用户名: 密码: 验证码:
胶体晶体的制备及研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
胶体粒子在一定条件下可以像原子那样,形成三维有序结构,称之为胶体晶体。胶体晶体由于可以作为时间和空间上放大的晶体模型用来研究原子晶体的成核和生长过程,并且还可以构成具有特殊光学特性的光子晶体,从而引起科学家和工程师的研究兴趣。我们在胶体晶体研究方面所开展的主要工作可以概述如下:
     1、我们制备一系列的单分散的聚苯乙烯/磺酸钠和二氧化硅颗粒,用于组装胶体晶体。单分散的二氧化硅主要通过stober法和生长硅溶胶方法制备。考察了stober合成法中正硅酸乙酯(TEOS),氨水,水,温度对颗粒粒径和单分散性的影响。结果显示,stober方法对生长环境比较敏感,产率不高。但是,这种方法是研究颗粒生长机制和制备粒径小于100纳米的较小二氧化硅颗粒仍是一种有效的途径。种子生长法是制备高产量的二氧化硅的常用方法。与stober方法相比,它具有如下的优点,最终产品颗粒的数目由硅溶胶的数目决定,颗粒的最终粒径可以根据添加的正硅酸乙酯的量来预测,而其此方法制备的二氧化硅的产率高,适合工业大规模生产。但是,必须要求颗粒的最终直径大于5倍硅溶胶种子的粒径,也就是说,粒径在100nm以上比较合适。单分散的聚苯乙烯/磺酸钠是通过乳皂聚合方法制备,分析了引发剂用量、电解质浓度、单体浓度等因素对聚苯乙烯颗粒物理化学性质的影响,结果显示乳液聚合制备的聚苯乙烯/磺酸钠颗粒具有较高的表面电荷和较好的单分散性。
     2、我们采用密度匹配法研究了重力对带电粒子胶体晶体的影响。从原子分子层次认识材料的结构对于其性能的研究是非常必要的。由于胶体粒子与原子分子相比更容易被观察和研究,因此胶体晶体可以作为原子晶体的模型体系来认识和研究材料中的原子行为。然而,胶体晶体的弹性模量非常低,很小的外场就可能改变胶体晶体的结构。在本文中,我们将重水(D2O)和水(H2O)以一定比例混合来匹配直径为110nm的聚苯乙烯带电小球的密度,并利用Kossel衍射方法测量了胶体晶体的结构和晶格常数等参数。通过将密度匹配(g=0)和没有进行密度匹配(g=1)的实验结果的对比,我们发现重力将会使样品池中胶体晶体的晶格常数随高度的变低而变小。这一结果表明,在带电粒子胶体晶体的研究中有必要考虑重力的影响。
     3、采用光固化技术,以丙烯酰胺单体与亚甲基双丙烯酰胺交联剂在紫外光的照射下发生光聚合反应,嵌入聚苯乙烯胶体晶体,实现了胶体晶体的固定化。结合反射光谱和Kossel衍射技术研究对照了固定化前后胶体晶体的变化,实验结果表明,通过这种水凝胶固定化的胶体晶体保存了未固定前悬浮液中胶体晶体的结构。但固定化后的胶体晶体的晶面间距和晶体的尺寸都略微减小。通过对固定化后的水凝胶长时间的反射光谱观测,发现固定化后胶体晶体在Milli-Q水中起初会发生溶胀,经过2-5天溶胀-消溶胀过程达到平衡,平衡后的水凝胶胶体晶体十分稳定,可以长时间保持胶体晶体的结构。因此,胶体晶体固定化不但极大地提高了悬浮液中胶体晶体的抗剪切能力,还克服了悬浮液中胶体晶体对离子、外界干扰的敏感性,扩大了胶体晶体的实际应用价值。
The three-dimensional ordered structures are formed through a self-assembly process of colloidal particles like atoms at a certain condition, named colloidal crystals. Colloidal crystals have lately been of great interest to scientists and engineers because they can serve as a model system for studying the behavior of atoms on a much larger scale and photonic crystal with special optical effect. In this paper, a series of woks in the colloidal crystals are generalized in the following aspects:
     1. we synthesized a series of mono-dispersed sodium polystyrene sulfonate and Silica particles used for colloidal crystals. Mono-disperse silica particles were prepared two method-tradition stober and growth of silica sol particles. The factors which particle’s diameter and poly-dispersity index dependent on , such as the tetraethylorthosilicate (TEOS), ammonia, water and temperature, were investigated in stober method. It showed that stober method is sensentive to the growth environment, and have low silica content, however it is the good way of study the mechanism of growth and preparation of smaller silica particles that is less than 100nm .seeded growth of monodispered silica particles was described in this paper to shed new way for high content products. In constrast to stober method, seeded growth has the advantage that the end number of silica particles was determined by the number of silica sol and the diameter can be predicted according to the addition of TEOS. Besides, the high yields make it suitable for industry product. yet, it required that the designed diameter must be no less than 5 time of the dimeter of silica sol, that is mean that more than 100nm is more suitable. Mono-dispersed sodium polystyrene sulfonate particles was prepared by by using emulsifier emulsion polymerization, and then several factors such as initiator content, electrolyte concentration, monomer concentration etc. are discussed to discover the influences on physical chemistry properties of colloidal particles. Result demonstrates that the sodium polystyrene sulfonate particles have high surface charge density and monodispersity.
     2. Influence of gravity on crystallization of charged colloidal particles was studied by density-match. Understanding the structure of a material at the atomic level is essential to understanding its properties. Study of colloidal crystals holds great promise for modeling the behavior of atoms in materials because colloidal particles are more convenient to be detected and observed. However, elastic moduli of colloidal crystals are extremely low and thus even weak external fields can distort the structure of colloidal crystals. In this study, liquid mixtures of water (H2O) and deuterium oxide (D2O) as the liquid phase, was used to match the density of charged colloidal particles. Kossel diffraction method was used to detect the crystal structures. The experiments under the density-matched (g=0) and unmatched (g=1) conditions are compared to examine the influence of gravity on the crystal structures formed by self-assembly of 110nm (in diameter) polystyrene microspheres. The result shows that the gravity tends to make the lattice constants of colloidal crystals smaller at lower positions, which indicates that the effect of gravity should be taken into account in the study of the colloidal crystals.
     3. we immobilized colloidal crystals of charged particles in a poly (acrylamide) matrix by photoinduced polymerization. A reflection spectrum and Kossel-line diffraction were employed to trace and compare changes in the colloidal crystal structure before and after immobilization processing. Our experiments showed that immobilized colloidal crystals successfully retained the structure of colloidal crystals unless the sizes and the lattice spacings of the immobilized colloidal crystals decreased slightly. By observing the structure of immobilized crystals in Milli-Q water we confirmed that the lattice spacings of the crystals varied for several days initially during immobilization because of gel swelling or de-swelling. After reaching a balance (2-5 d), the immobilized colloidal crystals are found to be stable in Milli-Q water. Our study thus explores potential applications of colloidal crystals such as their use in photonic materials.
引文
[1] Yablonobitch E. Ihibited spontaneous emission in solid-state physics and electronics[J]. Physical Review Letters,1987,58(20):2059-2062
    [2] John S. Strong localization of photons in certain disordered dielectric superlattices [J]. Physical Review Letters, 1987, 58(23): 2486-2489
    [3] Dimitrov A. S., Nagayama K., Continuous convective assembling of fine particles into two-dimensional arrays on solid surfaces [J]. Langmuir, 1996, 12(5): 1303-1311
    [4] Dhont J. K. G., Smits C., Lekkerkerker H. N. W., A time resolved static light-scattering study on nucleation and crystallization in a colloidal system [J]. Journal of Colloidal and Interface Science,1992, 152(2): 386-401
    [5] Okubo T. Polymer colloidal crystals [J]. Progress in Polymer Science, 1993, 18(3): 481-517
    [6] Arora A. K., Tata B. V. R., Interactions, structural ordering and phase transitions in colloidal dispersions[J]. Advances in Colloid and Interface Science, 1998, 78(1): 49-97
    [7] Pusey P. N., van Megen W. Phase behaviour of concentrated suspensions of nearly hard colloidal spheres[J]. Nature, 1986, 320(6060): 340-342
    [8] Kegel W. K., van Blaaderen A. Direct observation of dynamical heterogeneities in colloidal hard-sphere suspensions[J]. Science, 2000, 287(5451): 290-293
    [9] Weeks E. R., Crocker J. C., Levitt A. C., Schofield A., Weitz D. A. Three-dimensional direct imaging of structural relaxation near the colloidal glass transition[J]. Science, 2000, 287(5455): 627-631
    [10] Hiltner P. A., Krieger I. M. Diffraction of light by ordered suspensions[J]. Journal of Physical Chemistry, 1969, 73(7): 2386
    [11] Vanderhoff J. W., Vitkuske J. F., Bradford E. B., Alfrey T. Some factors involed in the preparation of uniform particle size latexes [J]. Journal of Polymer Science, 1956, 20(95): 225-234
    [12] Stober W., Fink A., Bohn E. Controlled growth of monodisperse silica spheres in micron size range[J]. Journal of Colloid and Interface Science, 1968, 26(1): 62-69
    [13] Ottewill Rh., Walker T. Influence of non-ionic surface active agents on stability of polystyrene latex dispersions[J]. Kolloid-Zeitschrift and Zeitschrift Fur Polymere, 1968, 227(1-2): 108
    [14] Crandall R.S., Williams R. Gravitational Compression of crystallized suspensions of polystyrene spheres [J]. Science, 1977, 198(4314): 293-295.
    [15] Williams R., Crandall R. S., Wojtowicz P. J. Melting of crystalline suspensions of polystyrene spheres[J]. Physical Review Letters, 1976, 37(6): 348-351.
    [16] Kesavamoorthy R., Arora A. K. Gravitational compression in colloidal suspension[J]. Journal of Physics a-Mathematical and General, 1985, 18(17): 3389-3398
    [17] Murray C. A., Grier D. G. Colloidal crystals-solid particles suspensended in fluid formordered arrays with unusual and useful physical-properties [J]. American Scientist, 1995, 83(3): 238-245
    [18] Blanco A., Chomski E., Grabtchak S., Ibisate, M., John S., Leonard S., W., Lopez C., Meseguer F., Miguez H., Mondia J. P., Ozin G. A., Toader O., van Driel H. M. Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometres[J]. Nature, 2000, 405(6785):437-440
    [19] Schroden R. C., Al-Daous M., Blanford C. F., Stein A. Optical properties of inverse opal photonic crystals[J]. Chemistry of Materials, 2002, 14(8): 3305-3315
    [20] Velev O. D., Lenhoff A. M. Colloidal crystals as templates for porous materials[J]. Current Opinion in Colloid & Interface Science, 2000, 5(1-2):56-63
    [21] Jiang P., Bertone J. F., Colvin V. L. A lost-wax approach to monodisperse colloids and their crystals[J]. Science, 2001, 291(5503): 453-457
    [22] Joannopoulos J. D., Villeneuve P. R., Fan S. H. Photonic crystals: Putting a new twist on light[J]. Nature, 1997, 386(6621): 143-149
    [23] Anderson V. J., Lekkerkerker H. N. W., Insights into phase transition kinetics from colloid science[J]. Nature, 2002, 416(6883): 811-815
    [24] Elliot M. S., Haddon S. B., Poon W. C. K. Direct observation of pre-critical nuclei in a metastable hard-sphere fluid [J]. Journal of Physics: Condensed Matter, 2001, 13(23): L553-L558
    [25] Auer S., Frenkel D. Prediction of absolute crystal-nucleation rate in hard-sphere colloids[J]. Nature, 2001, 409(6823): 1020-1023
    [26] Clark N. A., Hurd A. J., Ackerson B. J. Single colloidal crystals [J]. Nature, 1979, 281(5726): 57-60.
    [27] Pieranski P. Colloial crystals [J]. Contemporary Physics,1983, 24(1): 25-73.
    [28] Yoshiyama T., Sogami I., Ise N. Kossel line analysis on colloidal crystals in semidilute aqueous-solutions [J]. Physical Review Letters, 1984, 53(22): 2153-2156.
    [29] Yoshiyama T. Ordering process of colloidal crystal in semidilute aqueous suspensions [J]. Polymer, 1986, 27(6): 827-833.
    [30] Monovoukas Y., Gast A. P. The experimental phase-diagram of charged colloidal suspensions [J]. Journal of Colloid and Interface Science, 1989, 128(2): 533-548
    [31] Sogami I. S., Yoshiyama T. Kossel line analysis on crystallizaton in colloidal suspensions [J]. Phase Transitions, 1990, 21(2-4): 171-182
    [32] Lowen H., Palberg T., Simon R. Dynamical Criterion for Freezing of Colloidal Liquids [J]. Physical Review Letters, 1993, 70(10): 1557-1560
    [33] Sirota E. B., Ouyang H. D., Sinha S. K., Chaikin P. M. Complete phase diagram of a charged colloidal system: a synchrotron X-Ray scattering study [J]. Physical Review Letters, 1999, 62(13): 1524-1527
    [34] Sanders J. V., Murray M. J. Ordered arrangments of spheres of 2 different sizes in opal [J]. Nature, 1978, 275(5677): 201-203
    [35] Barrat J. L., Baus M., Hansen J. P. Density-functional theory of frezing of hard-sphere mixtures into substitutional solid-solutions [J]. Physical Review Letters, 1986, 56(10): 1063-1065
    [36] Bartlett P., Ottewill R. H., Pusey P. N. Susperlattice formation in binary-mixtures of hard-sphere colloids [J]. Physical Review Letters, 1992, 68(25): 3801-3804
    [37] Murray C. B., Kagan C. R., Bawendi M. G. Self-organization of CdSe nanocrystallites into 3-dimensional quantum-dot superlattices [J]. Science, 1995, 270(5240): 1335-1338
    [38] Redl F. X., Cho K. S., Murray C. B., O'Brien S. Three-dimensional binary superlattices of magnetic nanocrystals and semiconductor quantum dots [J]. Nature, 2003, 423(6943): 968-971
    [39] Shevchenko E. V., Talapin D. V., Kotov N. A., O'Brien S., Murray C. B. Structural diversity in binary nanoparticle superlattices [J]. Nature, 2006,439(7072): 55-59
    [40] Shevchenko E. V., Talapin D. V., Murray C. B., O'Brien S. Structural characterization of self-assembled multifunctional binary nanoparticle superlattices [J]. Journal of the American Chemical Society, 2006, 128(11): 3620-3637
    [41] Fan F. Q., Stebe K. J. Assembly of Colloidal Particles by Evaporation on Surfaces with Patterned Hydrophobicity [J]. Langmuir, 2004, 20(8): 3062-3067
    [42] Tien J., Terfort A., Whitesides G. M., Microfabrication through Electrostatic Self-Assembly [J]. Langmuir, 1997, 13(20): 5349-5355
    [43] Gates B., Wu Y. Y., Yin Y. D., Yang P. D., Xia Y. N. Single-crystalline nanowires of Ag2Se can be synthesized by templating against nanowires of trigonal Se [J]. Journal of the American Chemical Society, 2001, 123(46): 11500-11501
    [44] Hayward R. C., Saville D. A., Aksay I. A. Electrophoretic assembly of colloidal crystals with optically tunable micropatterns [J]. Nature, 2000, 404(6773): 56-59
    [45] Holtz J. H., Asher S. A. Polymerized colloidal crystal hydrogel films as intelligent chemical sensing materials [J] Nature, 1997, 389(6653): 829-832
    [46]江龙,胶体化学概论,科学出版社,2002
    [47] Ito K., Nakamura H., Ise N. Ordered structure in dilute suspensions of charged polymer lattices as observed in the vertical planes and in mixtures of heavy and light waters [J]. Journal of Chemical Physics, 1986, 85(10): 6136-6142
    [48] Ise N., Ito K., Yoshida H. Study of inside structure in colloidal dispersions by laser scanning microscope[J]. Abstracts of Papers of the American Chemical Society, 1992, 203: 579
    [49] Pusey P. N. Number fluctuations of interacting particles Journal of Physics a-Mathematical and General[J]. 1979, 12(10): 1805-1818
    [50] Daly J. G., Hastings R. Temperature-dependence of bragg scattering from crystallized suspensions of macroions [J]. Journal of Physical Chemistry, 1981, 85(3): 294-300
    [51] Udo M. K., desouza M. F., The ordering of aqueous suspensions of polystyrene spheres [J] Solid State Commun,1980, 35(12): 907-910
    [52] Grier D. G. Colloids-A surprisingly attractive couple [J]. Nature,1998, 393(6686): 621
    [53] Crocker J. C., Grier D. G., When like charges attract: The effects of geometrical confinement on long-range colloidal interactions[J]. Physical Review Letters, 1996, 77(9): 1897-1900
    [54] Bowen W. R., Sharif A. O., Long-range electrostatic attraction between like-charge spheres in a charged pore[J]. Nature, 1998, 393(6686): 663-665
    [55] Tata B. V. R., Arora A. K., Vapor-liquid condensation in charged colloidal suspensions-reply [J]. Physical Review Letters, 1994, 72(5): 787-787.
    [56] Yamanaka J., Hayashi Y., Ise N., Control of the surface charge density of colloidal silica by sodium hydroxide in salt-free and low-salt dispersions[J]. Physical Review E, 1997, 55(3): 3028-3036
    [57] Ise N., Okubo T., Mean activity coefficient of polyelectrolytes .3. Measurements of hydrochlorides of polyethylenimine and its low molecular weight analogs [J]. Journal of Physical Chemistry,1966, 70(7): 2400
    [58] Chu X. L., Wasan D. T. J.Attractive interaction between similarly charged colloidal particles [J]. Journal of Colloid and Interface Science, 1996, 184(1): 268-278.
    [59] Hachisu S., Kobayash Y., Kose A. Phase separation in monodisperse latexes [J]. Journal of Colloid and Interface Science, 1973, 42(2): 342-348.
    [60] Eldridge M. D., Madden P. A. Enropy-driven formation of a superlattice in a hard-sphere binary mixture[J]. Nature, 1993, 365(6441): 35-37.
    [61] Adams M., Dogic Z., Keller S. L. Entropically driven microphase transitions in mixtures of colloidal rods and spheres[J]. Nature, 1998, 393(6683): 349-352.
    [62] Lekkerkerker H. N., Stroohants A. Colloids - Ordering entropy [J]. Nature,1998, 393(6683): 305
    [63] Dinsmore A. D., Yodh A. G., Pine D. J., Entropic control of particle motion using passive surface microstructures[J]. Nature,1996, 383(6597): 239-242
    [64] Lin K.H, Crocker J.C., Prasad V., Schofield A., Weitz D.A., Lubensky T.C., Yodh A.G., Entropically driven colloidal crystallization on patterned surfaces[J]. Physical Review Letters, 2000, 85(8): 1770-1773.
    [65] Monovoukas Y., Gast A.P. The experimental phase-diagram of charged colloidal suspensions [J]. Journal of Colloid and Interface Science,1989, 128(2): 533-548
    [66] Kremer K., Robbins M.O., Grest G.S. Phase-diagram of Yukawa systems-model for charge-stabilized colloidals [J]. Physical Review Letters, 1986, 57(21): 2694-2697.
    [67] Okubo T. Extraordinary behavior in the structure-properties of colloidal macroions in deionized suspension and the importance of the debye-screening length [J] Accounts of Chemical Research, 1988, 21(7): 281-286.
    [68] Okubo T. Polymer colloidal crystals [J]. Progress in Polymer Science, 1993, 18(3): 481-571.
    [69] Okubo T. Transmitted light spectrum measurements-a new and convenient technique for the study of the ordered structure of a monodispersed polystyrene latex in solution and flim [J] Journal of the Chemical Society-Faraday Transactions I, 1986, 82: 3175-3183.
    [70] Okubo T. Ordered solution structure of a monodispersed polystyrene latex as studied by the transmitted light spectrum method [J]. Journal of the Chemical Society-Faraday Transactions I, 1986, 82(): 3185-3196.
    [71] Okubo T., Ordered solution structure of a monodispersed polystyrene latex as studied by the reflection spectrum method [J]. Journal of the Chemical Society-Faraday Transactions I, 1986, 82(1): 3163-3176.
    [72] Kossel W., Loeck V., Voges H. Die Richtungsverteilung der in einem Kristall entstandenen charakteristischen R?ntgenstrahlung[J]. Zeitschrift für Physik A Hadrons and Nuclei, 1935, 94(1): 139-144.
    [73] Ackerson B. J., Clark N. A. Shear-induced melting [J]. Physical Review Letters, 1981, 46(2): 123-126.
    [74] Carlson R.J., Asher S.A. Charavterzation of optical diffraction and crystal-structure in monodisperse polystyrene colloids[J]. Applied Spectroscopy, 1984, 38(2): 297-304.
    [75] Sogami I. S, Yoshiyama T. Kossel line analysis on crystallization in colloidal suspensions[J]. Phase Transitions, 1990, 21(3): 171-182.
    [76] Dong P. Advances in preparation and application of monodisperse colloidal silica particles [J] Progress in Natural Science, 2000, 10(8): 575-584.
    [77] Jelinek L., Dong P., Rojaspazos C., Taibi H., Kovats E. S. Study of the stober reaction.1. Properties of colloidal silica spheres prepared via alkoxide hydrolysis [J]. Langmuir,1992, 8(9): 2152-2164.
    [78] Chen S. L., Dong P., Yang G. H., Yang J. J. Kinetics of formation of monodisperse colloidal silica particles through the hydrolysis and condensation of tetraethylorthosilicate [J]. Industrial & Engineering Chemistry Research., 1996, 35(12): 4487-4493
    [79]董鹏.由硅溶胶生长单分散颗粒的研究[J].物理化学学报, 1998, 14(2): 109-114
    [80] Goodall A. R., Wilkinson M. C., Hearn J. Mechanism of emulsion polymerization of styrene in soap-free systems [J] Journal of Polymer Science Part a-Polymer Chemistry, 1977, 15(9): 2193-2218
    [81] Kim J. H., Chainey M., Elaasser M. S., Vanderhoff J. W. Preparation of highly sulfonated polystyrene model colloids [J]. Journal of Polymer Science Part a-Polymer Chemistry, 1989, 27(10): 3187-3199
    [82] Kim J. H., Chainey M., Elaasser M. S., Vanderhoff J. W. Emulsifier-free emulsion copolymerization of styrene and sodium styrene sulfonate [J] Journal of Polymer Science Part a-Polymer Chemistry, 1992, 30(2): 171-183
    [83] Sunkara H. B., Jethmalani J. M., Ford W. T. Synthesis of cross-linked poly(styrene-co-sodium styrene-sulfonate) latexes [J]. Journal of Polymer Science Part a-Polymer Chemistry, 1994, 32(8): 1431-1435.
    [84] Okubo T. Time-resolved analysis of a crystal-like structure-forming process of a monodisperse polystyrene sphere as studied by rapid-scanning spectrophotometry [J]. Journal of the Chemical Society-Faraday TransactionsⅠ, 1988, 84: 1163-1169.
    [85] Aastuen D. J. W., Clark N. A., Swindal J. C., Muzny, C. D. Determination of the colloidal crystal nucleation rate density [J]. Phase Transitions, 1990, 21(2-4): 139
    [86] Okubo T. Alloy structures in binary-mixtures of highly deionized colloids at sedimention equilibrium [J]. Journal of Chemical Physics, 1990, 93(11): 8276-8283.
    [87] Wette P., Schope H. J., Palberg T. Microscopic investigations of homogeneous nucleation in charged sphere suspensions [J]. Journal of Chemical Physics, 2005, 123(17): 174902
    [88] Wette P., Schope H. J., Palberg T. Crystallization in charged two-component suspensions [J]. Journal of Chemical Physics, 2005, 122(14): 144901
    [89] Tsuchida A., Takyo E., Taguchi K., Okubo T. Kinetic analyses of colloidal crystallization in shear flow [J] Colloid and Polymer Science, 2004, 282(10): 1105-1110.
    [90] Shinohara T., Yoshiyama T., Sogami I. S., Konishi T., Ise N. Measurements of elastic constants of colloidal silica crystals by Kossel line analysis [J]. Langmuir, 2001, 17(26): 8010-8015.
    [91] Hachisu S., Yoshimura S. Optical demonstration of crystalline superstructures in binary-mixtures of latex globules [J]. Nature, 283(5743): 188-189.
    [92] Yoshinaga K., Fujiwara K., Mouri E., Nakamura H. Stepwise controlled immobilization of colloidal crystals formed by polymer-grafted silica particles [J]. Langmuir, 2005, 21(10): 4471-4477.
    [93] Shinohara T., Kurokawa T., Yoshiyama T., Itoh T., Sogami I. S., Ise N. Structure of colloidal crystals in sedimenting mixed dispersions of latex and silica particles [J]. Physical Review E, 2004, 70(6): 062401
    [94] Okubo T., Ishiki H. Kinetic analyses of colloidal crystallization in a wide range of sphere concentrations as studied by reflection spectroscopy [J]. Journal of Colloid and Interface Science, 2000, 228(1): 151-156.
    [95] Williams R., Crandall R. S. Structure of crystallized suspensions of polystyrene spheres [J]. Physics Letters A, 1974, A 48(3): 225-226.
    [96] Furusawa K., Tomotsu N. Direct observation studies for the structure of the electrical double-layer of concentrated monodisperse lattices [J]. Journal of Colloid and Interface Science, 1983, 93(2): 504-512.
    [97] Zhu J., Li M., Rogers R., Meyer W. V., Ottewill R. H., Crew Space Shuttle Columbia, Russel, W. B., Chaikin, P. M. Crystallization of hard-sphere colloids in microgravity [J]. Nature, 1997, 387(6636): 883-885.
    [98] Weitz D. A., Packing in the spheres [J]. Science, 2004, 303(5660): 968-969.
    [99] Bausch A. R., Bowick M. J., Cacciuto A., Dinsmore A. D., Hsu M. F., Nelson D. R., Nikolaides M. G., Travesset A., Weitz D. A. Grain boundary scars and spherical crystallography [J]. Science, 2003, 299(5613): 1716-1718.
    [100] Nikolaides M. G., Bausch A. R., Hsu M. F., Dinsmore A. D., Brenner M. P., Weitz D. A., Gay C. Electric-field-induced capillary attraction between like-charged particles at liquid interfaces [J]. Nature, 2002, 420(6913): 299-301.
    [101] Ishikawa M., Okubo T. Nucleation kinetics of polystyrene colloidal crystallization in highly deionized water [J].Journal of Crystal Growth, 2001, 233(1-2): 408-416.
    [102] Ishikawa M., Morimoto H., Okubo T., Maekawa T. Growth of colloidal crystals under microgravity [J]. International Conference on Material for Advanced Technologies, 2002, 16(1-2): 338-345.
    [103] Okubo T. Kinetic analyses of colloidal crystallization in microgravity - aircraft experiments [J]. Colloids and surfaces A-Physicochemical and engineering aspects, 1999, 153(1-3): 515-524.
    [104] Okubo T., Tsuchida A. Kinetics of colloidal alloy crystallization of binary mixtures of monodispersed polystyrene and/or colloidal silica spheres having different sizes and densities in microgravity using aircraft [J]. Colloid and Polymer Science, 2000, 278(3): 202-210.
    [105] Pusey P. N., Vanmegen W. Observation of a glass-transition in suspensions of spherical colloidal particles [J]. Physical Review Letters, 1987, 59(18): 2083-2086.
    [106] Kesavamoorthy R., Sood A. K., Tata B. V. R., Arora A. K. The split in the 2nd peak in the structure factor of binary colloidal suspensions-glass-like order [J]. Journal of Physics C-Solid State Physics, 1988, 21(27): 4737-4747.
    [107] Liu L., Xu S.H., Liu J., Sun Z.W. Characterization of crystal structure in binary mixtures of latex globules [J]. Journal of Colloid and Interface Science, 2008, 326(1): 261-266.
    [108] Liu L., Xu S.H., Liu J., Duan L., Sun Z.W., Liu R.X, Dong P. Crystallization of charged colloidal particles: an experimental study[J]. Acta Physica Sinica, 2006, 55(11): 6168-6174.
    [109] Crandall R. S., Williams R. Gravitational compression of crystallized suspensions of polystyrene spheres [J]. Science, 1977, 198(4314): 293-295.
    [110] Okubo T. Rigidity of colloidal crystals as studied by the diffusion equlibrium method [J]. Journal of Chemical Physics, 1995, 102(19): 7721-7727.
    [111] Okubo T. Microsopic obserbation of ordered colloids in sedimentation equilibrium and important role of deby-screening length.1.Heavy and monodisperse polystyrene type spheres(specific-gravity=1.50) in aqueous and aqueous methanol suspensions [J]. Journal of Chemical Physics, 1987, 86(4): 2394-2399.
    [112] Okubo T. Microsopic obserbation of ordered colloids in sedimentation equilibrium and the important role of the deby-screening length.5.Binary-mixtures of monodisperse polystyrene spheres in aqueous suspension [J]. Journal of Chemical Physics, 1987, 87(9): 5528-5533.
    [113] Schope H. J., Decker T., Palberg T. Response of the elastic properties of colloidal crystals to phase transitions and morphological changes[J]. The Journal of Chemical Physics, 1998, 109(22): 10068-10074.
    [114] Asher S. A., Holtz J., Liu L., Wu Z. J. Self-Assembly Motif for Creating Submicron Periodic Materials - Polymerized Crystalline Colloidal Arrays [J].Journal of the AmericanChemical Society 1994, 116(11): 4997-4998.
    [115] Asher S. A., Holtz J., Weissman J., Pan G. S. Mesoscopically periodic photonic-crystal materials for linear and nonlinear optics and chemical sensing[J]. Mrs Bulletin, 1998, 23(10): 44-50.
    [116] Foulger S. H., Jiang P., Ying Y. R. Photonic Bandgap Composites [J]. Advanced Materials, 2001, 13(24): 1898-1901.
    [117] Foulger S. H., Jiang P., Lattarn A. Photonic Crystal Composites with Reversible High-Frequency Stop Band Shifts [J]. Advanced Materials, 2003, 15(9): 685-689.
    [118] Dai Y., Bao H., Lin J. P., Foulger S. H. Study of polymerized crystalline colloidal array for stimulation of heavy metal cations [J]. Acta Chimica Sinica, 2006, 64(22): 2275-2280.
    [119] Ying Y. R., Xia J. Q., Foulger S. H. Pressure tuning the optical transmission properties of photonic band gap composites[J]. Applied Physics Letters 2007, 90(7): 071110
    [120] Goldberg R., Schope H. J. Opaline Hydrogels: Polycrystalline Body-Centered-Cubic Bulk Material with an in Situ Variable Lattice Constant [J] Chem. Mater., 2007, 19(25): 6095-6100.
    [121] Iwayama Y., Yamanaka J., Takiguchi Y., Takasaka M., Ito K., Shinohara T., Sawada T., Yonese M. Optically Tunable Gelled Photonic Crystal Covering Almost the Entire Visible Light Wavelength Region [J]. Langmuir, 2003, 19(4): 977-980.
    [122] Jethmalani J. M., Ford W. T. Diffraction of Visible Light by Ordered Monodisperse Silica-Poly(methyl acrylate) Composite Films[J]. Chem. Mater., 1996, 8(8): 2138-2146.
    [123] Jethmalani J. M., Sunkara H. B., Ford W. T., Willoughby S. L., Ackerson B. J. Optical diffraction from silica-poly(methyl methacrylate) composite films [J]. Langmuir 1997, 13(10): 2633-2639.
    [124] Liu L., Xu, S., Liu J., Sun Z.W. Characterization of crystal structure in binary mixtures of latex globules [J]. Journal of Colloid and Interface Science, 2008, 326(1): 261-266.
    [125]刘蕾,徐升华,刘捷,段俐,孙祉伟,刘忍肖,董鹏.带电胶体粒子结晶过程的实验研究[J].物理学报, 2006, 55(11): 6168-6174
    [126]刘蕾,徐升华,孙祉伟,段俐,谢京昌,林海.物理学报, 2008, 57(11): 7367-7373.
    [127] Liu L., Wang J., Xu S. H., Sun Z. W. Chinese Journal of Chemical Physics 2009, 22, (in press).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700