用户名: 密码: 验证码:
激光光束及其对微粒辐射力的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
自从A. Ashkin在1970年用激光的辐射力捕获和控制微小粒子以后引起了越来越多人的关注,被操控的粒子的范围很广,包括中性原子、分子、微型介质小球和活细胞等等。众所周知,光具有能量和动量,因此当光子和粒子发生作用时光子的动量和能量会和粒子发生相互交换,从而会产生激光束对粒子的梯度力和散射力。因此对激光束对粒子辐射力的研究显得十分重要。近年来,新型的复杂激光光束被大量研究,如空心光束、椭圆光束、平顶光束等,这些新型复杂激光光束的出现促使人们迫切地去研究它的传输变换特性以及将这些激光束应用到捕获微粒的辐射力研究上来。
     本文在理论上研究了空心高斯光束和贝塞尔高斯光束这两种空心光束模型通过失调透镜系统和光阑系统的传输特性;用多模光纤获得了新的产生空心光束的方法并且通过改变入射激光束的相干度来提高光束质量,获得了多级衍射涡旋光束的干涉条纹;在理论上对高聚焦空心高斯光束、贝塞尔高斯光束和平顶光束与瑞利微粒作用时的辐射力进行了研究。
     在过去的几十年里,部分相干光被大量的研究,并且已经被广泛的应用在很多领域,如自由空间光通讯、激光材料表面热处理、激光扫描、惯性约束核聚变、非线性光学、光学成像等。本文首次对光的相干性对微粒的辐射力的影响进行了研究,用部分相干高斯-谢尔模(GSM)光束和部分相干平顶光束计算了对瑞利微粒的辐射力。
     同时,在光镊发明之后,在实验上采用的大部分激光源都是连续激光(CW),但是随着应用对象的多样化研究者开始把脉冲激光应用到光镊装置上来,用脉冲激光束对生物细胞动手术等实验操作,本文也首次对脉冲激光束对微粒的辐射力的影响进行了研究。
     全文的组织结构为:
     第一章,分别综述了光捕获的原理,激光传输理论的发展历史,空心光束的研究动态,激光操控微粒的研究背景以及光镊技术的发展概述,介绍了目前国内外的研究状况,指出了本论文研究的内容、目的和创新点。
     第二章,分别介绍了激光传输的基础理论知识,部分相干光的基础理论,光辐射力的相关理论基础。
     第三章,分别介绍了Cai和Lu引入的描写圆对称空心高斯光束和贝塞尔高斯光束这两种空心光束的理论模型。导出了空心高斯光束和贝塞尔高斯光束通过失调光学系统的传输变换公式。利用导出的公式,计算分析了空心高斯光束和贝塞尔高斯光束在通过失调光学系统中的传输性质。结果表明,空心高斯光束通过失调的聚焦光学系统后在焦点处变成了实心而不再保持空心形状,贝塞尔高斯光束通过失调系统之后还是能够继续保持其空心形状,因此证明空心高斯光束和贝塞尔高斯光束都是非常好的描述空心光束的理论模型。
     第四章,介绍了空心光束的各种产生方法。在理论上我们提出用圆对称空心高斯光束通过三角棱镜的方法获得椭圆空心高斯光束,这是一种非常便利和有效的椭圆光束的获得方法。同时对用计算全息片获得的不同衍射级的涡旋光束的拓扑荷进行了研究,得出涡旋光束的拓扑荷不仅仅和计算全息片的拓扑荷有关而且与衍射级次也有关系。我们提出一种用多模光纤来产生空心光束的新方法,实验结果表明,通过改变入射光束的失调角度和位移能够获得空心光束,这是一种非常简捷的空心光束产生方法。同时我们通过降低入射光束的相干性来获得更佳质量的空心光束,实验得到的空心光束的光强分布更加均匀,光束质量更好。我们的实验方法为实验产生空心光束提供了一条很好的途径,为光镊装置提供了一种非常有效的空心光束光源。
     第五章,简述了光辐射力的定义和不同的计算方法。主要是用激光束对瑞利微粒的辐射力进行研究。针对空心高斯光束能够在焦点处获得实心光束,在焦点附近获得空心光束的光束传输特性,我们将空心高斯光束应用到激光束捕获微粒的研究中去,理论计算结果表明,我们可以用空心高斯光束在聚焦的焦点处捕获那些折射率大于周围介质的微粒,在焦点附近处能够捕获那些折射率小于周围介质的微粒。实现了用一种光束分别捕获不同折射率微粒的方法。同时我们根据平顶光束的光束分布特性,对平顶光束捕获瑞利微粒进行了研究,结果表明,平顶光束也可以稳定的捕获微粒,并且可以通过增加平顶光束的阶数来增加稳定捕获区域,这个优点在实验上非常明显并且非常有用。还对贝塞尔高斯光束捕获瑞利微粒的辐射力也进行了研究,并且对捕获时的稳定性进行了分析。研究结果表明,可以用这两种空心光束模型来稳定捕获或引导微粒,特别是空心高斯光束更是能够捕获不同折射率的微粒,该优点在实验上具有非常大的实用意义。
     第六章,简要概述了部分相干光的理论和实验研究状况,介绍了部分相干光的研究意义。我们将部分相干光应用到光捕获微粒的研究上来,采用部分相干高斯谢尔模(GSM)光束和部分相干平顶光束作为光源对瑞利微粒捕获时的辐射力进行了分析,同时对由部分相干GSM光束和部分相干平顶光束捕获微粒时的稳定性进行研究。研究结果表明,部分相干GSM光束和部分相干平顶光束都可以稳定捕获瑞利微粒,但是随着相干性的降低,微粒受到的辐射力也会相应的降低,但是同时发现,随着相干性的降低,光束捕获微粒的捕获区域会相应的增加。因此我们可以通过根据实际情况,在辐射力足够大的前提下,通过适当的降低相干性来获得比较大的稳定捕获区域。该研究成果将会对部分相干光应用到具体的光镊实验中具有指导意义。
     第七章,简要回顾了脉冲光束的研究历史和发展概况,并着重介绍了脉冲光束应用到光镊装置中的研究工作。在理论上推导了脉冲光束对瑞利微粒辐射力的解析表达式,并分析了脉冲光束对瑞利微粒产生的辐射力。研究结果表明,不同持续时间的脉冲激光将会为瑞利微粒产生不同效果的辐射力,如果脉冲持续时间太大,将达不到稳定捕获瑞利微粒的效果;如果脉冲序列太小,则微粒受到的散射力远大于梯度力,因此微粒将会在激光束的作用下加速而无法实现稳定捕获。所以需要选择适当的脉冲序列以达到最佳的稳定捕获,该理论结果将会对实验上利用脉冲激光束捕获微粒具有重要的指导意义。
     第八章,综述了光镊的实验装置,介绍了光镊装置所需的各个光学器件和要求,着重介绍了我们采用的各器件的性能,成功搭建了单光束光镊实验装置,实现了单光束对玻璃微珠的稳定捕获,得到了一些实验结果。
Since A. Ashkin first demonstrated how to capture and manipulate micron-sized particles using the radiation force pressure, optical traps (or tweezers) have attracted intensive attention in lots of literature because of their wide-range applications in manipulating a wide of particles, including neutral atoms, molecules, micron-sized dielectric particles, and living biological cells. As we know, light has both energy and momentum, and light radiation force is produced by the exchange of momentum and energy between photons and particles. There are two types of the radiation force: such as scattering force and gradient force. In the past several years, with the development of science and technology, different new type of complex laser beams such as hollow beam, elliptical beam, flat-topped beam etc. are pushed in many applications. The appearance of new complex laser beams made it urgent to study their propagation and transformation and the radiation force caused by these beams in order to meet the requirements in practical applications.
     The propagation properties of hollow Gaussian beams and high-order Bessel-Gaussian beams through lens misaligned and a hard-aperture misaligned optical system have been studied in theoretic. The dark-hollow beams have been generated by using the multimode fibers, and the high quality dark-hollow beams have been obtained through decreasing the coherence of the input beam. The phase structures of optical vortices by computer-generated holograms have been obtained. The radiation force on a dielectric particle produced by highly focused hollow Gaussian beams and high-order Bessel-Gaussian beams has been studied too.
     Over the past decades, partially coherent beams have been extensively investigated and have found wide applications in many fields, such as free-space optical communications, material thermal processing by laser beam, laser scanning, inertial confinement fusion by laser, nonlinear optics and imaging applications. This thesis is mainly devoted to studying the effect of spatial coherence on radiation forces. The radiation force of partially coherent Gaussian Shell-modes (GSM) and coherent flat-topped beams on a Rayleigh particle has been studied.
     Usually optical trapping or tweezers in many experiments are construed by using the CW laser. However, as the development of the pulsed laser, more and more pulsed laser has been applied in the optical tweezers. This thesis first studied the effect caused the duration of the pulsed laser.
     This thesis is organized as follows:
     In chapter 1, the principle of the optical trapping, the progresses in the field of laser propagation theory, the development of the hollow beams, the background of the laser manipulating particles and the progresses in the field of optical tweezers are reviewed. The main content and originality of this thesis are presented.
     In chapter 2, the basic theory of the laser propagation, partially coherent beams and the radiation force are introduced.
     In chapter 3, the hollow Gaussian beams and high-order Bessel-Gaussian beams have been introduced. A generalized formula of hollow Gaussian beams and high-order Bessel-Gaussian beams through the first-order misaligned ABCD optical system is derived by using the generalized diffraction integral formula. The propagation properties of the hollow Gaussian beams and high-order Bessel-Gaussian beams through the misaligned optical system have been studied by using the obtained formula. It is shown that the hollow Gaussian beams become the maximal axial intensity distribution at focal plane and the hollow beams near the focal plane. The high-order Bessel-Gaussian beams still hollow beams in different propagation distances. And these two beams become a decentered hollow beam.
     In chapter 4, the different methods for creating dark-hollow beams have been introduced. Based on the tensor method, an analytical formula for hollow Gaussian beams generated by a triangular prism has been derived, and the propagation properties have been studied. It is shown that hollow elliptical Gaussian beams can be obtained in the near field after the prism. The interference patterns between the diffraction beams of different orders by the computer-generated hologram and the reference beam have been studied. The results can show the properties of the vortices of the different diffraction order. We introduced a new method for generating the dark-hollow beams by a coupling of a single fundamental mode He-Ne laser beam with a misaligned multimode fiber in a special way. The dark-hollow beams can be obtained by changing the misaligned angle and displacement. The better quality hollow beams can be generated through decreasing the spatial coherence of the input beams. Our results can be used for manipulating particles. Further investigation on trapping atoms by partially coherent dark-hollow beams will be carried out.
     In chapter 5, the definition of the radiation force has been introduced. We mainly studied the radiation force caused by the laser. The radiation force on a dielectric sphere produced by highly focused hollow Gaussian beams in the Rayleigh scattering regime is theoretically investigated. Numerical results demonstrate that, the high focused hollow Gaussian beams at the focus of the lens system becomes a peak-centered shape which can be used to stably trap and manipulate the particles with the refractive index larger than the ambient, and in the neighborhood of the focus the beam becomes a doughnut shape which can be used to guide the particles with refractive index lower than the ambient. We can manipulate two refractive index particles by using one beam. The radiation force of highly focused Bessel-Gaussian beams and flat-topped beams on a dielectric sphere in the Rayleigh scattering regime is also introduced. It is found that we can increase the transverse trapping range at the planes near the focal plane by increasing the flatness (i.e., beam order) of the flat-topped beams. Our results are interesting and useful for particle trapping.
     In chapter 6, the theory and experiment of the partially coherent beams have been reviewed. We studied the radiation force caused by the highly focused partially coherent GSM and partially coherent flat-topped beams. The trapping stability also has been analyzed. The results show that, the partially coherent GSM and the partially coherent flat-topped beams can stably trap the Rayleigh particles. However, the radiation force would decrease as decreasing the spatial coherence. We found that, the trapping ranges can be increased at the focal plane by decreasing the initial coherence. So it is necessary to choose suitable initial coherence of a partially coherent GSM and partially coherent flat-topped beams in order to trap a particle.
     In chapter 7, the progress and development of the pulsed laser have been reviewed. We mainly introduced the pulsed laser applied in the trapping field. We investigate the dynamic evolution of the radiation forces produced by the pulsed Gaussian beams acting on a Rayleigh dielectric sphere. We derive the analytical expressions for the scattering force and all components of the ponderomotive force induced by the pulsed Gaussian beams. Our analysis shows that the radiation force, for both the transverse and longitudinal components, can be greatly enhanced as the pulse duration decreases. It is further found that for the pulse with long pulse duration, it can be used for the stable trapping and manipulating the particle, while for the pulse with short pulse duration it may be used for guiding and moving the small dielectric particle. Finally we discuss the stability conditions of the effective manipulating the particle by the pulsed beam. Therefore, the pulsed laser can be used for trapping and manipulating the particles.
     In the chapter 8, the experimental set-up of the optical tweezers has been reviewed. We introduced the apparatus and their requisition. The experimental set-up of the optical tweezers has been successfully established. The glass particles have been stably trapped by using the 1064nm laser, some important results are obtained.
引文
[1]Keir K C, Block S M. Optical trapping[J]. Rev Sci Instru,2004,75: 2787-2809.
    [2]Harada Y, Asakura T. Radiation forces on a dielectric sphere in the Rayleigh scattering regime[J]. Opt Commun,1996,124:529-541.
    [3]White D A. Numerical modeling of optical gradient trap using the vector finite element method[J]. J Comput Phys.,2000,159:13-37.
    [4]Nieminen T A, RubinsZtein-Dunlop H, Heckenberg N R. Calculation and optical measurement of laser trapping forces on non-spherical paticles[J]. J Quant Spectrosc Radiat Transfer,2001,70:627-637.
    [5]Nieminen T A, RubinsZtein-Dunlop H, Heckenberg N R, et al. Numerical modeling of optical trapping[J]. Comput Phys Commun,2001,142:468-471.
    [6]Collins S A. Lens-systems diffraction integral written in terms of matrix optics[J]. J Opt Soc Am,1970,60:1168-1177.
    [7]洪熙春,黄维刚,王绍民.失调光学系统的衍射积分公式[J].物理学报,1982.31:1656-1659.
    [8]林强,陆旋辉,王绍民.非轴对称光学系统的ABCD定律[J].光学学报,1988,8:658-662.
    [9]Lin Q, Wang S, Alda J, et al. Transformation of nonsymmetric Gaussian beam into symmetric one by means of tensor ABCD law[J]. Optik,1990,85: 67-72.
    [10]Wen J J, Breazeale M A. A diffraction bean field expressed as the superposition of Gaussian beams[J]. J Acoust Soc Am,1998,83:1752-1756.
    [11]Tanaka K, Shibukawa M, Fukumltsu O. Diffraction of a wave beam by an aperture[J]. IEEE Trans Microwave Theory Tech,1972,20:749-755.
    [12]Tanaka K, Saga N, Mizokami H. Field spread of a diffracted Gaussian beam through a circular aperture [J]. Appl Opt,1985,24:1102-1107.
    [13]Tanaka K, Yoshida K, Taguchi M. Analytical and experiment investigations of the diffraction field of a Gaussian beam through a sequence of aperture: Applicability of the beam mode expansion method[J]. Appl Opt,1998,27: 1310-1312.
    [14]Lu B, Ma H, Zhang B. Propagation properties of cosh-Gaussian beams[J]. Opt Commun,1999,164:165-170.
    [15]Vicari L, Bloisi F. Matrix representation of axisymmetric system including spatial filters[J]. Appl Opt,1989,28:4682-4686.
    [16]Dijaili S P, Dienes A, Smith J S. ABCD matrices for dispersive pulse propagation[J]. IEEE J Quant Electr,1990,26:1158-1164.
    [17]张筑虹,范滇元.用时域ABCD矩阵元表达的时间菲涅耳数[J].光学学报,1991,11:1011-1015.
    [18]张筑虹,范滇元.光学系统的时间衍射积分及其应用[J].光学学报,1992,12:179-182.
    [19]Kolner B H, Nazarathy M. Temporal imaging with a times lens[J]. Opt Lett, 1989,14:630-632.
    [20]Lin Q, Wang S, Alda J, et al. Transformation of pulsed nonideal beams in a four-dimension domain[J]. Opt Lett,1993,18:669-671.
    [21]Cai Y J, Lu X H, Lin Q. Hollow Gaussian beams and their propagation properties[J]. Opt Lett,2003,28:1084-1086.
    [22]Glushko B, Kryzhanovsky B, Sarkisyan D. Self-phase-matching mechanism for efficient harmonic generation processes in a ring pump beam geometry [J]. Phys Rev Lett,1993,71:243-246.
    [23]Peet V E, Tsubin R V. Multiphoton ionization and optical breakdown of xenon in annular laser beams[J]. Opt Commun,1997,134:69-74.
    [24]Ketterle W, Davis K B, Joffe M A, et al. High densities of cold atoms in a dark spontaneous-force optical trap[J]. Phys Rev Lett,1993,70:2253-2256.
    [25]Simpson N B, Dholakia K, Allen L, et al. Mechanical equivalence of spin and orbital angular momentum of light:an optical spanner[J]. Opt Lett,1997, 22:52-54.
    [26]Bagini V, Frezza F, Santarsiero M, et al. Generalized Bessel-Gauss beams[J]. J Mod Opt,1996,43:1155-1166.
    [27]Heckenberg N R, McDuff R, Smith C P, et al. Generation of optical phase singularities by computer-generated holograms[J]. Opt Lett,1992,17: 221-223.
    [28]Yin J P, Noh H R, Lee K, et al. Generation of a dark hollow beam by a small hollow fiber[J]. Opt Commun,1997,138:287-292.
    [29]Ito H, Sakaki K, Jhe W, et al. Atomic funnel with evanescent light[J]. Phys Rev A,1997,56:712-718.
    [30]Arlt J, Kuhn R, Dholakia K. Spatial transformation of Laguerre-Gaussian laser modes[J]. J Mod Opt,2001,48:783-787.
    [31]Yin J P, Gao W J, Wang H F, et al. Generations of dark hollow beams and their applications in laser cooling of atoms and all optical-type Bose-Einstein condensation[J]. Chin Phys,2002,11:1157-1169.
    [32]Cacciapuoti L, Angelis M d, Pierattini G, et al. Single-beam optical bottle for cold atoms using a conical lens [J]. Eur Phys J D,2001,14:373-376.
    [33]Chavez-Cerda S, Gutierrez-Vega J C, New G H C. Elliptic vortices of electromagnetic wave fields[J]. Opt Lett,2001,26:1803-1805.
    [34]Chavez-Cerda S, Padgett M J, Allison I, et al. Holographic generation and orbital angular momentum of high-order Mathieu beams [J]. J Opt B Quantum Semiclass Opt,2002,4:S52-57.
    [35]Wu Y K, Li J, Wu J. Anomalous hollow electron beam in storage ring[J]. Phys Rev Lett,2005,94:134802.
    [36]Cai Y J. Model for anomalous hollow beam and its paraxial propagation[J]. Opt Lett,2007,32:3179-3181.
    [37]Song Y, Milam D, III W T H. Long, narrow all-light atom guide[J]. Opt Lett, 1999,24:1805-1807.
    [38]Manek I, Ovchinnikov Y B, Grimm R. Generation of a hollow laser beam for atom trapping using an axicon[J]. Opt Commun,1998,147:67-70.
    [39]Wang X, Littman M G. Laser cavity for generation of variable-radius rings of
    light[J]. Opt Lett,1993,18:767-768.
    [40]Allen L, Beijersbergen M W, Spreeuw R J C, et al. Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes[J]. Phys Rev A,1992,45:8185-8189.
    [41]Durnin J, Jr J J M, Eberly J H. Diffraction-free beam[J]. Phys Rev Lett,1987, 58:1499-1501.
    [42]Bazhenov V Y, Soskin M S, Vasnetsov M V. Screw dis-locations in light wavefronts[J]. J Mod Opt,1992,39:985-990.
    [43]Chaloupka J L, Fisher Y, Kessler T J, et al. Single-beam, ponderomotive-optical trap for free electrons and neutral atoms [J]. Opt Lett, 1997,22:1021-1023.
    [44]Ozeri R, Khaykovich L, Davidson N. Long spin relaxation times in a single-beam blue-detuned optical trap[J]. Phys Rev A,1999,59: R1750-1753.
    [45]Herman R M, Wiggins T A. Hollow beams of simple polarization for trapping and storing atoms[J]. J Opt Soc Am A,2002,19:116-121.
    [46]Kaplan A, Friedman N, Davidson N. Optimized single-beam dark optical trap[J]. J Opt Soc Am B,2002,19:1233-1238.
    [47]Gao C Q, Gao M W, Weber H. Generation and application of twisted hollow beams[J]. Optik,2004,3:129-132.
    [48]Xia Y, Yin J P. Generation of a focused hollow beam by an 2pi-phase plate and its application in atom or molecule optics [J]. J Opt Soc Am B,2005,3: 529-536.
    [49]陆璇辉,黄凯凯.衍射光学元件改善激光谐振腔输出特性的研究[J].物理学报,2001,50:1409-1414.
    [50]Letokhov V S. Narrowing of the Doppler width in a standing light wave[J]. JETP Lett,1968,7:272-274.
    [51]Ashkin A. Acceleration and trapping of particles by radiation pressure[J]. Phys Rev Lett,1970,24:156-159.
    [52]Ashkin A, Dziedzic J M, Bjorkholm J E, et al. Observation of a single-beam gradient force optical trap for dielectric particles[J]. Opt Lett,1986,11: 288-290.
    [53]Ashkin A, Dziedzic J M. Optical trapping and manipulation of viruses and bacteria [J]. Science,1987,235:1517-1520.
    [54]Finer J T, Simmons R M, Spudich J A. Single myosin molecule mechanics: piconewton forces and nanometre steps[J]. Nature,1994,368:113-119.
    [55]Svoboda K, Schmidt C F, Schnapp B J, et al. Direct observation of kinesin stepping by optical trapping interferometry[J]. Nature,1993,365:721-727.
    [56]Bustamanteb C, Smitha S B, Liphardtc J, et al. Single-molecule studies of DNA mechanics [J]. Current Opinion in Structural Biology,2000,10: 279-285.
    [57]Perkins T T, Quake S R, Smith D E, et al. Relaxation of a single DNA molecule observed by optical microscopy[J]. Science,1994,364:822-826.
    [58]Hopkin K. How It Works:The Optical Trap[J]. The Scientist,2005,19:50.
    [59]Born M, Wolf E. Principles of Optics[M]. Pergamon,1989.
    [60]Wang S, Zhao D. Matrix Optics[M]. CHEP& Springer,2000.
    [61]Collins S A. Lens-systems diffraction integral written in terms of matrix optics[J]. J Opt Soc Am,1970,60:1168-1177.
    [62]林强,王绍民.张量光学[M].杭州大学出版社,1994.
    [63]Alda J, Wang S, Bernabeu E. Analytical expression for the complex radius of curvature tensor Q for generalized gaussian beams [J]. Opt Commun,1990, 80:350-352.
    [64]Mandel L, Wolf E. Optical Coherence and Quantum Optics[M]. Cambridge University Press,1995.
    [65]Gori F, Guattari G, Padovani C. Bessel-Gauss beams[J]. Opt Commun,1987, 64:491-495.
    [66]Palma C, Borghi R, Cincotti G. Beams originated by JO-correlated Schell-model planar sources[J]. Opt Commun,1996,125:113-121.
    [67]Hong X, Huang W, Wang S. Diffraction integral formula of misaligned optical systems[J]. Acta Physica Sinica,1982,31:1655-1659.
    [68]Carter W H. Focal shift and concept of effective Fresnel number for a Gaussian laser beam[J]. Appl Opt,1982,21:1989-1994.
    [69]Greene P L, Hall D G. Focal shift in vector beams[J]. Opt Express,1999,4: 411-419.
    [70]Li Y. Dependence of the focal shift on Fresnel number and f number [J]. J Opt Soc Am A,1982,72:770-775.
    [71]Li Y, Wolf E. Three-dimensional intensity distribution near the focus in systems of different Fresnel number[J]. J Opt Soc Am A,1984,1:801-808.
    [72]Liu X Y, Pu J X. Focal shift and focal switch of partially coherent light in dual-focus systems[J]. Opt Commun,2005,252:262-267.
    [73]Neuman K C, Abbondanzieri E A, Block S M. Measurement of the effective focal shift in an optical trap[J]. Opt Lett,2006,30:1318-1320.
    [74]Wolf E. Dependence of focal shift on Fresnel number and angular aperture[J]. Opt Lett,1998,23:1803-1804.
    [75]Li Y, Wolf E. Focal shift in diffracted converging spherical waves[J]. Opt Commun,1981,39:211-215.
    [76]Li Y, Wolf E. Focal shift in focused truncated Gaussian beams[J]. Opt Commun,1982,42:151-156.
    [77]Tanaka K, Saga N, Hauchi K. Focusing of a Gaussian beam through a finite aperture lens[J]. Appl Opt,1985,24:1098-1101.
    [78]Ji X, Lu B D. Focal shift and focal switch of flatten Gaussian beam in passage through an aperture bifocal lens[J]. IEEE J Quant Electr,2003,39: 172-178.
    [79]Wang L, Lu B. Focal shift of partially polarized Gaussian Schell-model beams[J]. Optik,2003,114:169-174.
    [80]Lu B D, Huang W, Zhang B, et al. Focal shift in apertured Gaussian beams and relation with the lens focus[J]. Optik,1995,99:8-12.
    [81]Mahajan V N. Optical imaging and aberrations, Part Ⅱ:wave diffraction optics[M]. SPIE Press,2001.
    [82]Arimoto A. Intensity distribution of aberraion-free diffraction patterns due to circular apertures F-number optical system[J]. Opt Acta,1976,23:245-250.
    [83]Mahajan V N. Axial irradiance and optimum focusing of laser beams[J]. Appl Opt,1983,22:3042-3053.
    [84]Lu X H, Chen X M, Zhang L, et al. High-order Bessel-Gaussian beam and its propagation properties[J]. Chin Phys Lett,2003,20:2155-2157.
    [85]Gradshteyn I S, Rhyzik I M. Table of Integrals[M]. Series, and Products. In: Jeffrey A, Zwillinger D, editor. sixth ed. New York:Academic Press,2000.
    [86]Wen J J, Breazeale M A. Computer optimization of the Gaussian beam description of an ultrasonic field[M]. in Computational Acoustics, Vol.2, edited by Lee D, Cakmak A, Vichnevetsky R, Elserier Science, Amsterdam, 1990.
    [87]Namias V. The fractional order Fourier transform and its applications to quantum mechanics[J]. Inst Math Appl,1980,25:241-265.
    [88]Lohmann A W. Image rotation, Wigner rotaion, and the fractional Fourier transform[J]. J Opt Soc Am A,1993,10:2181-2186.
    [89]Mendlovic D, Ozaktas H M. Fractional Fourier transforms and their optical implementation:I[J]. J Opt Soc Am A,1993,10:1875-1881.
    [90]Liu Z Y, Wu X Y, Fan D Y. Collins formula in frequency-domain and fractional Fourier transforms [J]. Opt Commun,1998,155:7-11.
    [91]Lohmann A W, Mendlovic D, Zalevsky Z. Fractional Hilbert transform[J]. Opt Lett,1996,21:281-283.
    [92]Mendlovic D, Zalevsky Z, Dorsch R G, et al. New signal representation based on the fractional Fourier transform:definitions [J]. J Opt Soc Am A, 1995,12:2424-2431.
    [93]Pellat-Finet P. Fresnel diffraction and the fractional-order Fourier transforms[J]. Opt Lett,1994,19:1388-1390.
    [94]Yu L, Lu X, Zeng Y, et al. Deriving the integral representation of a fractional Hankel transform from a fractional Fourier transform[J]. Opt Lett,1998,23: 1158-1160.
    [95]Zhang Y, Dong B Z, Gu B Y, et al. Beam shaping in the fractional Fourier
    transform domain[J]. J Opt Soc Am A,1998,15:1114-1120.
    [96]Zhu B H, Liu S T. Multifractional correlation[J]. Opt Lett,2001,26:578-580.
    [97]Zhao D M, Mao H D, Liu H J, et al. Propagation of Hermite-Gaussian beams in apertured fractional Fourier transforming systems[J]. Optik,2003,114: 504-508.
    [98]Zhao D M, Mao H D, Zheng C W, et al. The propagation properties and kurtosis parametric characteristics of Hermite-cosh-Gaussian beams passing through fractional Fourier transformation systems[J]. Optik,2005,116: 461-468.
    [99]Zheng C W. Fractional Fourier transform for a hollow Gaussian beam[J]. Phys Lett A,2006,355:156-161.
    [100]Du X Y, Zhao D M. Fractional Fourier transform of truncated elliptical Gaussian beams[J]. Appl Opt,2006,45:9049-9052.
    [101]Zhao C L, Wang L G. Radiation forces on a dielectric sphere produced by highly focused hollow Gaussian beams [J]. Phys Lett A,2006,363:502-506.
    [102]Zhao C L, Wang L G, Lu X H. Radiation forces of highly focused Bessel-Gaussian beams on a dielectric sphere[J]. Optik,2008,119:477-480.
    [103]Kuga T, Torii Y, Shiokawa N, et al. Novel optical trip of atoms with a doughnut beam[J]. Phys Rev Lett,1997,78:4713-4716.
    [104]Ovchinnikov Y B, Manek I, Grimm R. Cs atoms based on evanescent-wave cooling[J]. Phys Rev Lett,1997,79:2225-2228.
    [105]Song Y, Mialm D, Hill W T. Narrow all-light atom guide optics letters[J]. Opt Lett,1999,24:1805-1807.
    [106]Wang Z Y, Lin Q, Wang Y Z. Control of atomic rotation by elliptical hollow beam carrying zero angular momentum[J]. Opt Commun,2004,240: 357-362.
    [107]Cai Y J, Lin Q. Hollow elliptical Gaussian beam and its propagation through aligned and misaligned paraxial optical systems[J]. J Opt Soc Am A,2004, 21:1085-7065.
    [108]Soskin M S, Gorshkov V N, Vasnetsov M V, et al. Topological charge and angular momentum of light beams carrying optical vortices[J]. Phys Rev A, 1997,56:4064-4075.
    [109]Leach J, Dennis M R, Coutial J, et al. Laser beams:Knotted threads of darkness[J]. Nature,2004,432:165.
    [110]Grier D G A revolution in optical manipulation[J]. Nature,2003,424: 810-816.
    [111]Gahagan K T, Jr G A S. Optical vortex trapping of particles[J]. Opt Lett,1996, 21:827-829.
    [112]Basistiy I V, Soskin M S, Vasnetsov M V. Optical wavefront dislocations and their properties[J]. Opt Commun,1993,119:604-612.
    [113]Allen L, Padgeett M J, Babiker M. The orbital angular momentum of light[J]. Progress In Optics,1999,39:291-372.
    [114]Beijersbergen M W, Coerwinkel R P C, Kristensen M, et al. Helical-wavefront laser beams produced with a spiral phaseplate[J]. Opt Commun,1994,112:321-327.
    [115]Harris M, Hill C A, Vaughan J M. Optical helices and spiral interference fringes[J]. Opt Commun,1994,106:161-166.
    [116]Padgett M J, Allen L. Generation of femtosecond optical vortices using a single refractive optical element[J]. J Opt B Quant Semiclassical Opt,2002,4: S17-S19.
    [117]Izdebskaya Y, Shvedov V, Volyar A. Generation of higher-order optical vortices by a dielectric wedge[J]. Opt Lett,2005,30:2472-2474.
    [118]Bahabad A, Arie A. Generation of Optical Vortex Beams by Nonlinear Wave Mixing[J]. Opt Express,2007,15:17619-17624.
    [119]Soskin M S, Gorshkov V N, Vasnetsov M V Topological charge and angular momentum of light beams carrying optical vortices[J]. Phys Rev A,1997,56: 4064-4075.
    [120]Arlt J, Dholakia K, Allen L, et al. The production of multiringed Laguerre-Gaussian modes by computer-generated holograms[J]. J Mod Opt, 1998,45:1231-1237.
    [121]Ricklin J C, Davidson F M. Atmospheric turbulence effects on a partially coherent Gaussian beam:implications for free-space laser communication[J]. J Opt Soc Am A,2002,19:1794-1802.
    [122]Kato Y, Mima K, Miyanaga N, et al. Random Phasing of High-Power Lasers for Uniform Target Acceleration and Plasma-Instability Suppression[J]. Phys Rev Lett,1984,53:1057-1060.
    [123]Cai Y J, Zhu S Y. Ghost imaging with incoherent and partially coherent light radiation[J]. Phys Rev E,2005,71:056607.
    [124]Cai Y J, Peschel U. Second-harmonic generation by an astigmatic partially coherent beam[J]. Opt Express,2007,15:15480-15492.
    [125]Lu X, Cai Y J. Partially coherent circular and elliptical dark hollow beams and their paraxial propagations[J]. Phys Lett A,2007,369:157-166.
    [126]Cai Y J, Zhang L. Coherent and partially coherent dark hollow beams with rectangular symmetry and paraxial propagation properties [J]. J Opt Soc Am B,2006,23(1398-1407).
    [127]Eyyuboglu H T. Propagation and coherence properties of higher order partially coherent dark hollow beams in turbulence[J]. Opt & Laser Technology,2008,40:156-166.
    [128]Wang F, Cai Y J. Experimental observation of fractional Fourier transform for a partially coherent optical beam with Gaussian statistics [J]. J Opt Soc Am A,2007,24:1937-1944.
    [129]Zhan Q W. Radiation forces on a dielectric sphere produced by highly focused cylindrical vector beams[J]. J Opt A Pure Appl Opt,2003,5: 229-232.
    [130]Zhan Q W, Leger J R. Focus shaping using cylindrical vector beams[J]. Opt Express,2002,10:324-331.
    [131]Svoboda K, Block S M. Annual Review of Biophysics and Biomolecular Structure[J]. Annu Rev Biophys Biomol Struct,1994,23:247-285.
    [132]Visscher K, Brakenhoff G J. Theoretical study of optically induced forces on spherical particles in a single beam trap. I:Rayleight scatterers[J]. Optik, 1992,89:174-180.
    [133]Kercher M. The Scattering of Light and Other Electromagnetic Radiation[M]. Academic Press, New York,1969.
    [134]Alrt J, Garecs-Chavez V, Sibbett W, et al. Optical micro-manipulation using a Bessel light beam[J]. Opt Commun,2001,197:239-245.
    [135]Ashkin A. Trapping of atoms by resonance radiation pressure[J]. Phys Rev Lett,1978,40:729-732.
    [136]Bowers M S. Diffractive analysis of unstable optical resonator with super-Gaussian mirrors[J]. Opt Lett,1992,19:1319-1321.
    [137]Gori F. Flattened Gaussian beams[J]. Opt Commun,1994,107:335-341.
    [138]Li Y. Light beam with flat-topped profiles[J]. Opt Lett,2002,27:1007-1009.
    [139]Tovar A A. Propagation of flat-topped multi-Gaussian laser beams [J]. J Opt Soc Am A.2001,18:1897-1904.
    [140]Amarande S A. Beam propagation factor and the kurtosis parameter of flattened Gaussian beams[J]. Opt Commun,1996,129:311-317.
    [141]Bagini V, Borghi R, Gori F, et al. Propagation of axially symmetric flattened Gaussian beams[J]. J Opt Soc Am A,1993,13:1385-1394.
    [142]Borghi R. Elegant Laguerre-Gauss beams as a new tool for describing axisymmetric flatten Gaussian beams[J]. J Opt Soc Am A,2001,18: 1627-1633.
    [143]Borghi R, Santarsiero M, Vicalvi S. Focal shift of focused flat-topped beams[J]. Opt Commun,1998,154:342-348.
    [144]Cai Y J, Lin Q. Properties of a flattened Gaussian beam in the fractional Fourier transform plane[J]. J Opt A Pure Appl Opt,2003,5:272-275.
    [145]Cai Y J, Lin Q. Light beams with elliptical flat-topped profiles[J]. J Opt A Pure Appl Opt,2004,6:390-395.
    [146]Lu X, Cai Y J. Analytical formulas for a circular or non-circular flat-topped beam propagating through an apertured paraxial optical system[J]. Opt Commun,2007,269:39-46.
    [147]Wang F, Cai Y J. Experimental generation of a partially coherent flat-topped
    beam[J]. Opt Lett,2008,33:1795-1797.
    [148]Chen C, Tai P, Hsieh W. Bottle Beam from a Bare Laser for Single-Beam Trapping[J]. Appl Opt,2004,43:6001-6006.
    [149]Garces-Chavez V, Roskey D, Summers M D, et al. Optical levitation in a Bessel light beam[J]. Appl Phys Lett,2004,85:4001-4004.
    [150]Ye J J, Chang G Q, Norris T B, et al. Trapping cavitation bubbles with a self-focused laser beam[J]. Opt Lett,2004,29:2136-2138.
    [151]Okamoto K, Kawata S. Radiation Force Exerted on Subwavelength Particles near a Nanoaperture[J]. Phys Rev Lett,1999,83:4534-4537.
    [152]Ashkin A, Dziedzic J M, Yamane T. Optical trapping and manipulation of single cells using infrared laser beams [J]. Nature,1987,330:769-771.
    [153]Cai Y J, He S. Partially coherent flattened Gaussian beam and its paraxial propagation properties [J]. J Opt Soc Am A,2006,23:2623-2628.
    [154]Wu G, Guo H, Deng D. Paraxial propagation of partially coherent flat-topped beam[J]. Opt Commun,2006,260:687-690.
    [155]Borghi R, Santarsiero M. Modal decomposition of partially coherent flat-top beams produced by multimode lasers[J]. Opt Lett,1998,23:313-315.
    [156]Zhang Y, Zhang B, Wen Q. Changes in the spectrum of partially coherent flat topped beam in turbulent atmosphere [J]. Opt Commun,2006,266:407-412.
    [157]Alavinejad M, Ghafary B. Turbulence-induced degradation properties of partially coherent flat-topped beams[J]. Opt Laser Eng,2008,46:357-362.
    [158]Alavinejad M, Ghafary B. Spectral changes of partially coherent flat topped beam in turbulent atmosphere [J]. Opt Commun,2008,281:2173-2178.
    [159]Baykal Y, Eyyuboglu H T. Scintillations ofincoherent flat-topped Gaussian source field in turbulence [J]. Appl Opt,2007,46:5044-5050.
    [160]Ambardekar A A, Li Y Q. Optical levitation and manipulation of stuck particles with pulsed optical tweezers[J]. Opt Lett,2005,30:1797-1799.
    [161]Deng J L, Wei Q, Wang Y Z, et al. Numerical modeling of optical levitation and trapping of the stuck particles with a pulsed optical tweezers [J]. Opt Express,2006,13:3673-3680.
    [162]Little H, Brown C T A, Garces-Chavez V. Optical guiding of microscopic in femtosecond and continous wave Bessel light beams[J]. Opt Express,2004, 12:2560-2565.
    [163]Agate B, Brown C, Sibbett W, et al. Femtosecond optical tweezers for in-situ control of two-photon fluorescence[J]. Opt Express,2004,12:3011-3017.
    [164]Im K B, Han S M, Park H. Cell damage duringfemtosecond opticaltrapping[J]. Proc SPIE,2005,5699:274-280.
    [165]Im K B, Ju S B, Han S M. Trapping Efficiency of a Femtosecond L&ser and Damage Thresholds for Biological Cells[J]. J Kor Phys Soc,2006,48: 968-973.
    [166]Morrish D, Gan X S, Gu M. Morphology-dependent resonance induced by two-photon excitation in a micro-sphere trapped by a femtosecond pulsed laser[J]. Opt Express,2004,12:4098-4202.
    [167]Block S M, Blare D F, Berg H C. Compliance of bacterial flagella measured with optical tweezers[J]. Nature,1989,338:514-518.
    [168]Metzger N K, Wright E M, Sibbett W. Visualization of optical binding of microparticles using a femtosecond fiber optical trap[J]. Opt Express,2006, 14:3677-3678.
    [169]HosokawaY Y, Takabayashi J, Shukunami C. Nondestructive isolation of single cultured animal cells by femtosecond laser-induced shockwave [J]. Appl Phys A Mater Sci Process,2004,79:795-798.
    [170]Gordon J P. Radiation forces and momenta in dielectric media[J]. Phys Rev A, 1973,8:14-21.
    [171]Lai H M, Ng C K, Young K. Radiation force on a object and momentum of light in a liquid dielectric [J]. Phys Rev A,1984,30:1060-1066.
    [172]Gussgard R, Lindmo T, Brevik I. Calculation of the trapping force in a strongly focused laser beam[J]. J Opt Soc Am B,1992,9:1922-1930.
    [173]Wang L G, Zhao C L, Wang L Q, et al. Effect of spatial coherence on radiation forces acting on a Rayleigh dielectric sphere [J]. Opt Lett,2007,32: 1393-1395.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700