用户名: 密码: 验证码:
新型光学涡旋的调控与应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
光学涡旋是具有螺旋型波前和轨道角动量的特殊光场,此种特性使其在诸如光学微操作、原子光学、空间光信息传输等多个领域都有重要的潜在应用价值。特别是最近十几年来,光学涡旋方面的研究与应用迅速发展成为现代光学中的一个新兴领域,光学涡旋的产生、调制、探测以及应用机理等问题,成为本学科前沿的研究热点。长期以来,对光学涡旋的研究通常是以拉盖尔—高斯模的形式来描述的,2007年,Kotlyar提出了光学涡旋另一种解的形式—超几何分布模,在此理论基础上,本文对光学涡旋产生和旁瓣抑制的方法及其在实践中的相关应用进行了理论与实验研究,主要研究内容和成果如下:
     1.基于纯相位型空间光调制器研究了螺旋相位结构对严格有限孔径平面波的衍射,并详细讨论了夫琅和费衍射场的特点及其影响因素。利用激光直写技术加工了拓扑荷为1的螺旋相位板并产生光学涡旋,优化了制作工艺参数,并利用原子力显微镜和光学干涉的方法验证了螺旋相位板的加工效果。
     2.提出了直接由涡旋光束主亮环半径和第一旁瓣半径的比值来确定用于抑制光学涡旋旁瓣的最佳环状螺旋相位结构内外半径的方法,并推导出了环状螺旋相位结构对有限孔径平面波的夫琅和费衍射公式。证明得出了用于抑制光学涡旋旁瓣的最佳环状螺旋相位结构内外半径比值只与螺旋相位结构的拓扑荷有关,与入射光波长和螺旋相位结构尺寸大小等其他因素无关的结论。为提高最佳环状螺旋相位结构的设计奠定了理论基础。
     3.提出了基于类贝塞尔振幅调制螺旋相位结构抑制光学涡旋旁瓣的方法,推导了该相位结构对有限孔径平面波的夫琅和费衍射光场公式,并给出了计算最佳振幅调制参数和主亮环半径的解析式,基于数值计算的结果讨论了n+1阶和n-1阶类贝塞尔函数做振幅调制的适用范围,并利用纯相位型空间光调制器验证了该方法的有效性。该方法的优点在于不仅可以完全消除光学涡旋的旁瓣,而且不会改变涡旋光束主亮环的大小和形状。
     4.提出了基于光学涡旋主环—旁瓣关系的光学涡旋调制与探测方法,该方法在用于以光学涡旋为信息载体的自由空间光通信系统时,可以避开信息载体光束与解码器件之间所需的严格对准或相位匹配等苛刻条件,只需要接收并测量涡旋光束远场衍射图样中光强分布的半径即可进行信息解码。此种设计方法中同一拓扑荷的径向调制参数适用于其他条件下的入射光波长或螺旋相位结构尺寸。
     5.提出了利用类贝塞尔振幅调制螺旋相位滤波器实现提高径向希尔伯特变换输出图像对比度的方法,并给出了该相位滤波器点扩散函数的解析式。通过计算模拟验证了该方法对提高径向希尔伯特变换输出图像对比度的有效性。
Optical vortex is a particular light field that posses helical phase wavefront and orbital angular momentum. The unique nature of vortex field is expected to lead to important potential application in many areas including optical micromanipulation, atomic optics, space optical communication and so on. Especially in the last ten years, the study on optical vortex has become a new research field in the modern optics. In this application prospect, the production, modulation, detection and application mechanism of optical vortices have become a focal issues urgently needed to research. Different from Laguerre-Gaussian mode, in 2007, Kotlyar et al proposed an other solution form of optical vortices field-Hypergeometric mode. On the basis of this theory, this thesis focuses on the generation, sidelobes suppression and application of optical vortices. The major content and result are shown as follows:
     1. We proposed a simple, economical and reliable technique for fabricating a spiral phase plate (SPP) in a quartz substrate to generate optical vortex with a unit topological charge at the wavelengths of 632.8nm. The spiral phase plate is first formed in the photoresist by direct laser writing lithography and then transferred into the quartz substrate by inductively coupled plasma etching. The performance of the fabricated SPP is verified by using beam intensity distribution, which is in agreement with the theoretical calculation result. The interference measurement suggests that we have succeeded to generate optical vortex with a unit topological charge with the fabricated SPP. We also study the Fraunhofer diffraction of a plane wave of circular cross section by a spiral phase mask based on Spatial Light Modulator.
     2. We proposed a simple and accurate method for calculating the optimal width of an annular spiral phase plate (SPP) to generate optical vortices with sidelobes suppression and analyzed its properties. It is shown that sidelobes can be sharply suppressed when the ratio of inner and outer radii of an annular SPP equals to that of the principal ring and the first sidelobe diffracted by a circular SPP with the same topological charge n. Moreover, the ratio of inner and outer radii of the optimal annular SPP only depends on the topological charge n, while it is not affected by the incident wavelength and size of the SPP. This proposed approach is helpful for designing or setting an optimal annular SPP in many applications. Such as designing multi-ring structure of optical vortices with same or different topological charges and angular momentum directions in dynamic multi-optical tweezers as well as improving the bandwidth of the free space optical communication.
     3. We propose a generalized approach to producing optical vortices with suppressed sidelobes using a variable Bessel like function added to the conventional spiral phase plate (SPP) and establishes explicit relations between the radial modulation and the optimal sidelobes expression effect in the Bessel-like modulation technique. Experimental verifications are implemented by a phase-only spatial light modulator (SLM). Comparing with prior techniques, the proposed method has advantages in terms of wide topological charge coverage with variable Bessel like analytical functions and the unchanged primary ring size as compared to the conventional one. Furthermore, it verifies that both central and outskirt ring areas of the phase plate resulted in sidelobes in the diffraction pattern and the corresponding structural dimensions can be determined quantitatively.
     4. We propose a technique for modulating and detecting optical vortices based on the principal-sidelobe ring relationship, where topological charges are determined by radius ratios of the principal ring and the modified first sidelobe. The method is immune to harassments from alignment or phase matching between the encoded beams and the decoding element. Moreover, it is demonstrated that the radius ratio and corresponding radial modulation parameters are independent to the incident wavelength and the size of spiral phase mask.
     5. We proposed a novel spiral phase filter, called the Bessel-like modulated spiral phase filter to improve the output image contrast of radial Hilbert transform, and analyzed the analytical point spread function of the image processing system. The theoretical simulation shown that the Bessel-like modulated spiral phase filter possesses some advantages in comparison with the conventional spiral phase filter as for high contrast edge enhancement with high resolution.
引文
[1]. L. M.Pismen. Vortices in Nonlinear Fields. Oxford Science Publications. Oxford, 1999:101-123.
    [2]. L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, et al. Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes. Phys. Rev. A,1992,45: 8185-8189
    [3]. E. M. Wright, J. Arlt, K. Dholakia. Toroidal optical dipole traps for atomic Bose-Einstein condensates using Laguerre-Gaussian beams. Phys. Rev. A,2000,63:013608
    [4]. D. W. Zhang, X.-C. Yuan. Optical doughnut for optical tweezers, Opt. Lett.,2003,28: 740-742
    [5]. K. T. Gahagan, G. A. Swartzlander. Simultaneous trapping of low-index and high-index microparticles observed with an optical-vortex trap. J. Opt. Soc. Am. B,1999,16:533-537
    [6]. S. H. Tao, X.-C. Yuan, J. Lin et al. Influence of geometric shape of optically trapped particles on the optical rotation induced by vortex beams. J. Appl. Phys.2006,100:043105
    [7]. Berzanskis, A. Matijosius, A. Piskarkas, et al. Conversion of topological charge of optical vortices in a parametric frequency converter. Opt.Comm.1997,140:273-276
    [8]. V. R. Misko, V. M. Fomin, J. T. Devreese, et al. Stable vortex-antivortex molecules in mesoscopic superconducting triangles. Phys. Rev. Lett.2003,90:147003
    [9]. J. Leach, M. J. Padgett, S. M. Barnett, et al. Measuring the orbital angular momentum of a single photon. Phys. Rev. Lett.2002,88:257901
    [10]. M. Born, E. Wolf, Principles of Optics,7thed, Pergamon, New York,1999:554-632
    [11]. V. S. Ignatovskii, Trans. Opt. Inst. Petrograd, Ⅰ:Ⅳ,1919
    [12]. B. Richards, E. Wolf. Proc. Electromagnetic diffraction in optical systems, Ⅱ. Structure of the image field in an aplanatic system R. Soc. London, Ser. A.1957,253:358-370
    [13]. Boivin, A. J. Dow, E. Wolf. Energy flow in the neighborhood of the focus of a coherent beam. J. Opt. Soc. Am.1967,57:1171-1175
    [14]. W. Braunbek, G. Laukien. Einzelheiten zur halbebenen-beugung. Optik,1952,9:174-179
    [15]. J. F. Nye, M. V. Berry, Dislocations in wave trains. Proc. R. Soc. Lond. A.1974,336: 165-190
    [16]. M. V. Berry, Singularities in waves and rays. In Physics of Defect, Les Houches Sessions, R. Balian, M. Klemen, J. P. Poirier, North Holland, Amsterdam,1981:453-543
    [17]. J. M. Vaughan, D. V. Willetts. Interference properties of a light beam having a helical wave surface. Opt. Commu.1979,30:263-267
    [18]. N. B. Baranova, A. V. Mamaev, N. F. Pilipetskii, et al. Wave-front dislocations: topological limitations for adaptive systems with phase conjugation. J. Opt. Soc. Am. 1983,73:525-528
    [19]. V. Aksenov, V. Banakh,O. Tikhomirova. Potential and Vortex Features of Optical Speckle Fields and Visualization of Wave-Front Singularities. Appl. Opt.1998,37:4536-4540
    [20]. M. Harris. Light-field fluctuations in space and time. Contemp. Phys.1995,36:215-233
    [21]. P. Coullet, L. Gill, F. Rocca. Optical vortices. Opt. Commun.1989,73:403-408
    [22]. G. A. Swartzlander. C. T. Law. Optical vortex solitons observed in Kerr nonlinear media. Phys. Rev. Lett.1992,69:2503-2506
    [23]. J. W. Fleischer, M. Segev, N. K. Efiemidis, et al. Observation of two-dimensional discrete solitions in optically induce nonlinear photonic lattices. Nature,2003,422:147-150
    [24]. D. N. Neshev, T. J. Alexander, E. A. Ostrovaskaya, et al. Observation of discrete vortex solitions in optically induce nonlinear photonic lattices. Phys. Rev. Lett.2004,92:123903
    [25]. S. M. Barnet, L. Allen, Orbital angular momentum and nonparaxial light beams. Opt. Commun.1994,110:679-688
    [26]. H. He, M. E. J. Friese, N. R. Heckenberg, et al. Direct observation of transfer of angular momentum to absorptive particles from a laser beam with a phase singularity. Phys. Rev. Lett.1995,75:826-829
    [27]. N. B. Simpson,L. Dholakia, L. Allen, et al. Mechanical equivalence of spin and orbital angular momentum of light:an optical spanner. Opt. Lett.1997,22:52-54
    [28]. K. T. Gahagan, G. A. Swartzlander. Optical vortex trapping of partices. Opt. Lett.1996.21: 827-829
    [29]. K. T. Gahagan. Trapping of low-index microparticles in an optical vortex. J. Opt. Soc. Am. B.1998,15:524-534
    [30]. N. B. Simpson, L. Allen, M. J. Padgett. Optical tweezers and optical spanners with Laguerre-Gaussian modes. J. Mod. Optics,1996,43:2485-2491
    [31]. N. B. Simpson, D. Mcgloin, K. Dholakia, et al. Optical tweezers with increased axial trapping efficiency. J. Mod. Optics,1998,45:1943-1949
    [32]. J. E. Curtis, D. G. Grier. Modulated optical vortices. Opt. Lett.2003,28:872-874
    [33]. J. E. Curtis, D. G. Grier. Structure of Optical Vortices. Phys. Rev. Lett.2003,90:133901
    [34]. K. Ladavac, D. G. Grier. Microoptomechanical pumps assembled and driven by holographic optical vortex arrays. Opt. Express,2004,12:1144-1149
    [35]. G. Molina-Terriza, J. Recolons, L. Torner. The curious arithmetic of optical vortices. Opt. Lett.2000,25:1135-1137
    [36]. D. Maleev, G. A. Swartzlander, Composite optical vortices. J. Opt. Soc. Am. B,2003,20: 1169-1176
    [37]. C. Tamm, C. O. Weiss. Bistability and optical switching of spatial patterns in a laser. J. Opt. Soc. Am. B,1990,7:1034-1038
    [38]. M. W. Beijersbergen, L. Allen, H. Vanderveen, et al. Astigmatic Laser mode converters and transfer of orbital angular-momentum. Opt. Comm.1993,96:123-132
    [39]. N. R. Heckenberg, R. McDuff, C. P. Smith, et al. Generation of optical phase singularities by computer-generated holograms. Opt. Lett.1992,17:221-223
    [40]. M. W. Beijersbergen, R. P. C. Coerwinkel, M. Kristensen, et al. Helical wave front laser beams produced with a spiral phase plate. Opt. Comm.1994,112:321-327
    [41]. G. A. Turnbull, D. A. Robertson, G. M. Smith, et al. The generation of free-space Laguerre-Gaussian modes at millimeter-wave frequencies by use of a spiral phase plate. Opt. Comm.1996,127:183-188
    [42]. C. S. Guo, X. Liu, J. L. He, et al. Optimal annulus structures of optical vortices. Opt. Express,2004,12:4625-4634
    [43]. Lin, X. C. Yuan, S. H. Tao. Variable-radius focused optical vortex with suppressed sidelobes. Opt. Lett.2006,31:1600-1602
    [44]. V. V. Kotlyar, A. A. Kovalev, V. A. Soifer. Sidelobe contrast reduction for optical vortex beams using a helical axicon. Opt. Lett.2007,32:921-923
    [45]. V. V. Kotlyar, A. A. Kovalev, R. V. Skidanov, et al. Diffraction of a finite-radius plane wave and a Gaussian beam by a helical axicon and a spiral phase plate. J. Opt. Soc. Am. A, 2007,24:1955-1964
    [46]. V. V. Kotlyar, R. V. Skidanov, S. N. Khonina, et al. Hypergeometric modes. Opt. Lett. 2007,32:742-744
    [47]. V. V. Kotlyar, A. A. Kovalev. Family of hypergeometric laser beams. J. Opt. Soc. Am. A, 2008,25:262-270
    [48]. Leach, M. J. Padgett, S. M. Barnett. et al. Measuring the orbital angular momentum of a single photon. Phys. Rev. Lett.2002,88:257901
    [49]. J. Leach, J. Courtial, K. Skeldon, et al. Interferometric methods to measure orbital and spin, or the total angular momentum of a single photon. Phys. Rev. Lett.2004,92:013601
    [50]. H. I. Sztul, R. R. Alfano. Double-slit interference with Laguerre-Gaussian beams. Opt. Lett. 2006,31:999-1001
    [51]. Z. Y. Wang, Z. Zhang, Q. Lin. A novel method to determine the helical phase structure of Laguerre-Gaussian beams. J. Opt. A:Pure Appl. Opt.2009,11:085702
    [52]. C. G. Berkhout, M. W. Beijersbergen. Method for probing the orbital angular momentum of optical vortices in electromagnetic waves from astronomical objects. Phys. Rev. Lett. 2008,101:100801
    [53]. C. G. Berkhout, M. W. Beijersbergen. Using a multipoint interferometer to measure the orbital angular momentum of light in astrophysics. J. Opt. A:Pure Appl. Opt.2009,11: 094021
    [54]. C. S. Guo, S. J. Yue, G. X. Wei. Measuring the orbital angular momentum of optical vortices using a multipinhole plate. Appl. Phys. Lett.2009,94:231104
    [55]. C. S. Guo, L. L. Lu, H. T. Wang. Characterizing topological charge of optical vortices by using an annular aperture. Opt. Lett.2009,34:3686-3688
    [56]. Mair, A. Vaziri, G. Weihs, et al. Entanglement of the orbital angular momentum states of photons. Nature,2001,412:313-316
    [57]. G. Gibson, J. Courtial, M. J. Padgett. Free-space information transfer using light beams carrying orbital angular momentum. Opt. Express,2004,12:5448-5456
    [58]. Moreno, J. A. Davis, B. Melvin, et al. Vortex sensing diffraction gratings. Opt. Lett.2009, 34:2927-2929
    [59]. Z. Bouchal, R. Celechovsky. Mixed vortex states of light as information carriers. New J. Phys.2004,6:131
    [60]. R. Celechovsky, Z. Bouchal. Optical implementation of the vortex information channel. New J. Phys.2007,9:328
    [61]. Z. Wu, H. Li, Y. J. Li. Encoding information as orbital angular momentum states of light for wireless optical communications. Opt. Engineering,2007,46:019701
    [62]. Z. Wu, Y. J. Li. Light beams with orbital angular momentum for free space optics. Chin. Phys.2007,16:1334-1338
    [63]. J. Lin, X. C. Yuan, S. H. Tao, et al. Collinear superposition of multiple helical beams generated by a single azimuthally modulated phase-only element. Opt. Lett.2005,30: 3266-3268
    [64]. J. Lin, X. C. Yuan, S. H. Tao, et al. Multiplexing free-space optical signals using superimposed collinear orbital angular momentum states. Appl. Opt.2007,46:4680-4685
    [65]. Y. D. Liu, C. Q. Gao, M. W. Gao, et al. Superposition and detection of two helical beams for optical orbital angular momentum communication. Opt. Commun.2008,281: 3636-3639
    [66].吕宏,柯熙政,具有轨道角动量光束用于光通信编码及解码的研究。光学学报,2009,29:331-335
    [67]. C. Paterson. Atmospheric turbulence and orbital angular momentum of single photons for optical communication. Phys. Rev. Lett.2005,94:153901
    [68]. J. A. Anguita, M.A. Neifeld, B. V. Vasic. Turbulence-induced channel crosstalk in an orbital angular momentum-multiplexed free-space optical link. Appl. Opt.2008,47: 2414-2429
    [69]. G. Wang, W. W. Zheng. The effect of atmospheric turbulence on the propagation properties of optical vortices formed by using coherent laser beam arrays. J. Opt. A:Pure Appl. Opt. 2009,11:065703
    [70]. J. A. Davis, D. E. Mcnamara, D. M. Cottrell. Image processing with the radial Hilbert transform:theory and experiments. Opt. Lett.2000,25:99-101
    [71]. Crabtree, J. A. Davis, I. Moreno, Optical processing with vortex-producing lenses. Appl. Opt.2004,43:1360-1367
    [72]. Jesacher, S. Furhapter, S. Bernet, et al. Shadow Effects in Spiral Phase Contrast Microscopy. Phys. Rev. Lett.2005,94:233902
    [73]. S. Furhapter, A. Jesacher, S. Bernet, et al. Spiral phase contrast imaging in microscopy. Opt. Express,2005,13:689-694
    [74]. C. S. Guo, Y.J. Han, J. B. Xu, et al. Radial Hilbert transform with Laguerre-Gaussian spatial filters. Opt. Lett.2006,31:1394-1396
    [75]. Bokor, Y. Iketaki. Laguerre-Gaussian radial Hilbert transform for edge-enhancement Fourier transform x-ray microscopy. Opt. Express,2009,17:5533-5539
    [76]. D. L. Andrews. Structred light and its applications. Elsevier Inc.2008
    [77]. J. Arlt, K. Dholakia, L. Allen, et al. The production of multiringed Laguerre-Gaussian modes by computer-generated holograms. J. Mod. Opt.1998,45:1231-1237
    [78]. Q. Wang, X. W. Sun, P. Shum. Generating doughnut-shaped beams with large charge numbers by use of liquid-crystal spiral phase plates. Appl. Opt.2004,43:2292-2297
    [79]. T. Watanabe, M. Fujii, Y. Watanabe, et al. Generation of a doughnut-shaped beam using a spiral phase plate. Rev. Sci. Inst.2004,75:5131-5135
    [80]. J. Durnin. Exact solutions of nondiffraction beams. I. The scarlar teory. J. Opt. Soc. Am. A, 1987,4:651-654
    [81]. J. Durnin, J. J. Miceli, J. H. Eberly. Diffraction-free beams. Phy. Rev. Lett.1987,58: 1499-1501
    [82]. J. Arlt, K. Dholakia. Generation of high-order Bessel beams by use of an axicon. Opt. Comm.2000,177:297-301
    [83]. S. H. Tao, X. C. Yuan, J. Lin, et al. Influence of geometric shape of optically trapped particles on the optical rotation induced by vortex beams. J. Appl. Phys.2006,100:043105
    [84]. Jesacher, S. Furhapter, S. Bernet, et al. Size selective trapping with optical "cogwheel" tweezers. Opt. Express,12:4129-4135
    [85]. J. Courtial, M. J. Padgett. Performance of a cylindrical lens mode converter for producing Laguerre-Gaussian laser modes. Opt. Commun.1999,159:13-18
    [86]. J. Padgett, L. Allen. Orbital angular momentum exchange in cylindrical-lens mode converters. J. Opt. B:Quantum Semiclass. Opt.2002,4:s17-s19
    [87]. L. M. Balistreri, J. P. Korterik, L. Kuipers, et al. Local observations of phase singularities in optical fields in waveguide structures. Phys. Rev. Lett.2000,85:294-297
    [88]. R. M. Jenkins, J. Banerji, A. R. Davies. The generation of optical vortices and shape preserving vortex arrays in hollow multimode waveguides. J. Opt. A,2001,3:527-532
    [89]. J. E. Curtis, B. A. Koss, D. G. Grier. Dynamic holographic optical tweezers. Opt. Comm. 2002,207:169-175
    [90]. R. Oron, N. Davidson, A. A. Friesem, et al. Efficient formation of pure helical laser beams. Opt. Comm.2000,182:205-208
    [91].谢前森.螺旋相位板产生的光学涡旋及其光束特性研究:[硕士学位论文].杭州:浙江大学,2007
    [92]. V. V. Kotlyar, S. N. Khonina, A. A. Kovalev, et al. Diffraction of a plane, finite-radius wave by a spiral phase plate. Opt. Lett.2006,31:1597-1599
    [93]. H. G. Gracia, J. C. G. Vega. Diffraction of plane waves by finite-radius spiral phase plates of integer and fractional topological charge. J. Opt. Soc. Am. A,2009,26:794-803
    [94]. V. V. Kotlyar, A. A. Almazov, S. N. Khonina, et al. Generation of phase singularity through diffracting a plane or Gaussian beam by a spiral phase plate. J. Opt. Soc. Am. A, 2005,22:849-861
    [95]. S. S. R. Oemrawsingh, J. A. W. Houwelingen, E. R. Eliel, et al. Production and characterization of spiral phase plates for optical wavelengths. Appl. Opt.2004,43: 688-694
    [96]. W. C. Cheong, W. M. Lee, X. C. Yuan, et al. Direct electron-beam writing of continuous spiral phase plates in negative resist with high power efficiency for optical manipulation. Appl. Phys. Lett.2004,85:5784-5786
    [97]. S. Sundbeck, I. Gruzberg. Structure and scaling of helical modes of light. Opt. Lett.2005, 30:477-479
    [98]. J. A. Davis, D. M. Cottrell, J. Campos, et al. Encoding amplitude information onto phase-only filters. Appl. Opt.1999,38:5004-5013
    [99]. J. A. Davis, D. M. Cottrell, J. Campos, et al. Bessel function output from an optical correlator with a phase-only encoded inverse filter. Appl. Opt.1999,38:6709-6713
    [100].Gualdron, J. Davis, D. Nicolas, et al. Complex encoding of rotation-invariant filters onto a single phase-only spatial light modulator. Appl. Opt.2003,42:1973-1980
    [101]. J. A. Davis, K. O. Valadez, D. M. Cottrell. Encoding amplitude and phase information onto a binary phase-only spatial light modulator. Appl. Opt.2003,42:2003-2008
    [102]. T. Ando, Y. Ohtake, N. Matsumoto, et al. Mode purities of Laguerre-Gaussian beams generated via complex-amplitude modulation using phase-only spatial light modulators. Opt. Lett.2009,34:34-36
    [103]. V. V. Kotlyar, A. A. Kovalev, R. V. Skidanov, et al. Simple optical vortices formed by a spiral phase plate. J. Opt. Technol.2007,74:686-693
    [104]. P. Prudnikov, Y. A. Brychkov, O.I. Marichev. Integrals and Series, Gordon and Breach, New York,1983.
    [105]. D. G. Grier. A revolution in optical manipulation. Nature,2003,424:810-816
    [106].J. M. Vaughan, D. V. Willets. Temporal and interference fringe analysis of TEM00 laser modes. J. Opt. Soc. Am.1983,73:1018-1021
    [107]. Harris, C. A. Hill, J. M. Vaughan. Optical helices and spiral interference fringes. Opt. Commun.1994,106:161-166
    [108]. J. Chen, D. F. Kuang, Z. L. Fang. Properties of fraunhofer diffraction by an annular spiral phase plate for sidelobe suppression. Chin. Phys. Lett.2009,26:094210
    [109]. G. A. Swartzlander. Peering into darkness with a vortex spatial filter. Opt. Lett.2001,26: 497-499
    [110]. G. Foo, D. M. Palacios, G. A. Swartzlander. Optical vortex coronagraph. Opt. Lett.2005, 30:3308-3310
    [111]. J. A. Davis, D. E. Mcnamara, D. M. Cottrell. Analysis of the fractional Hilbert transform. Appl. Opt.1998,37:6911-6913

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700