀混合气的快速燃烧。
     (5)对不同预燃室容积的仿真研究发现,在相同预燃室燃气供应量的情况下,小些的预燃室容积能够获得较浓的混合气,预燃室点火燃烧后能够获得较高的压力,可以更快的引燃主燃烧室内的稀混合气。
     (6)针对天然气发动机开发过程中必须面对的爆震现象,提出了爆震指数的概念,并用其来监测和评价天然气发动机的爆震程度。通过试验获得了该发动机的爆震极限。
     (7)经过优化的预燃室燃烧系统,在单缸试验机上进行了预燃室式燃烧系统的开发试验。试验研究了不同开启压力对整机燃烧的影响。试验结果表明同样的燃气供应量情况下,小的燃气喷射阀开启压力可以使预燃室内的混合气获得较长的混合形成时间,更有利于形成均匀的混合气,从而在点火后尽快燃烧,可以获得较高的能量引燃主燃烧室内的稀混合气,因此较小的开启压力会对整体燃烧更有利些。文中还试验研究了预燃室容积和主燃烧室凹坑形状对燃烧性能的影响,确定了发动机的预燃室式燃烧系统具体结构。通过验证试验表明开发的预燃室式燃烧系统能够满足IMO TierⅡ排放标准,达到了预期的性能设计目标。
     (8)为了探索满足更高排放标准的技术途径,对比分析了发动机缸内气流运动的评价方法,并应用瞬态涡流比、瞬态滚流比和瞬态挤流比等瞬态评价参数对该发动机的进气、压缩过程进行了细致的分析,并探讨了其对于燃烧的影响。
     (9)提出了火焰贯穿度的概念,并用其评价预燃室式燃烧系统中主燃烧室内稀混合气的燃烧速度。通过数值仿真手段研究了气流组织对于不同浓度稀混合气燃烧的影响,结果表明在缸内混合气过量空气系数为1.8以下时,缸内气流运动对于燃烧的影响不大,主燃烧室内稀混合气燃烧的主要驱动力为预燃室内浓混合气燃烧产生的高压火焰束,高压火焰通过喷孔喷入主燃烧室;在过量空气系数不大于1.8时,过量空气系数越小,火焰贯穿度越大,燃烧速度越快,就可以不组织缸内的涡流运动。当火焰贯穿度较小时,要想获得理想的燃烧速度,适当的气流组织是不可或缺的。
     (10)进行了配气系统与燃烧系统的匹配研究,数值仿真结果表明采用预燃室式燃烧系统、高增压、强米勒、恰当的涡流和大λ技术将是应对更高排放标准的有效技术途径。
     论文对大功率天然气发动机整机性能开发方法、高性能燃烧系统、爆震评价、稀混合气组织等方面进行了研究,将对预燃室式高性能大功率天然气发动机的开发提供一定的理论和试验基础。
Facing the serious challenges of energy and environmental protection, all the countries in the world began to think about adjustment and sustainable development of the energy utilization structure seriously. Natural gas has the advantages of rich resources, low emission, and low price and so on, which should be a suitable alternative fuel for engine, is playing more and more important role in meeting energy demands. Researchers began to research natural gas engine in our country and have made tremendous progress since the eighty's of last century, and have made tremendous progress. But there is still a big gap with foreign advanced technology in the research and development of big power natural gas engine, which restricted the use of natural gas engine in the fixed purpose, such as power generation applications, so R&D technology of high power natural gas engines are the big problems that we desiderate to solve.
     Based on a large bore natural gas engine, the pre-combustion chamber type combustion system which can fulfil IMO Tier Ⅱ was studied by the methods of theoretical analysis, the combination of numerical simulation and experimental verification; and the combustion system meets Tier III emission standard was researched. The main jobs of this thesis include:
     (1) The new R&D method of performance for multi-cylinder large bore natural gas engine was put forward in this thesis combining the thermodynamic simulation and single cylinder testing engine, it.improve the development process and the accuracy greatly. Firstly, based on the parameters of similar engine and R&D experience, the thermodynamic model of multi-cylinder engine was established; secondly, the thermodynamic model of single cylinder engine was established according to the simulation results of multi cylinder engine and the single cylinder testing engine was designed and created, the operation boundary conditions are all come form the thermodynamic simulation of single cylinder engine, and then the performance test and components test are carried in this engine; thirdly, the testing results such as the heat release rate was used to modify the thermodynamic model of single cylinder engine, and then the calibrated model was explanted to multi-cylinder engine model, and the performance parametes were forcasted accurately using this thermodynamic model.
     (2) Combined with reduced chemical kinetic model of CH4, the effects of connecting channels between the pre-chamber and the main chamber of the pre-chamber combustion system to overall combustion were studied in detail using the three-dimensional numerical method. The more channels with smaller diameter are adverse to the burning velosity as the throttle is serious when the total flow area fixed. On the other hand, the fewer channels with bigger diameter will affected the combustion speed because the vortex motion in cylinder is weak. Compared to the10and6connecting channels,8channels with2mm diameter can obtain the most rapid combustion.
     (3) The smallest channel section would not conductive to the flame propagation from the pre-chamber to main combustion chamber; the biiger channel diameter should beneficial to the rapid combustion of lean mixture in main combustion chamber.
     (4) The flame will be spread faster along with the direction of the movement of the piston with the smaller channel angle; while he flame will be spread faster along with the direction of the diameter of the cylinder with the larger channel angle. Slightly larger channel angle is more conducive to the rapid combustion of the gas mixture in main combustion chamber because of the larger diameter, weak swirl and shallow basin shape combustion chamber.
     (5) Numerical studies of different precombustion chamber volume to combustion found that the smaller pre-chamber volume can obtain richer mixture than bigger one in the same chamber gas supply, so the higher combustion pressure in the pre-chamber could be achieved, which can accelerate the flame propagation velocity of lean mixture in main combustion chamber.
     (6) The concept of knock index was put forward to detect and evaluate the detonation of natural gas engine, and the detonation limit of this engine was achived by the test. The last verification testing found the developed combustion system can meet the IMO Tier II standard, and achieved all the requirements.
     (7) Based on the numerical results of combustion system, the exploitative tests of combustion system were carried on the test bench of single cylinder testing engine. The effects of two open pressures of check valve to combustion were investigated, the results show that lower opern pressure will bring more time for gas mixture in pre-chamber, so the combustion speed is faster than that of bigger open pressure, so it will have more energy to ignite the lean mixture in the main combustion chamber.
     (8) The gas movement in the cylinder was investigated in order to study the combustion system which can meet more strict emission standard. The different steady evaluation methodologies were comparative analyzed, and the instant evaluation parameters were used to study the gas movement of intake stroke and compression stroke, and the effects to combustion were discussed.
     (9) The concept of flame penetration was put forward to evaluate the combustion speed of lean mixture in main combustion chamber. And the effects of different swirl rate and concentration of mixture to combustion were studied. The results show that the swirl ratio nearly no effect on combustion speed when the λ less than1.8, the driving force of the lean mixture burning in main combustion chamber is the higher differential pressure between pre-chamber and main combustion chamber which is achieved by combustion in pre-chamber. The swirl ratio is benefit to the faster propagation of flame in lean mixture.
     (10)The matching studies of gas movement and combustion system were carried on. And a new project was put forward which could meet IMO Tier III standard, it include the combustion system with pre-chamber, higher intake swirl ratio, strong Miller cycle in which the intake valve close at520deg, and higher pressure ratio with3.8.
     Bsed on CAE and testing, the developing method of multi-cylinder bigger bore natural gas engine and the combustion system was studied, at the same time the evaluation of detonation and the relationship between the gas movement and the excess air factor were investigated in this thesis. These would give some theoretic and experimental references for the researches and the development of high performance, large power pre-chamber type natural gas engines.
引文
[1].秋实.2006年世界前20位国家天然气探明储量排行榜.环球能源网,2007,6,27
    [2].李永昌.CNG汽车加气站的回顾和展望[J].中国天然气汽车,2005,90(3):5-10
    [3].王秉刚.我国新型汽车燃料展望[J].中国天然气汽车,2006,104(5):3-11
    [4].中国汽车工业协会.汽车商用车发动机“十一五”专题规划[J].车用发动机信息,2007,5(3):1-6
    [5].刘巽俊.内燃机排放与控制[M].北京:机械工业出版社,2002
    [6].龚金科.汽车排放污染及控制[M].北京:人民交通出版社,2005
    [7].周龙保.内燃机学[M],北京:机械工业出版社,2005:222
    [8].蒋德明.内燃机燃烧与排放学[M].西安:西安交通大学出版社,2001
    [9].车用压燃式、气体燃料点燃式发动机与汽车排气污染物排放限值及测量方法(中国Ⅲ、Ⅳ、Ⅴ阶段),中华人民共和国国家标准,GB17691.2005,2005,北京:国家环境保护总局
    [10].贺泓,翁端,资新运.柴油车尾气排放污染控制技术综述[J].环境科学2007,28(6):1169-1177
    [11]. Timothy J. Callahan, Survey of Gas Engine Performance and FutureTrends, USA: Southwest Research Institute,2007
    [12]. Haeng Muk Cho, Bang-Quan He. Spark ignition natural gas engines—A review. Energy Conversion and Management,48,2007:608-618
    [13].张笑文.浅论天然气车用发动机的开发[J].山东内燃机,2003,78(4):14-18
    [14].郝利君,张付军,黄英.天然气发动机的发展现状与展望[J].汽车工程,2000,V01.22(5):332-337
    [15]. Kichiro Kato, Kohei Igarashi, Michihiko Masuda,etc, Development of Engine for Natural Gas Vehicle, SAE 1999-01-0574,1999
    [16]. Corbo P. etal, Comparison Between Lean-Bum and Stoichiometric Technologies for CNG Heavy-Duty Engines[C], In:SAE Paper[C],950057,1995
    [17]. N. John Beck, Robert L. Barkhimer,William P. Johnson, Evolution of Heavy DutyNatural Gas Engines—Stoichiometric, Carbureted and Spark Ignited to LeanBurn, Fuel Injected and Micro-Piiot,SAE Paper 972665,1997
    [18]. Mitsunori lshii, Shizuo lshizawa, Eiji Inada, etc, Experimental Studies on a Natural Gas Vehicle, SAE Paper 942005,1994
    [19]. Yuji Yamamato, Katsuhiko Sato, Seiji Matsumoto, etc, Study of Combustion Characteristics of Compressed Natural Gas as Automotive Fuel. SAE Paper 940761, 1994
    [20]. John Lapetz, Jim Beitler,Brien Fulton, etc, Ford'S 1996 Crown Vitoria Dedicated Natural Gas Vehicle, SAE Paper 952743,1995
    [21]. T. W. RYAN Ⅲ, T. J. CALLAGHAN, The effects of natural gas composition on engine combustion, performance, and emissions, SAE Paper 9250 12,1992
    [22]. S. Hill, M. Sulatisky,K. Nakamura, ere, A Lean—Burn, Sub-Compact Natural Gas Vehicle, SAE Paper 96 1 676,1996
    [23]. Bengt Johansson, Krister Olsson, Combustion Chambers for Natural Gas SI
    [24]. Engines Part Ⅰ:Fluid Flow and Combustion, SAE 950469,1995
    [25]. Teruhiro Sakurai, Masanori Lko, Kazuhisa Okamoto, etc, Basic Research on Combustion Chambers for Lean Bum Gas Engines, SAE 932710,1993
    [26].张威,韦志洪.北京市天然气公交车的发展现状及前景[J].城市环境与城市生态,2004,117(1):34-36
    [27]. GARTH HARRIS天然气汽车的发展方向[J].中国天然气汽车,2005,89(2):30-35
    [28]. TOSHIYUKI SUGA, TADASHI MURAISHI,21世纪具有发展潜力的低排放汽车2005,95(8):1-7
    [29].刘凯.电控柴油/CNG双燃料发动机和LPG单一燃料发动机的研究和开发[M].天津大学博士学位论文,天津,2002
    [30].宋钧,黄震,张武高.车用天然气发动机技术及其应用[J].天然气工业,2002,V01.22(1):88-92
    [31].钟启稼.车用天然气发动机的国内外开发及产品技术[J].中国天然气汽车,2007(2):15-17
    [32].邱先文,吴华杰.火花点火式天然气发动机技术分析[J].小型内燃机与摩托车,2001,V01.30(4):38-40
    [33].颜祥,超低排放的天然气发动机[J].世界汽车,2001(5):12-14
    [34].简林莎,边耀璋.天然气发动机使用性能的分析与改善[J].长安大学学报,2005(5):94-98
    [35].左承基,李宁,徐天玉.火花点火式天然气发动机的研制[J].合肥工业大学学报,2001(1):34-39
    [36].余汉文,赵作忠,童勇.4105QN天然气发动机的开发[J].四川工业学院学报,2003(4):23-26
    [37].刘生金,马志义,司利增.天然气汽车性能影响因素的试验[J].长安大学学报,2003(1):Mostafa M. Kamel, The B5.9G Gas Engine Technology[C]. SAE Paper.952649,1995
    [38].方祖华.点燃式内燃机气体燃料电控喷射技术的研究[J].燃烧科学与技术,1997(2):81-93
    [39].李克新,NQ140N单一CNG发动机的开发与试验[J].内燃机,2004(2):17-21
    [40].闰峰,清洁可靠的强劲动力CA6102N型系列天然气发动机[J].天然气汽车,1998(3):16-21
    [41].左承基,李宁.国产4125柴油机改制成天然气发动机[J].石油机械,2001(1):42-44
    [42].孙业保,孙岩,郝利君.电子点火型单燃料天然气发动机开发研究[J].车辆与动力技术,2001(4):36-40
    [43]. Jinhua Wang, Hao Chen, Bing Liu, Zuohua Hua. Study of cycle-by-cycle variations of a spark ignition engine fueled with natural gas-hydrogen blends. International journal of hydrogen energy,33,2008:4876-4883
    [44]. M.M. Abdelaal, A.H. Hegab. Combustion and emission characteristics of a natural gas-fueled diesel engine with EGR. Energy Conversion and Management,64,2012:301-312
    [45]. Mathew D. Ruter, Daniel B. Olsen, Mark V. Scotto, Mark A. Perna. NOx reduction from a large bore natural gas engine via reformed natural gas prechamber fueling optimization. Fuel,91,2012:298-306
    [46].窦慧莉,刘忠长,李骏.电控多点喷射天然气发动机的开发[J].燃烧科学与技术, 2006(3):257-262
    [47].陈万应,杨志勇,成辉.NQ140N天然气发动机的开发[J].汽车研究与开发,2003(4):11-13
    [48]. Selahaddin Orhan Akansu, Mehmet Bayrak. Experimental study on a spark ignition engine fueled by CH4/H2(70/30)and LPG. Internal journal of hydrogen energy. 36,2011:9260-9266
    [49]. Mohamed H. Morsy. Ignition control of methane fueled homogeneous charge compression ignition engines using additives.Fuel 86,2011:533-540
    [50]. C.C.M.Luijten, E. Kerkhof. Jatropha oil and biogas in a dual fuel CI engine for rural electrification. Energy conversion and management,52,2011,1426-1438
    [51]. Sona Visakhamoorthy, Tommy Tzanetakis, Dale,Haggith. Numerical study of a homogeneous charge compression ignition engine fueled with biogas. Applied energy, 92,2012,437-446
    [52]. Erik M. Holngreen, Matthew M. Yung. Dual-catalyst aftertreatment of lean-burn natural gas engine exhaust. Applied catalysis B:Environmental,74,2007:73-82
    [53]. Kazunobu.K, Takahiro S, Yoshimi S, Satoshi M, Sumihiro K. Development of HCCI natural gas engines. Journal of natural gas science and engineering,3,3011:651-656
    [54]. Paola Helena Barros Zarante, Jose Ricardo Sodre. Evaluating carbon emissions reduction by use of natural gas as engine fuel. Journal of natural fas science and engineering,1,2009:216-220
    [55]. Cheolwoong Park, Changgi Kim, Young Choi. Power output characteristics of hydrogen-natural gas blend fuel engine at different compression ratio. International journal of hydrogen energy,37,2012:8681-8687
    [56].夏渊,张欣,李国岫.顺序多点喷射单一燃料天然气发动机台架试验系统的研制[J].仪器仪表学报,2003(3):319-323
    [57].赵奎翰,左承基,杜庆建.火花点火式天然气发动机燃烧系统的研究[J].内燃机学报,1998(1):1-8
    [58].张德福,张惠明,张振明.电控喷射压缩点火天然气发动机特性的试验研究[J].农业机械学报,2005(12):1-4
    [59].夏渊.顺序多点喷射增压天然气(CNG)发动机电子控制系统的研究[D],北京交通大学,2002
    [60].姚宝峰.稀薄燃烧CNG发动机燃烧稳定性的研究[D],北京交通大学
    [61]. Siu ru B,蓝志波译.可达到柴油机效率的天然气发动机的设计[J].国外内燃机,2003(4):43-44
    [62]. Chedthawut Poompipatpong, Kraipat Cheenkachorn. A modified diesel engine fornatural gas operation:Performa and emission tests. Energy,36,2011:6862-6866
    [63]. T. Korakianitis, A.M. Namasivayam, R.J. Crookes. Natural-gas fueled spark-ignition (SI) and compression-ignition (CI) engine performance and emissions. Progress in Energy and Combustion Science.37,2011:89-112
    [64]. S. Heyne, M. Meier, B. Imbert, D. Favrat. Experimental investigation of prechamber autoignition in a natural gas engine for cogeneration. Fuel,88,2009:547-552
    [65]. Fanhua Ma, Yu Wang. Study on the extension of lean operation limit through hydrogen enrichment in a natural gas spark-ignition engine. International journal of hydrogen energy,33,2008:1416-1424
    [66]. Junnian Zheng, Jerald A. Caton. Use of a single-zone thermodynamic model with detailed chemistry to study a natural gas fueled homogeneous charge compression ignition engine. Energy Conversion and Management,53,2012:298-304
    [67]. Seref Soylu. Examination of combustion characteristics and phasing strategies of a natural gas HCCI engine. Energy Conversion and Management,46,2005:101-119
    [68]. Qing Ping Zheng, Hui Ming Zhang, De Fu Zhang. A computational study of combustion in compression ignition natural gas engine with separated chamber. Fuel, 84,2005:1515-1523
    [69]. Mohand Said Lounici, Khaled Loubar, Mourad Balistrou, Mohand Tazerout. Investigation on heat transfer evaluation for a more efficient two-zone combustion model in the case of natural gas SI engines. Applied Thermal Engineering,31, 2011:319-328
    [70].蓝志波.可达到柴油机效率的天然气发动机设计[J].国外内燃机,2003,4:43-44
    [71].张惠明,龚英利,赵奎翰.天然气发动机预燃室式燃烧系统的研究[J].农业机械学报,2004,35(1):34-36
    [72].郑清平.压燃式天然气发动机燃烧过程模拟计算和实验研究.天津大学博士学位论文,2006,天津
    [73].孙嗣炎,张振东,方祖华.缸内直喷式天然气发动机的试验研究[J].农业机械学报,2005(10):13-15
    [74]. Development of the Mersedes—Benz MY 1 999 CNG-Engine M366LAG, SAE 1999-01-3519,1999
    [75]. RuiChen, Nesa Milovanovic, A computational study into the effect of exhaust gasrecycling on homogeneous charge compression ignition combustion in internal combustion engines fuelled with methane. International Journal of Thermal Seiences 2002, (41):805-813
    [76]. Tetsuya TAGAI, Masahiro ISHIDA, Hironobu UEKI, Effects of equivalence ratio and temperature of CNG premixture on knock linit in a dual fueled desesl engine, SAE 2003-01-1934,2003
    [77]. Patrik Einewall, Bengt Johansson, Combustion Chambers for Supercharged Natural Gas Engines, SAE970221,1997
    [78]. P./corbo, M. Gambino, S. lannaccone, etc, Comparison Between Lean-Brun and Stoichometric Technologies for CNG Heavy—Duty Engines, SAE950057,1995
    [79]. H. Dordaei, A. Hazhir, K. Eisazaden Far,Pollutant Emissions Study of Gas Fueled SI Engines, SAE2005-01-3790,2005
    [80]. Dehong Zhang, Steven H. Frankel, A numerical study of natural gas combustion in a lean bum engine, Fuel,1998(12):1339-1347
    [81]. James E. Wegrzyn, Wai Lin Litzke, Michael Gurevich Natural Gas a fuel Option for Heavy Vehicles, SAE1 999-01-2248,1999
    [82]. Rui Chen, Nesa Mi lovanovic, A computational study into the effect of exhaust gas recycling on homogeneous charge compression ignition ombustion in internal combustion engines fuelled with methane. International journal of thermal sciences.41(2002)805-813.
    [83]. DOUGLAS M. LEONE, ROBERT A. YONG, The Impact of the Engine Control system on the Economics and Performance of Natural Gas Fueled Heavy-Duty Vehicles, Woodword A-036,2004
    [84]. Vilmar Assoy, Hot surface assisted compression ignition of natural gas in a direct injection diesel engine, SAE Paper 960767,1996
    [85].祝玉文.高压缩比直喷式天然气发动机的研究[J].小型内燃机,995年,2(1):32-35
    [86]. Rudolf H S, Charles E R. Homogeneous charge compression ignition(HCCI): Benefits, Compromises, and future engine applications SAE Paper1999-01-3682,1999
    [87]. Magnus Christensen, Bengt Johansson, Per Amneus., Supercharged Homogenous charge Compression Ignition., SAE 980787,1998
    [88]. Zhili Chen, Mitsuru Konno., Experimental Study of CI Natural-Gas/DME Homogeneous Charge Engine., SAE. Paper 2000-01-0329,2000
    [89]. Scott B. Fiveland, Rey Agama, Magnus Christensen, Beggt Johansson, Joel Hiltner, Fabian Maus. Experimental and Simulation Results Detailing the Sensitivity of Natural Gas HCCI Engines to Fuel Composition. SAE 2001-01-3609,2001
    [90]. Salvador M. Aceves, Daniel Flowers, Joel M. F., Fuel and Additive Characterization for HCCI Combustion SAE Paper 2003-01-1814,2003
    [91]. Daesu Jun, Norimasa Lida. A Study of High Combustion Efficiency and Low CO Emission in a Natural Gas HCCI Engine. SAE Paper 2004-01-1974,2004
    [92]. Ryuichi Tominnaga, Satoshi Morimoto, Yasuharu Kawabata. Effects of Heterogeneous EGR on the Natural Gas Fueled HCCI Engine Using Experiments, CFD and Detailed Kinetics. SAE Paper 2004-01-0945,2004
    [93]. Satoshi S. Morimoto, Yasuharu Kawabata, Teruhiro Sakurai, Operating Characteristics of a Natural Gas-Fired Homogeneous Charge Compression Ignition Engine(Performance Improvement Using EGR SAE Paper 2001-01-1034,2001
    [94]. P. U. Ricklin, A. Kazakov, F. L. Dryer,The Effects of NOx Addition on the Auto Ignition Behavior of Natural Gas under HCCI Conditions. SAE Paper 2002-01-1746, 2002
    [95]. D. Yap, A. Megaritis, S. PeuchereL M. L. Wysznski. Effect of Hydrogen Addition on Natural Gas HCCI Combustion. SAE Paper 2003-01-1646,2003Carlos Hollnagel, Luiz Henrique Borges, Wilson Muraro, Combustion
    [96].张波.燃料理化特性对均质压燃影响的试验研究[D].天津大学博士学位论文,2007
    [97]. M.A. Kalam, H.H. Masjuki. An experimental investigation of high performance natural gas engine with direct injection. Energy,36,2011:3563-3571
    [98]. Erik M. Holmtreen, Matthew M. Yung, Umit S. Ozkan. Dual catalyst aftertreatment of lean burn natural gas engine exhaust. Applied catalysis B:Environment,74, 2007:73-82
    [99]. Cheolwoony Park, Changgi Kim, Young Choi, Sangyeon Won, Yasuo Moriyoshi. The influences of hydrogen on the performance and emission characteristics of a heavy duty natural gas engine. International journal of hydrogen energy,36,2011:3739-3745
    [100]. Asok K. Sena, Sudhir K. Ash b, Bin Huang c, Zuohua Huang. Effect of exhaust gas recirculation on the cycle-to-cycle variations in a natural gas spark ignition engine. Applied thermal engineering,31,2011:2247-2253
    [101]. Christopher S. Weaver and Sean H. Turner,Dual Fuel Natural Gas/DieselEngines: Technology,Performance, and Emissions [C]. SAE Paper,940548,1994.
    [102]. Gebert KerSimir, et, al. Strategies to Improve Combustion and Emission Characteristics of Dual-Fuel Pilot Ignited Natural Gas Engines. SAE Paper 971 712, 1997
    [103]. Gebert Kersimir,AU Electic Dual Fuel Injection System for the Belarus D 144 Diesel Engine, SAE Paper90 1 502,1990
    [104]. S. Peuchereta, M.L.Wyszy'nskia,, R.S. Lehrlea, S. Golunskib, H. Xuc. Use of catalytic reforming to aid natural gas HCCI combustion in engines:experimental and modelling results of open-loop fuel. International Journal of Hydrogen Energy,30,2005:1583-1594
    [105].李克,杨铁皂,徐斌等.天然气/柴油双燃料发动机研发现状及发展[J].河南科技大学学报(自然科学版),2004,V01.25(2):28-32
    [106].汪云,张幽彤,刘兴华.电控柴油-天然气(双燃料)发动机装车性能试验研究[J].小型内燃机与摩托车,2001(2):21-23
    [107].文震涛,俞小莉,费少梅.天然气/柴油双燃料发动机燃气供给系统特性研究[J].内燃机工程,2002(2):15-19
    [108].窦慧莉,李骏,徐振波.CA61 10ZLA5N2柴油/天然气双燃料发动机的开发[J].汽车技术,2002(12):13-17
    [109].林志强,苏万华,王国祥.柴油引燃天然气发动机着火特性及其影响因素的研究[J].燃烧科学与技术,2003(3):234-238
    [110].宋金瓯,姚春德,解茂昭.柴油引燃天然气发动机燃烧模型的研究[J].内燃机学报,2003(5):303-307
    [111].汪云,王春发,张幽彤.电控柴油天然气(双燃料)发动机装车性能研究[J].内燃机工程,2004(5):76-78
    [112].姚勇,邸敏艳,赵二维.EQ1092F汽油/CNG两用燃料汽车研究[J].拖拉机与农用运输车,2005(3):33-35
    [113].苏万华,林志强,汪洋.气口顺序喷射、稀薄燃烧、全电控柴油/天然气双燃料发动机的研究[J].内燃机学报,2001(2):102-108
    [114]. Start. C., Hilliger. E,朱晓天译.采用电控RAM调制柴油喷射的气体燃料发动机预喷射系统[J].国外内燃机,1999(3):15-22
    [115]. DOUGLAS M. LEONE, The Impact of the Engine Control System on the Economics and Performance of Natural Gas Fueled Heavy—Duty Vehicles. WOODWORD, Co. 2006
    [116]. Kichiro Kato et al. Development of Engine for Natural Gas Vehicle[C]. In. SAE Paper,1999-01-0574,1999
    [117].蒋德明.高等内燃机原理[M].西安:西安交通大学出版社,2002
    [118].蒋德明.内燃机中的气体流动[M].北京:机械工业出版社,1986
    [119].周力行.湍流两相流动与燃烧的数值模拟[M].北京:清华大学出版社,1991
    [120].姚勇.CNG发动机和汽油机燃烧的比较分析[J].车用发动机,2005(5):31-33
    [121].张惠明,龚英利,王强.天然气发动机混合器结构对混合过程影响的研究[J].内燃机学报,2004(6):199-503
    [122].林学东,袁兆成.点燃式天然气发动机燃烧过程的试验研究[J].兵工学报,1999(4):5-9
    [123].何旭,高希彦,刘卫国.燃烧室形状对缸内气流运动影响的数值模拟[J].车用发动机,2005(3):8-12
    [124].高新.LPG发动机三维燃烧模拟计算与试验研究[M].浙江大学博士学位论文,2004,浙江
    [125].易生海,邓康耀,杨世友,王泓亮.D6114B船用柴油机的性能预测与优化计算[J].柴油机,2002(2):19-22
    [126].鹿盈盈,苏万华,于文斌,裴毅强.发动机燃烧路径及其对热效率和排放的影响[J].内燃机学报,2011,29(1):1-7
    [127].赵付舟,常思勤.混合增压柴油机废气能量调整策略的仿真及分析[J].内燃机学报,2008,26(2):173-178
    [128].尹必峰,刘胜吉,魏强.495ZLQ发动机参数匹配与性能计算分析[J].车用发动机,2007(2):18-21
    [129].马凡华,丁尚芬,王业富.点燃式HCNG发动机一维数值模拟研究[J].内燃机工程,2011,32(2):46-50
    [130].姚勇.CNG发动机和汽油机燃烧的比较分析[J].车用发动机,2005(5):31-33
    [131].焦运景,董宏,张惠明.燃烧室形状对天然气发动机燃烧过程影响的研究[J].内燃机工程,2009,30(4):28-33
    [132]. Edgy. Zesty, T. Nagy, J.M. Simmie. Reduction of a detailed kinetic model for the ignition of methane/propane mixtures at gas turbine conditions using simulation error minimization methods. Combustion and Flame,2011,158:1469-1479
    [133].李德桃.涡流室柴油机的燃烧过程和燃烧系统[M].科学出版社,北京,2000
    [134].解茂昭.内燃机计算燃烧学(第二版)[M].大连:大连理工大学出版社,2005
    [135]. SuWH, LuYY, Yu W B, et al. High density-low temperature combustion in diesel engines based on technologies of variable boost pressure and intake valve timing[C]. SAE Paper 2009-01-1911,2009
    [136]. Volker Mueller, Ralf Christmann, Stefan Muenz. System structure and controller concept for an advanced turbocharger/EGR system for a turbocharged passenger car diesel engeine[C]. SAE paper 2005-0103888,2005
    [137]. Francisco Payri, Jess Benajes, Santiago Molina. Reduction of pollutant emissions in a HD diesel engine by adjustment of injection parameters, boost pressure and EGR [C].SAE paper 2003-01-0343
    [138]. Asok K. Sen, Jianjun Zheng, Zuohua Huang. Dynamics of cycle-to-cycle variations in a natural gas direct-injection spark-ignition engine. Applied Energy,88,2011:2324-2334
    [139]. R.Z. Kavtaradze, D.O. Onishchenko, A.A. Zelentsov, S.S. Sergeev. The influence of rotational charge motion intensity on nitric oxide formation in gas-engine cylinder. International Journal of Heat and Mass Transfer.52,2009:4308-4316
    [140]. Junnian Zheng, Jerald A. Caton. Effects of operating parameters on nitrogen oxides emissions for a natural gas fueled homogeneous charged compression ignition engine (HCCI):Results from a thermodynamic model with detailed chemistry. Applied Energy,92,2012:386-394
    [141]. Paolo Linoa, Bruno Maione, Claudio Amorese. Modelling and predictive control of a new injection system for compressed natural gas engines. Control Engineering Practice,16,2008:1216-1230
    [142]. K. Saikaly, S. Rousseau, C. Rahmouni, O. Le Correb, L. Truffet. Safe operating conditions determination for stationary SI gas engines. Fuel processing technology,89, 2008:1169-1179
    [143]. O.M.I. Nwafor. Effect of advanced injection timing on emission characteristics of diesel engine running on natural gas. Renewable Energy,32,2007:2361-2368
    [144]. Erik M. Holmgreen, Matthew M. Yung, Umit S. Ozkan. Dual-catalyst aftertreatment of lean-burn natural gas engine exhaust. Applied Catalysis B:Environmental,74,2007: 73-82
    [145]. M. Mansha, A. R Saleemi, Badar M. Ghauri. Kinetic models of natural gas combustion in an internal combustion engine. Journal of Natural Gas Chemistry,19,2010:6-14
    [146]. A.K. Amjad, R. Khoshbakhi Saray, S.M.S. Mahmoudi, A. Rahimi. Availability analysis of n-heptane and natural gas blends combustion in HCCI engines. Energy, 36,2011:6900-6909
    [147]. D.Yap, S.M. Peucheret,A.Megaritis, M.L.Wyszynski, H. Xu. Natural gasHCCIengine operation with exhaust gas fuel reforming. International Journal of Hydrogen Energy, 31,2006 587-595
    [148]. Fanhua Ma,YuWang, Haiquan Liu,Yong Li, JunjunWang, Shuli Zhao. Experimental study on thermal efficiency and emission characteristics of a lean burn hydrogen enriched natural gas engine. International Journal of Hydrogen Energy,32,2007:5067-5075
    [149]. Han Zhiyu, Reitz R D. Turbulence modeling of internal combustion engines using RNG k-ε models. Combustion Science and Technology,1995,106(4-6):267-295
    [150].冯明志,金晶,李玉峰.四气门发动机气缸内气流运动的LDA试验研究[J].内燃机工程,2001,22(2):49-52
    [151].张强,王志明.四气门天然气发动机内瞬态流畅数值模拟[J].内燃机工程,2006,27(1):29-33
    [152].李娜,张强,王志明.燃烧室结构对天然气发动机燃烧过程的影响[J].农业机械学报,2007,25(2):58-61
    [153].胡玉平,孙平,白书战,李国祥.气门开启过程对压缩终了缸内涡流运动的影响[J].车用发动机,2010(5):35-39
    [154].李树生,李林科,杨家成.CAE在柴油机设计开发中的应用.华东四省一市内燃机学会第十四届学术年会论文集,鲁201110

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700