用户名: 密码: 验证码:
基于喷射策略和燃料设计的压燃式发动机高效低排放燃烧模式研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
面对日益严格的排放法规和严重的能源危机,本文采用试验和仿真的手段对高效低排放低温燃烧进行了系统深入的研究。本文综合运用EGR,喷射策略以及燃料设计等手段,在高压共轨发动机上实现了低温燃烧。研究了低温燃烧模式下燃烧和排放的特点;并且通过燃料设计的理念,拓展了低温燃烧的运行工况和提高了低温燃烧的热效率;结合低温燃烧和多次喷射的优点,研究了多次喷射策略对发动机低温燃烧燃烧和排放的影响规律;最后,通过仿真手段对低温燃烧缸内过程和热效率的影响因素进行了分析。全文总结如下:
     (1)采用多次喷射策略,实现了发动机HCCI-DI复合燃烧模式。研究了预喷时刻,预喷量,以及主喷时刻等因素对HCCI-DI燃烧和排放特性的影响规律,并通过综合考虑各影响因素,对HCCI-DI燃烧进行了优化。研究表明:HCCI-DI燃烧模式的放热率由HCCI低温反应、HCCI高温反应和扩散燃烧三阶段组成。主喷时刻对HCCI-DI燃烧和排放的影响最大,预喷量和预喷时刻的影响较小。HCCI-DI燃烧模式可以保证在烟度和燃油消耗率变化不大的情况下,有效地降低了中小负荷的NO_X排放。但是,高负荷的NO_X排放仍然较高,有待进一步降低。
     (2)为了进一步降低NO_X排放,通过采用中等EGR和推迟喷射时刻的策略,研究了低温燃烧(LTC)的燃烧和排放特征,并且和传统燃烧模式进行了对比;研究了不同EGR率、喷射时刻和喷射压力对低温燃烧和排放的影响规律。研究表明:采用中等EGR率,结合延长滞燃期的方式也能在中低负荷范围内实现低温燃烧。低温燃烧缸内压力峰值显著下降,放热率的开始时刻明显的推迟,滞燃期增长,有利于燃料和空气的混合。低温燃烧下,NO_X排放随着喷射时刻的推迟而下降,烟度排放随着喷射时刻的推迟出现了先上升后下降的趋势,实现了NO_X排放和烟度排放的同时下降。NO_X排放随着喷射压力的提高而升高,烟度、HC和CO排放随着喷射压力的提高而下降。
     (3)根据燃料设计的思想,研究了含氧燃料生物柴油和多次喷射策略对低温燃烧和排放的影响;研究了燃料组分、预喷时刻和预喷量对混合燃料低温燃烧模式的影响规律。研究表明:含氧燃料生物柴油,促进和改善了缸内燃烧,有利于烟度排放的降低。当燃料为纯生物柴油时,在高负荷也实现了低温燃烧。生物柴油把低温燃烧的负荷范围拓展到高负荷,低温燃烧的热效率较柴油略高或者与其相当。多次喷射低温燃烧可以进一步降低NO_X排放,热效率也得到改善,但是烟度排放增加,缩小了工况运行范围。选择合适的预喷量,有助于降低低温燃烧压力升高率和循环变动。
     (4)为了进一步优化低温燃烧模式,研究了乙醇柴油对低温燃烧的燃烧和排放的影响规律,并且对乙醇柴油的低温燃烧运行范围进行了分析。研究表明:乙醇柴油是低十六烷值含氧燃料,低十六烷值可使滞燃期延长,增加了燃料和空气的混合时间,降低了燃空当量比,同时含氧可以促进和改善了缸内燃烧,两者有效地降低了烟度排放,烟度排放在高负荷下降更加明显,乙醇柴油将低温燃烧的负荷运行范围拓展到高负荷。BDE20燃料可采用较早的喷射时刻,使低温燃烧的热效率得到进一步提高。与柴油燃料相比,BDE20燃料在拓展低温燃烧负荷范围的同时,实现了高效低排放的燃烧模式。
     (5)通过运用3D流体力学软件对传统燃烧和低温燃烧模式进行了仿真计算,研究了缸内的温度、正庚烷、CH_2O、OH、NO和CO分布和发展历程,并且重点对影响低温燃烧热效率的各因素进行了分析。研究表明:缸内压力的模拟计算结果与试验结果比较吻合。低温燃烧的最高温度比传统燃烧低。低温燃烧模式的正庚烷低温氧化过程明显要长于传统燃烧模式。从影响热效率的各个因素来说,燃烧相位对热效率影响最大,燃烧效率的影响次之,燃烧持续期和放热率形状的影响较小。从低温燃烧的实现方式来说,喷射时刻对热效率的影响大于EGR的作用。
Under the influence of the severer energy crisis and stricter environmental regulations,study on high-efficiency and low-emissions of low temperature combustion mode wasinvestigated experimentally and computationally. In this study, the low temperaturecombustion (LTC) was achieved in a common rail diesel engine using the means of exhaustgase recirculation (EGR), injection strategy and fuel design concept. The combustion andemissions characteristics of LTC were investigated. Then the fuel design concept was used toextend the operation range of LTC and improve the thermal efficiency. The combination ofLTC and the injection strategy was also investigated. Finally, the time evolution and spatialdistributions of the in-cylinder temperature and several spieces were studied using the3Dsimulation software, and the factors of lower thermal efficiency for were analyzed. The maincontent is as follow:
     (1) The HCCI-DI combustion was achieved using multiple injection strategies. Theeffects of pilot injection timing, pilot injection quantity and main injection timing oncombustion and emissions of HCCI-DI combustion were investigated. The results show thatthe heat release rate of HCCI-DI combustion consists of the cool flame stage, the thermalflame stage of HCCI combustion and diffusion stage of CIDI combustion. The smokeemissions and the brake specific fuel consumption of HCCI-DI combustion are kept almostconstant, and NO_Xemissions can be reduced greatly. But NOx emissions is still in a highlevel that need to be reduced in the high load.
     (2) In order to further reduce the NO_Xemissions, the low temperature combustion usingmoderate level of EGR and the prolonged injection timing was achieved in low and moderateloads. The results of LTC combustion were compared with those obtained from CIDIcombustion. The effects of EGR rate, start of injection and injection pressure on emissionsand combustion characteristics of LTC combustion were investigated. The results show thatthe in-cylinder pressure of LTC is greatly reduced and the start of combustion is obviouslyretarded. The prolonged ignition delay of LTC is ideal for fuel-air mixing. The NO_Xemissionsdecrease monotonically, and smoke emissions increase firstly and then decrease as theinjection timing is retarded. The NO_Xand smoke emissions of LTC are reducedsimultaneously in low and moderate loads. The NO_Xemissions increase, but smoke, HC andCO emissions decrease with the increase of injection pressure.
     (3) Based on the fuel design concept, the effects of the oxygenated fuel and multipleinjection strategy on combustion and emissions of LTC were investigated. The effects of fuelblends, pilot injection timing and pilot injection quantity on combustion and emissions ofLTC were also investigated. The results show that the combustion of LTC is improvedbecause of the oxygen content of biodiesel, leading to the reduction of smoke emissions. TheLTC combustion fueled with biodiesel fuel blends is achieved over a wide operating range.The brake thermal efficiency of biodiesel fuel blends is slightly higher than that of diesel fuel.The NO_Xemissions of LTC could be further reduced by employing pilot injection strategy,but the smoke emissions increase. The pressure rise rate and cycle variation of LTC is reducedwhen the appropriate pilot quantity is applied.
     (4) In order to optimize the LTC further, the effects of ethanol-biodiesel-diesel fuelblends on emissions and combustion of LTC were investigated, and the operating range ofLTC combustion was discussed. The results show that the lower smoke emissions are theresult of the lower cetane numbers of fuel blends that lead to longer ignition delay and greaterfuel-air mixing time. Moreover, the higher oxygen content in ethanol is effective for the reduction of smoke emissions. The effects of ethanol on the reduction of smoke emissions areobvious at the high loads. In this way, the upper load limit of LTC is extended. The brakethermal efficiency of BDE20(20%ethanol in blends) is improved because of the advancedinjection timing. The high-efficiency and low-emissions of LTC are achieved withethanol-biodiesel-diesel fuel blends.
     (5) Combustion process, n-heptane, CH_2O, OH, NO and CO distributions of both CIDIand LTC combustion were investigated using a CFD software. Factors governing the thermalefficiency were also investigated. It is found that the simulated in-cylinder pressures are ingood agreement with the measured results for both combustion modes. The maximumtemperature of LTC is lower than those of CIDI combustion. The low temperature oxidationprocess of LTC is longer than that of CIDI combustion. The results show that the combustionphasing is the most important factor, followed by combustion efficiency. The effects ofcombustion duration and the shape of heat release rate are minimal. From the means of LTCcombustion, the effect of the injection timing on brake thermal efficiency is greater than thatof EGR.
引文
[1]中国石油经济技术研究院,2011年国内外油气行业发展报告,http://www.cpcia.org.cn/html/16/20122/995082820.html
    [2]国际石油网,我国石油消费与替代趋势分析报告,http://oil.in-en.com/html/oil-14411441941103612.html
    [3]华夏汽车网,中国汽车产量近世界1/4保有量破亿,http://www.sinocars.com/qiche/sinonews/gundong/2012/0308/1167/11999.html
    [4]中国汽车工业协会,新华信国际信息咨询(北京)有限公司,2011年中国汽车发展特点及未来趋势,http://www.sinotrust.cn/corpnews.do?cmd=newsdetail&id=1880
    [5]胡玉华,郭彬,欧Ⅵ汽车排放标准对我国汽车制造业的冲击,浙江省标准化研究院浙江省WTO/TBT-SPS通报咨询中心.
    [6]中华人民共和国国家标准,环境空气质量标准,GB3095-2012.
    [7]韩东,吕兴才,黄震,柴油机低温燃烧的最新进展,车用发动机,第2期,5‐11页.
    [8] Neely, G.D., Sasaki, S., Huang, Y., Leet, J.A. and Stewart, D.W., New Diesel Emission ControlStrategy to Meet US Tier2Emissions Regulation, SAE Paper2005-01-1091,2005.
    [9] Ryo Hasegawa, Hiromichi Yanagihara. HCCI Combustion in DI Diesel Engine. SAE2003-01-0745,2003.
    [10] Yokota, H., Kudo, Y., Nakajima, H., Kakegawa, T. and Suzuki, T.,“A New Concept for Low EmissionDiesel Combustion”[C], SAE Paper970891.
    [11] Roy Ogink. Gasoline HCCI Modeling: An engine Cycle simulation code with a detailed chemistry,multi-zone combustion model. Department of thermo and dynamics, Chalmers University oftechnology, Sweden,2002.
    [12] George Kontarakis, Nick Collings, Tom Ma. Demonstration of HCCI using a single cylinderfour-stroke SI engine with modified valve timing[C]. SAE2000-01-2870
    [13] Mingfa Yao, Zheng Chen, Zunqing Zheng, Bo Zhang and Yuan Xing. Study on the controllingstrategies of homogeneous charge compression ignition combustion with fuel of dimethyl ether andmethanol[J]. Fuel,2006, Vol.85(14-15):2046-2056
    [14] Ming Jia and Maozhao Xie. A chemical kinetics model of iso-octane oxidation for HCCI engines[J].Fuel,2006, Vol.85(17-18):2593-2604
    [15] Kim DS, Lee CS. Effect of n-heptane premixing on combustion characteristics of diesel engine[J].Energy Fuels,2005, Vol.19:2240-2246
    [16] Dae Sik Kim and Chang Sik Lee. Improved emission characteristics of HCCI engine by variouspremixed fuels and cooled EGR[J]. Fuel,2006, Vol.85(5-6):695-704
    [17] Mingfa Yao, Zhaolei Zheng, Haifeng Liu. Progress and recent trends in homogeneous chargecompression ignition (HCCI) engines[J]. Progress in Energy and Combustion Science,2009,Vol.35(5):398-437.
    [18] Haruyuki Yokota, Hiroshi Nakajima, Toshiaki Kakegawa. A New Concept for Low Emission DieselCombustion (2nd Rep.: Reduction of HC and CO Emission, and Improvement of Fuel Consumptionby EGR and MTBE Blended Fuel).981933,1998.
    [19] Kimura S, Aoki S, Ogawa H, et al. New Combustion Concept for Ult ra2Clean and High-EfficiencySmall DI Diesel Engines[C]. SAE Paper1999-01-3681.
    [20] Kimura S, Aoki O, Kitahara Y, et al. Ultra-Clean Combustion Technology Combining aLow-Temperature and Premixed Combustion Concept for Meeting Future Emission Standards[C].SAE Paper2001-01-0200.
    [21] Taewon LEE, Rolf Deneys Reitz. The Effect of Intake Boost Pressure on MK(Modulated Kinetics)Combustion. JSME International Journal. October28th,2002(No.02-5177).
    [22] Dae Choi, Paul C. Miles, Hanho Yun, Rolf D. Reitz. A parametric study of low-tempertaure,late-injection combustion in HSDI diesel engine. JSME International Journal Series B, Vol.48, No.4,2005.
    [23] Hiroshi Ogawa, Shuji Kimura, Masao Koike, Yoshiteru Enomoto. A Study of Heat Rejection andCombustion Characteristics of a Low-temperature and Pre-mixed Combustion Concept Based onMeasurement of Instantaneous Heat Flux in a Direct-Injection Diesel Engine. SAE2000-01-2792,2000.
    [24] Lyle M.Pickett, Dennis L.Siebers. Non-sooting, Low Flame Temperature Mixing-controlled DI DieselCombustion. SAE2004-01-1399,2004.
    [25] Sanghoon Kook, Choongsik Bae. The influence of Charge dilution and Injection Timing OnLow-Temperature Diesel Combustion and Emissions.2005-01-3837.
    [26] Malin Alriksson, Denbratt I. Low Temperature Combustion In a Heavy Duty Diesel Engine UsingHigh Levels of EGR. SAE2006-01-0075.
    [27] Christof Noehre, Magnus Andersson. Characterization of Partially Premixed Combustion. SAE2006-01-3412
    [28] Simescu S, Ryan T W. Partial Pre-Mixed Combustion with Cooled and Uncooled EGR in aHeavy-Duty Diesel Engine[C]. SAE Paper2002-01-0963.
    [29] Tomoyuki Narushima, Akinori Morishima. Experimental and Numerical Studies on Soot Formation inFuel Rich Mixture. JSAE20030160
    [30] Kazuhiro Akihama, Yoshiki Takatori. Mechanism of the Smokeless Rich Diesel Combustion byReducing Temperature. SAE2001-01-0655.
    [31] Aceves S, Flowers D. A Detailed Chemical Kinetic analysis of Low Temperature Non-Sooting DieselCombustion, SAE Paper2005-01-0923,2005.
    [32] Zheng M, Mulenga M, Reader G, et al. Biodiesel Engine Performance and Emissions in LowTemperature Combustion, Fuel2007,87(6):714-722.
    [33] Hideyuki Ogawa, Noboru Miyamoto, Hajime Shimizu. Characteristics of Diesel Combustion in LowOxygen Mixtures with Ultra-High EGR.SAE2006-01-1147.
    [34] Carlo Beatrice, Giovanni Avolio, Nicola Del Giacomo, Chiara Guido. Compression Ratio Influence onthe Performance of an Advanced Single-Cylinder Diesel Engine Operating in Conventional and LowTemperature Combustion Mode. SAE2008-01-1678,2008.
    [35] Malin Alriksson, Ingemar Denbratt. Low Temperature Combustion in a Heavy Duty Diesel EngineUsing High Levels of EGR. SAE2006-01-0075,2006.
    [36] Murata Y, Kusaka J, Odaka M, et al. Emissions Suppression Mechanism of Premixed DieselCombustion with Variable Valve Timing. International Journal of Engine Research,2007,8:415-428.
    [37] Chris Gehrke, Michael Radovanovic, Doug Frieden, Eric Schroeder. Heavy-Duty Low TemperatureCombustion Development Activities at Caterpillar.2007.
    [38] Yun H, Sellnau M, Milovanovic N, et al. Development of Premixed Low-Temperature DieselCombustion in a HSDI Diesel Engine. SAE Paper2008-01-0639,2008.
    [39] Helmantel A. Reduction of NOx Emissions from a Light Duty DI Diesel Engine in Medium LoadConditions with High EGR Rates. SAE Paper2008-01-0643,2008.
    [40] Henein N, Bhattacharyya A, Schipper J, et al. Combustion and Emission Characteristics of a SmallBore HSDI Diesel Engine in the Conventional and LTC Combustion Regimes. SAE Paper2005-24-045,2005.
    [41] Choi D, Miles P. A Parametric Study of Low-Temperature, Late-Injection Combustion in a HSDIDiesel Engine, JSME International Journal, Series B,2005,48(4):656-664.
    [42] Yoshinori Iwabuchi, Kenji Kawai, Takeshi Shoji, Yoshinaka Takeda. Trial of New Concept DieselCombustion System Premixed Compression-Ignited Combustion. SAE1999-01-0185,1999.
    [43] Timothy J. Jacobs, Stanislav V. Bohac,Dennis N. Assanis,Patrick G. Szymkowicz. Lean and RichPremixed Compression Ignition Combustion in a Light-Duty Diesel Engine. SAE2005-01-0166,2005
    [44] Timothy J. Jacobs, Alexander Knafl, Stanislav V. Bohac, Dennis N. Assanis, Patrick G. Szymkowicz.The Development of Throttled and Unthrottled PCI Combustion in a Light-Duty Diesel Engine. SAE2006-01-0202,2006.
    [45] Timothy J. Jacobs, Dennis N. Assanis. The attainment of premixed compression ignitionlow-temperature combustion in a compression ignition direct injection engine. Proceedings of theCombustion Institute31(2007)2913–2920.
    [46] Stephen Busch, Stanislav V. Bohac, Dennis N. Assanis. A Study of the Transition Between LeanConventional Diesel Combustion and Lean, Premixed, Low-Temperature Diesel Combustion. Journalof Engineering for Gas Turbines and Power Vol.130,2008.
    [47] Andrew M. Ickes, Dennis N. Assanis, Stanislav V. Bohac. Load Limits with Fuel Effects of aPremixed Diesel Combustion Mode. SAE2009-01-1972,2009.
    [48] H Yun, R D Reitz. Combustion optimization in the low-temperature diesel combustion regime. Int. J.Engine Res.2005,6,513-524.
    [49] Hanho Yun, Rolf D. Reitz. An Experimental Investigation on the Effect of Post-Injection Strategies onCombustion and Emissions in the Low-Temperature Diesel Combustion Regime. Journal ofEngineering for Gas Turbines and Power2007,129,279-286.
    [50] Richard Opat, Youngchul Ra, Manuel A. Gonzalez D., Roger Krieger, Rolf D. Reitz, David E. Foster.Investigation of Mixing and Temperature Effects on HC/CO Emissions for Highly Dilute LowTemperature Combustion in a Light Duty Diesel Engine. SAE2007-01-0193,2007.
    [51] Shijin Shuai, Neerav Abani, Takeshi Yoshikawa, Rolf D. Reitz, Sung Wook Park. Evaluation of theeffects of injection timing and rate-shape on diesel low temperature combustion using advanced CFDmodeling. Fuel88(2009)1235-1244.
    [52] Shijin Shuai, Neerav Abani, Takeshi Yoshikawa, Rolf D. Reitz, Sung Wook Park. Simulating lowtemperature diesel combustion with improved spray models. International Journal of ThermalSciences48(2009)1786–1799.
    [53] Caroline L. Genzale, Rolf D. Reitz, Mark P.B. Musculus. Effects of spray targeting on mixturedevelopment and emissions formation in late-injection low-temperature heavy-duty diesel combustion.Proceedings of the Combustion Institute32(2009)2767–2774.
    [54] Thierry Lachaux, Mark P. B. Musculus, Satbir Singh, Rolf D. Reitz. Optical Diagnostics ofLate-Injection Low-Temperature Combustion in a Heavy-Duty Diesel Engine. Journal of Engineeringfor Gas Turbines and Power2008,1301-9.
    [55] Magnus Lewander, Bengt Johansson, Per Tunest l, Nathan Keeler, Simon Tullis, NebojsaMilovanovic, P r Bergstrand. Evaluation of the Operating Range of Partially Premixed Combustion ina Multi Cylinder Heavy Duty Engine with Extensive EGR. SAE2009-01-1127,2009.
    [56] Magnus Lewander, Kent Ekholm, Bengt Johansson, Per Tunest l, Nebojsa Milovanovic, NathanKeeler, Tony Harcombe, P r Bergstrand. Investigation of the Combustion Characteristics with Focuson Partially Premixed Combustion in a Heavy Duty Engine. SAE2008-01-1658,2008.
    [57] Ming Zheng, Xiaoye Han, Yuyu Tan, Martin S. Kobler, Suek-Jin Ko, Meiping Wang. LowTemperature Combustion of Neat Biodiesel Fuel on a Common-rail Diesel Engine. SAE2008-01-1396,2008.
    [58] Ming Zheng, Meiping Wang, Graham T. Reader, Mwila C. Mulenga, Jimi Tjong. An Improvement onLow Temperature Combustion in Neat Biodiesel Engine Cycles. SAE2008-01-1670,2008.
    [59] Usman Asad, Ming Zheng, Xiaoye Han, Graham T. Reader, Meiping Wang. Fuel Injection Strategiesto Improve Emissions and Efficiency of High Compression Ratio Diesel Engines. SAE2008-01-2472,2008.
    [60] Ming Zheng, Yuyu Tan, Mwila Clarence Mulenga, Meiping Wang. Thermal Efficiency Analyses ofDiesel Low Temperature Combustion Cycles. SAE2007-01-4019,2007.
    [61] Raj Kumar, Ming Zheng. Fuel Efficiency Improvements of Low Temperature Combustion DieselEngines. SAE2008-01-0841,2008.
    [62] K. Okude, K. Mori, S. Shiino, T. Moriya, Premixed compression ignition (PCI) combustion forsimultaneous reduction of NOXand soot in diesel engine, SAE Paper No.2004-01-1907.
    [63] Prashanth K. Karra, Matthias K. Veltman, and Song-Charng Kong. Characteristics of EngineEmissions Using Biodiesel Blends in Low-Temperature Combustion Regimes. Energy&Fuels2008,22,3763–3770.
    [64] Matthias K. Veltman, Prashanth K. Karra, Song-Charng Kong. Effects of Biodiesel Blends onEmissions in Low Temperature Diesel Combustion. SAE2009-01-0485,2009.
    [65] Valerie L. Stringer, Way Lee Cheng, Chia-fon F. Lee, Alan C. Hansen. Combustion and Emissions ofBiodiesel and Diesel Fuels in Direct Injection Compression Ignition Engines using Multiple InjectionStrategies. SAE2008-01-1388,2008.
    [66] Tie Li, Yukihiro Okabe, Hiroyuki Izumi, Toshio Shudo, Hideyuki Ogawa. Dependence of Ultra-HighEGR Low Temperature Diesel Combustion on Fuel Properties. SAE2006-01-3387,2006.
    [67] Tie Li, Hiroyuki Izumi, Toshio Shudo, Hideyuki Ogawa, Yukihiro Okabe. Characterization of LowTemperature Diesel Combustion with Various Dilution Gases. SAE2007-01-0126,2007.
    [68] Dong Han, Andrew M. Ickes, Stanislav V. Bohac, Zhen Huang, Dennis N. Assanis. Premixedlow-temperature combustion of blends of diesel and gasoline in a high speed compression ignitionengine. Proceedings of the Combustion Institute doi:10.1016/j.proci.2010.07.045.
    [69] D. Han, A.M. Ickes, D.N. Assanis, Z. Huang, S.V. Bohac, Attainment and load extension ofhigh-efficiency premixed low-temperature combustion with dieseline in a compression ignition engine,Energy Fuels24(2010)3517-3525.
    [70] Leif Hildingsson, Gautam Kalghatgi, Nigel Tait, Bengt Johansson, Andrew Harrison. Fuel OctaneEffects in the Partially Premixed Combustion Regime in Compression Ignition Engines. SAE2009-01-2648,2009.
    [71] Vittorio Manente, Bengt Johansson, Per Tunestal. Partially Premixed Combustion at High Load usingGasoline and Ethanol, a Comparison with Diesel. SAE2009-01-0944,2009.
    [72] Vittorio Manente, Bengt Johansson and Per Tunestal, William Cannella. Effects of Different Type ofGasoline Fuels on Heavy Duty Partially Premixed Combustion. SAE2009-01-2668,2009.
    [73] Vittorio Manente, Per Tunestal, Bengt Johansson, William Cannella. Effects of Ethanol and DifferentType of Gasoline Fuels on Partially Premixed Combustion from Low to High Load. SAE2010-01-0871,2010.
    [74] Vittorio Manente, Bengt Johansson, Per Tunestal, William Cannella. Influence of Inlet Pressure, EGR,Combustion Phasing, Speed and Pilot Ratio on High Load Gasoline Partially Premixed Combustion.SAE2010-01-1471,2010.
    [75] Carl Magnus Lewander, Bengt Johansson and Per Tunestal. Extending the Operating Region ofMulti-Cylinder Partially Premixed Combustion using High Octane Number Fuel. SAE2011-01-1394,2011.
    [76] Magnus Lewander, Bengt Johansson and Per Tunest l. Investigation and Comparison of MultiCylinder Partially Premixed Combustion Characteristics for Diesel and Gasoline Fuels. SAE2011-01-1811,2011.
    [77] Sage L. Kokjohn, Reed M. Hanson, Derek A. Splitter, Rolf D. Reitz. Experiments and Modeling ofDual-Fuel HCCI and PCCI Combustion Using In-Cylinder Fuel Blending. SAE2009-01-2647,2009.
    [78] Derek Splitter, Sage Kokjohn, Keith Rein, Reed Hanson, Scott Sanders, Rolf Reitz. An OpticalInvestigation of Ignition Processes in Fuel Reactivity Controlled PCCI Combustion. SAE2010-01-0345,2010.
    [79] Reed M. Hanson, Sage L. Kokjohn, Derek A. Splitter, Rolf D. Reitz. An Experimental Investigation ofFuel Reactivity Controlled PCCI Combustion in a Heavy-Duty Engine. SAE2010-01-0864,2010.
    [80] Patrick B. Dunbeck, Rolf D. Reitz. An Experimental Study of Dual Fueling with Gasoline PortInjection in a Single-Cylinder, Air-Cooled HSDI Diesel Generator. SAE2010-01-0869,2010.
    [81] Derek Splitter, Rolf Reitz, Reed Hanson. High Efficiency, Low Emissions RCCI Combustion by Useof a Fuel Additive. SAE2010-01-2167,2010.
    [82] Scott Curran, Vitaly Prikhodko, Kukwon Cho, Charles Sluder, James Parks, Robert Wagner, SageKokjohn, Rolf Reitz. In-Cylinder Fuel Blending of Gasoline/Diesel for Improved Efficiency andLowest Possible Emissions on a Multi-Cylinder Light-Duty Diesel Engine. SAE2010-01-2206,2010.
    [83] Sage Kokjohn, Reed Hanson, Derek Splitter, John Kaddatz, Rolf Reitz. Fuel Reactivity ControlledCompression Ignition (RCCI) Combustion in Light-and Heavy-Duty Engines. SAE2011-01-0357,2011.
    [84] Reed Hanson, Sage Kokjohn, Derek Splitter, Rolf Reitz. Fuel Effects on Reactivity ControlledCompression Ignition (RCCI) Combustion at Low Load. SAE2011-01-0361,2011.
    [85] Derek Splitter, Reed Hanson, Sage Kokjohn, Rolf Reitz. Reactivity Controlled Compression Ignition(RCCI) Heavy-Duty Engine Operation at Mid-and High-Loads with Conventional and AlternativeFuels. SAE2011-01-0363,2011.
    [86] Karthik V. Puduppakkam, Long Liang, Chitralkumar V. Naik, Ellen Meeks, Sage L. Kokjohn, Rolf D.Reitz. Use of Detailed Kinetics and Advanced Chemistry-Solution Techniques in CFD to InvestigateDual-Fuel Engine Concepts. SAE2011-01-0895,2011.
    [87] Adam B. Dempsey, Rolf D. Reitz. Computational Optimization of Reactivity Controlled CompressionIgnition in a Heavy-Duty Engine with Ultra Low Compression Ratio. SAE2011-24-0015,2011.
    [88] Derek Splitter, Reed Hanson, Sage Kokjohn, Martin Wissink, Rolf Reitz. Injection Effects in LowLoad RCCI Dual-Fuel Combustion. SAE2011-24-0047,2011.
    [89] Kazuhisa Inagaki, Takayuki Fuyuto, Kazuaki Nishikawa, Kiyomi Nakakita, Ichiro Sakata.Combustion System with Premixture-controlled Compression. R&D Review of Toyota CRDL41No.3.
    [90] Ji LB, Lu XC, Ma JJ, et al. Experimental Study on Influencing Factors of iso-OctaneThermo-atmosphere Combustion in a Dual-Fuel Stratified Charge Compression Ignition (SCCI)Engine. Energy Fuels,2009,23:2405-2412.
    [91]吉丽斌,吕兴才,马骏骏,黄震.异辛烷/柴油双燃料分层充质压缩着火燃烧和排放特性.上海交通大学学报,2008, Vol.42(3):375-380.
    [92]吉丽斌,吕兴才,马骏骏,黄震.异辛烷/柴油双燃料分层充量压缩点火燃烧的试验研究.内燃机工程,2008, Vol.29(5):1-6.
    [93] Tiegang Fang, Yuan-chung Lin, Tien Mun Foong, Chia-fon F. Lee. Reducing NOXEmissions from aBiodiesel-Fueled Engine by Use of Low-Temperature Combustion. Environ. Sci. Technol.2008,42,8865–8870.
    [94] Hari Setiapraja, Takuma Ozawa, Kosuke Hara, Kenji Yamazaki, Hideyuki Ogawa. CombustionCharacteristics of Emulsified Blends of Aqueous Ethanol and Diesel Fuel in a Diesel Engine withHigh Rates of EGR and Split Fuel Injections. SAE2011-01-1820,2011.
    [95] Rutger Dijkstra, Gabriele Di Blasio, Michael Boot, Carlo Beatrice, Claudio Bertoli. Assessment of theEffect of Low Cetane Number Fuels on a Light Duty CI Engine: Preliminary ExperimentalCharacterization in PCCI Operating Condition. SAE2011-24-0053,2011.
    [96] L. Zhu, W.G. Zhang, Z. Huang. Influence of biodiesel-methanol blends on the emissions in thelow-temperature combustion of a direct-injection diesel engine using high levels of exhaust gasrecirculation. Proc. IMechE Part D: J. Automobile Engineering,2011, doi:10.1177/0954407011403389.(SCI).
    [97] L. Zhu, C. S. Cheung, W.G. Zhang, Z. Huang. Effect of charge dilution on gaseous and particulateemissions from a diesel engine fueled with biodiesel and biodiesel blended with methanol and ethanol.Applied Thermal Engineering2011, doi:10.1016/j.applthermaleng.2011.03.023.(SCI).
    [98]吕兴才,燃料设计控制发动机燃烧与排放的试验研究[D],博士学位论文,上海交通大学,2004
    [99]侯玉春,燃料设计控制HCCI燃烧与排放的试验研究[D],博士学位论文,上海交通大学,2007
    [100]马骏骏,基于燃料设计与管理的HCCI/DI分层复合燃烧的试验研究[D],博士学位论文,上海交通大学,2009
    [101]吉丽斌,基于燃料设计与管理的复合HCCI燃烧的试验研究[D],博士学位论文,上海交通大学,2011
    [102] Lu X.C., Chen W., Huang Z. A fundamental study on the control of the HCCI combustion andemissions by fuel design concept combined with controllable EGR, Part1: The basic characteristics ofHCCI combustion [J]. Fuel2005,84:1074-1083.
    [103] Lu X.C., Chen W., Huang Z. A fundamental study on the control of the HCCI combustion andemissions by fuel design concept combined with controllable EGR, Part2: Effect of operatingconditions and EGR on HCCI combustion [J]. Fuel2005,84:1084-1092.
    [104] Hou Y., Huang Z., Lu X., Fang J., Zu L. Fuel design real time to control HCCI combustion [J].ChineseScience Bulletin,2006,51:2673-2680.
    [105] Lü X.C., Hou Y.C., Ji L.B. et al. Heat Release Analysis on Combustion and Parametric Study onEmissions of HCCI Engines fueled with2-Propanol/n-Heptane Blend Fuels [J]. Energy&Fuels2006,20:1870-1878.
    [106] S. Simescu, B.F. Scott, G.D. Lee, An experimental investigation of PCCI-DI combustion andemissions in a heavy-duty diesel engine, SAE Paper No.2003-01-0345.
    [107] J.J. Ma, X.C. Lü, L.B. Ji, Z. Huang, An experimental study of HCCI-DI combustion and emissions ina diesel engine with dual fuel, Int. J. Thermal Sci.47(2008)1235–1242.
    [108] K. Okude, K. Mori, S. Shiino, K. Yamada, Y. Matsumoto, Effects of multiple injections on dieselemissions and combustion characteristics, SAE Paper No.2007-01-4178.
    [109] Jinwoo Lee, Jinwoog Jeon, Jungseo Park, Choongsik Bae, Effect of multiple injection strategies onemission and combustion characteristics in a single cylinder direct-injection optical engine. SAE PaperNo.2009-01-1354;2009.
    [110] Fernando S., Hall C., Jha S.. NOXreduction from biodiesel fuels [J]. Energy&Fuels,2006,20:376-82.
    [111] Zheng M., Asad U., Han X., Wang M., Reader G.T., Hydrocarbon impact on NOXsurvivability duringdiesel low-temperature combustion cycles [J]. Proc. IMechE. Part D: J. Automobile Engineering2009,224:271-284.
    [112] Heywood, J. B.. Internal combustion engine fundamentals. Mcgraw-Hill, New York,1988.
    [113] Lapuerta, M., Rodr′guez-Ferna′ndez, J. and Agudelo, J. R. Diesel particulate emissions from usedcooking oil biodiesel. Bioresour. Technol.,2008,99,731-740.
    [114] Monyem, A. and Van Gerpen, J. H. The effect of biodiesel oxidation on engine performance andemissions. Biomass Bioenergy,2001,20,317-25.
    [115] Canakci, M. Performance and emissions characteristics of biodiesel from soybean oil. Proc. IMechE,Part D: J. Automob. Eng.,2005,219,915-22.
    [116] Schmidt, K. and Van Gerpen, J. H. The effect of biodiesel fuel composition on diesel combustion andemissions. SAE paper961086,1996.
    [117] Wang, W. G., Lyons, D. W., Clark, N. N., Gautam, M. and Norton, P. M. Emissions from nine heavytrucks fuelled by diesel and biodiesel blend without engine modification. Environ. Sci. Technol.,2000,34,933-939.
    [118] Will F. Colban, Paul C. Miles, Seungmook Oh. On the Cyclic Variability and Sources of UnburnedHydrocarbon Emissions in Low Temperature Diesel Combustion Systems. SAE2007-01-1837,2007.
    [119] David F. Merrion, Heavy-Duty Diesel Emission Regulations-Past, Present, and Future[C],SAE2003-01-0040.
    [120] Cheng, A. S., Upatnieks, A. and Mueller, C. J. Investigation of the impact of biodiesel fuelling on NOXemissions using an optical direct injection diesel engine. Int. J. Engine Res.,2006,7,297-318.
    [121] E.A. Ajav, B. Singh, T.K. Bhattacharya, Experimental study of some performance parameters of aconstant speed stationary diesel engine using ethanol-diesel blends as fuel, Biomass Bioenergy17(4)(1999)357-65.
    [122] M. Abu-Qudais, O. Haddad, M. Qudaisat, The effect of alcohol fumigation on diesel engineperformance and emissions, Energy Conversion Manage41(4)(2000)389-99.
    [123] A.C. Hansen, Q. Zhang, P.W. Lyne, Ethanol-diesel fuel blends-a review, Bioresource Technology96(2005)277-285.
    [124] D.C. Rakopoulos, C.D. Rakopoulos, E.C. Kakaras, E.G. Giakoumis, Effects of ethanol-diesel fuelblends on the performance and exhaust emissions of heavy duty DI diesel engine. Energy Conversionand Management2008;49:3155-3162.
    [125] D. Li, Z. Huang, X.Lu, W. Zhang, J. Yang, Physico-chemical properties of ethanol-diesel blend fueland its effect on performance and emissions of diesel engines, Renewable Energy30(2005)967-976
    [126] J. Huang, Y. Wang, S. Li, A.P. Roskilly, H. Yu, H. Li, Experimental investigation on the performanceand emissions of a dieselengine fuelled with ethanol–diesel blends, Applied Thermal Engineering29(2009)2484-2490.
    [127] P. Kwanchareon, A. Luengnaruemitchai, S. Jai-In, Solubility of a diesel-biodiesel-ethanol blend, itsfuel properties, and its emission characteristics from diesel engine, Fuel86(2007)1053-1061.
    [128] X. Lu, J. Yang, W. Zhang, Z. Huang, Effect of cetane number improver on heat release rate andemissions of high speed diesel engine fuelled with ethanol-diesel blend fuel, Fuel83(2004)2013-20.
    [129] L. Pidol, B. Lecointe, L. Starck, N. Jeuland, Ethanol-biodiesel-diesel fuel blends: performances andemissions in conventional diesel and advanced low temperature combustions, Fuel2011;doi:10.1016/j.fuel.2011.09.008.
    [130] T. Kitamura, T. Ito, J. Senda, H. Fujimoto, Extraction of the suppression effects of oxygenated fuels onsoot formation using a detailed chemical kinetic model, JSAE Review22(2001)139-145.
    [131] N. Miyamoto, H. Ogawa, N.A. Nurun, K. Obata, T. Arima, Smokeless, low NOX, high thermalefficiency, and low noise diesel combustion with oxygenated agents as main fuel, SAE PaperNo.980506.
    [132] M. Lapuerta, O. Armas, R. Garcia-Contreras, Effect of ethanol on blending stability and diesel engineemissions, Energy Fuels23(2009)4343-54.
    [133] Y. Ra and R. D. Reitz,"A Reduced Chemical Kinetic Model for IC Engine Combustion Simulationswith Primary Reference Fuels", Combustion and Flame, Vol.155, pp.713–738,2008.
    [134] Lawrence Livermore National Laboratory. N-Heptane, Detailed Mechanism, Version3.Https://www-pls.llnl.gov/?url=science_and_technology-chemistry-combustion.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700