用户名: 密码: 验证码:
铝青铜减摩粉体涂层及摩擦磨损性能
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
铝青铜合金具有高强度、优良塑性、耐磨耐蚀性等优点,已成功应用于拉伸冲压模具当中。为了进一步将该合金拓广应用于表面工程领域,本文讨论了用以Cu-14Al-X合金为基础制备的铝青铜减摩粉体,该粉体材料是由氮气雾化法制备的。材料主要成分为Cu70~80%,Al12~16%,Fe2.0~4.0%,其余为Mn、Ni、Co、Re等微量元素。
     分别采用等离子喷焊技术和激光熔敷技术两种表面熔敷工艺在45#钢基材表面制备了铝青铜减摩粉体涂层。借助X射线衍射仪(XRD)、扫描电子显微镜(SEM)、电子探针(EPMA)、场发射扫描电子显微镜(FESEM)、能谱仪(EDS)及摩擦磨损试验机等研究分析了两种涂层的微观组织结构特征及其形成过程、涂层与基体在界面附近的结合组织特征以及结合强度、涂层宏观硬度和显微硬度及其摩擦磨损性能等,以及不同粉末粒度对喷焊层性能的影响,最终得出适合于铝青铜(Cu-14Al-X)减摩粉体涂层的表面处理工艺。结果表明,制备工艺的不同对涂层的组织形貌、涂层成分、硬度影响明显。1.激光熔敷层和等离子喷焊层的物相组成相同,都为α+γ2+β?+K相,但组织形貌差别显著。激光熔敷层组织细小、致密,没有明显的晶界,硬质K相弥散分布于α+γ2+β?构成的基体相之中,等离子喷焊层的硬质K相尺寸相对较大且分布不均匀。2.等离子喷焊层和激光熔敷层的元素含量也有较大差异,尤其是Fe元素的含量差异明显。等离子喷焊层中的Fe元素含量达到了11.30%,而激光熔敷层中的Fe元素含量只有3.83%。3.激光熔敷层的表面硬度也远高于等离子喷焊层。激光熔敷层的表面硬度达到了362.5HV,而等离子喷焊层的表面硬度只有304HV。4.不同粉末粒度对等离子喷焊层的性能有较大的影响。
     在RFT-III型摩擦磨损试验机上测试了等离子喷焊层和激光熔敷层的摩擦磨损性能,结果表明在边界润滑条件下:1.等离子喷焊层与激光熔敷层的摩擦磨损机理有明显差异;等离子喷焊层在低载荷下以轻微的磨粒磨损为主要磨损形式,在高载荷条件下转变为较严重的粘着磨损并伴随有轻度的磨粒磨损;激光熔敷层则以磨粒磨损为主。2.等离子喷焊层在低载荷条件下表现出了优良的摩擦磨损性能,但在高载荷下,磨损量和摩擦系数都会剧烈增加,摩擦性能不如激光熔敷层稳定。
     在相同摩擦条件下,将激光熔敷层、等离子喷焊层和Cu-14Al-X合金的摩擦磨损性能进行了对比。结果表明:1.激光熔敷层和Cu-14Al-X合金均以磨粒磨损为主要磨损方式,而等离子喷焊层的磨损方式以粘着磨损为主。2.等离子喷焊层在低载荷下摩擦性能优于Cu-14Al-X合金和激光熔敷层,但在高载荷下,耐磨损性能下降很快,摩擦稳定性不好。3.激光熔敷层的摩擦性能和Cu-14Al-X合金大致相当,磨损量略高于Cu-14Al-X合金,但摩擦稳定性优于Cu-14Al-X合金。
     含Ce与不含Ce的铝青铜减摩粉体涂层主要组织相同,加入适量的Ce细化了涂层的组织,改变黑色硬质相(K相)的形貌、尺寸大小,使黑色硬质相(K相)的数量增加,分布更均匀,抑制合金元素的偏聚,并促进涂层与基体之间的原子扩散,有利于元素的合金化,从而形成组织致密的冶金熔合区。
Aluminum bronze alloys which have high strength, excellent plasticity, wear and corrosion resistance and so on have been successfully applied to stretching and pressing tools. In order to widen its application in surface engineering, this paper discussed the self-lubricate aluminum bronze (Cu-14Al-X) powder which was made by nitrogen atomization. The main composition of the powder is: Cu 70 ~ 80%, Al 12 ~16%, Fe 2.0 ~ 4.0% and the rest is other microelements, for example, Mn, Co, Ni and Re.
     Two kinds of self-lubricate aluminum bronze coatings on AISI-1045 steel were respectively prepared by plasma spraying and laser cladding technology. By using X-ray diffraction (XRD), scanning electron microscopy (SEM), electron probe micro-analyzer (EPMA), field emission scanning electron microscopy (FESEM), energy dispersive spectrometer (EDS) and friction and wear test machine, microstructure, forming process, interface between substrate and coating, bonding strength, macrohardness, microhardness and friction and wear properties were studied. The effect of different particle size of powder on them was also analysed. Finally, surface treatment technology fitting to self-lubricate aluminum bronze (Cu-14Al-X) coating was gained. The results showed different preparing technologies has different influences on morphology, composition and hardness. 1. The phases of the two coatings are same, includingα,γ2,β? and K. The structure of laser cladding coating is finer, denser without clear grain boundaries and the hard K phases disperse in the substrate, While those in the plasma spraying coating is large and distributes unevenly. 2. The element contents of them are different, especially Fe. The content Fe in plasma spraying coating is up to 11.30%, while that in laser cladding coating is only 3.83%. 3. The hardness of laser cladding coating which is 362.5HV is higher than that of plasma spraying coating which is only 304HV. 4. The effect of different particle size of powders on properties of the plasma spraying coating is obvious.
     Friction and wear properties of plasma spraying coating and laser cladding coating were performed on RFT-III friction and wear test machine under boundary lubricant condition. The results are as follows: 1. Friction and wear mechanism of the two coatings is various. That of the plasma spraying coating is slight abrasive abrasion under low load, while serious adhesion abrasion under high load with slight abrasive abrasion. That of laser cladding coating is mainly abrasive abrasion. 2. Plasma spraying coating possesses excellent wear resistance under low load, but wear loss and friction coefficient increase violently under high load, which illustrates its tribological properties is less stable than that of the laser cladding coating.
     In the same test conditions, tribological properties of laser cladding coating, plasma spraying coating and Cu-14Al-X alloys were studied. 1. The wear mechanism of laser cladding coating and Cu-14Al-X alloys is mainly abrasive abrasion, but plasma spraying coating is adhesion abrasion. 2. Tribological performance of plasma spraying coating under low load is better than that of Cu-14Al-X alloys and laser cladding coating, but under high load, wear resistance decreased rapidly, which indicates its tribological stability is not good. 3. Laser cladding coating and Cu-14Al-X alloys have similar tribological properties, but wear loss of laser cladding coating is slightly higher than that of Cu-14Al-X alloys. Friction stability of laser cladding coating is better than that of Cu-14Al-X alloys.
     The structure of the self-lubricate aluminum bronze coatings with and without Ce is same. Adding moderate Ce can refine the structure, change the morphology, size of the K phases, increase their quantities and make them disturb more evenly. Ce can also restrain segregation of alloy elements and accelerate atomic diffusion which is benefit for alloying, thus form dense fusing zone.
引文
[1]赵国权,贺家齐,王碧文等.铜回收、再生与加工技术.北京:化学工业出版社,2007,155-185
    [2]崔忠圻.金属学与热处理.北京:机械工业出版社,2007,428-433
    [3]谭树松.有色金属材料学.北京:冶金工业出版社,1993,43-45
    [4] T W Durering, J Albrecht, Gessinger G H. A shape-memory alloy for high temperature application. Journal of metals, 1982,12:14-20
    [5] S J Fujiwara, S Miwa. Shape memory effects in rapidly quenched Cu-12%Al-1%Si alloy. Materials Science and Engineering, 1988,98:509-513
    [6] D W Roh, J W Kin, T J Cho, et al. Tensile properties and microstructure of microalloyed Cu-Al-Ni-X shape memory alloys. Materials Science and Engineering, 1991,136:17-23
    [7] H Sakamoto, K Sugimoto, Y Nakamura, et al. Martensite phase causing two way shape memory effect in Cu-13.7Al-4.0Ni(mass%) alloy single crystals. Materials Transactions, 1991,32(2):128-130
    [8] M A Morris. High temperature of ductile Cu-Al-Ni shape memory alloys with boron additions. Acta Metallurgica et Materialia, 1992,40(7):1573-1586
    [9] M A Morris, T Lipe. Microstructureal influence of Mn additions on thermoelastic and pseudoelastic properties of Cu-Al-Ni alloys. Acta Metallurgica et Materialia, 1994,42(5):1583-1594
    [10] H Morawiec, M Gigla. Effect of ageing on shape recovery in Cu-Al-Ni alloy with Ti+B addition. Acta Metallurgica et Materialia, 1994,42(8):2683-2686
    [11] T Lipe, M A Morris. Effect of thermally activated mechanisms on the martensitic transformation of modified Cu-Al-Ni Alloys. Acta Metallurgica et Materialia, 1995,43(3):1293-1303
    [12] W H Zou, H Y Peng, R Wang, et al. Heating effects on fine structure of a Cu-Al-Ni-Mn-Ti shape memory alloy. Acta Metallurgica et Materialia, 1995,43(8):3009-3016
    [13] Wei Z G, Peng H Y, Yang D Z, et al. Reverse transformations in Cu-AlNiMnTi alloy at elevated temperatures. Acta Metallurgica et Materialia, 1996,44(3):1189-1199
    [14] Y Liu, J Mazumder, K Shibata. Micorstructural study of the interface in laser-clad Ni-Al bronze. Acta Metallurgica et Materialia, 1994, 42(5):1189-1199
    [15] X L Zhu, Q H Liu, Z R Zhao, et al. Microstructure and element profile of rare earth permeation layer of Al bronze. Journal of Rare Earths, 1995,13(4):281-285
    [16] R Haimann, G Pekalski. Some properties of treated tin aluminum bronze with zinc addition. Rudy Met Niezelaz, 1984,29(4):148-150
    [17] R Haimann, G Pekalski. Influence of zinc additions on the cource of corrosion processesin Cu-10.5%Al alloys. Rudy Met Niezelaz, 1984,29(3):117-120
    [18] J Birkenfeld, B Boczek, Z Kauksza. Manganese-Aluminum bronze with additions of nickel,iron and titanium for nonsparking tools. Pr. Inst. Met. Niezelaz, 1981,10(4):182-186
    [19] AFS copper alloy technology transfer committee. Melt treatments of copper alloys. Modern Casting, 1997,87(1):52-58
    [20]胡大录,曹建春,周兆等.新型高强耐磨铜的组织与性能的研究.有色金属,1998,50(3):99-103
    [21]汤宏群,林元祖.铜锑合金的试验研究.机械工程材料,2002,26(8):28-31
    [22]王智平,金玉花,路阳.高铝青铜Cu-14%Al-X摩擦磨损特性的研究.铸造,2003,(3):185-189
    [23]路阳,李文生,王智平.新型模具铝青铜合金材料的研制.热加工工艺,2002(3):45-46
    [24] J R Davis. Surface engineering for corrosion and wear resistance. USA:ASM International, 2001,1-5
    [25]徐滨士,刘世参.表面工程.北京:机械工业出版社,2000,1-12
    [26]孙世杰. 2005年北美粉末冶金工业发展报告.粉末冶金工业,2006,6(2):45-47
    [27]路讯. 2006年北美粉末冶金行业发展报告.粉末冶金工业,2007,17(1):54-55
    [28] Sadayappan M, Zavadil R, Sakoo M. Mechanical properties of aluminum bronze alloy C95400. AFS Transactions, 2001,109:745-758
    [29]粱金生,粱广川,高兴华.铜基合金模具材料的研究.金属热处理,1995,20(5):12-13
    [30] Anonymous. Basic of design engineering bronze and copper-alloy bearings. Machine Design, 1995,27(15):126-127
    [31] Paul De Garmo E, Black J T, Ronald A Kohser. Materials and Processes in Manufacturing. Prenticle Hall College Div, 1997:153-154
    [32]薛群基,党鸿辛.摩擦学研究的发展概况.摩擦学学报,1993,13(1):73-80
    [33]徐滨士.表面工程应用与展望.北京:高等教育出版社,2000
    [34]薛群基.粘结固体润滑涂层材料的研究及其应用.材料保护,1999,32(10B):13-18
    [35]姚寿山,李戈杨,胡文彬等.表面科学与技术.北京:机械工业出版社,2005,1-2
    [36]阎洪.金属表面处理新技术.北京:冶金工业出版社,1996,11-50
    [37]王新洪,邹增大,曲仕尧等.表面熔融凝固强化技术-热喷涂与堆焊技术.北京:化学工业出版社,2005
    [38]闫毓禾,钟敏霖.高功率激光加工及其应用.天津:天津科学技术出版社,1994,126-168
    [39] Guojian Xu, Muneharu Kutsuna, Zhongjie Liu, et al. Characteristics of Ni-based coatings formed by laser and plasma cladding process. Materials Science and Engineering,2006,A417:63-72
    [40] Da Wei Zhang, T C Lei, Fu Jun Li. Laser cladding of stainless steel with Ni-Cr3C2 for improved wear performance. Wear, 2001,251:1372-1376
    [41] A Yakovlev, Ph Bertrand, I Smurov. Laser cladding of wear resistance metal matrix composite coatings. Thin Solid Films, 2004,453:133-138
    [42] C Navas, A Conde, B J Fernandez, et al. Laser coatings to improve wear resistance of mould steel. Surface and Coatings Technology, 2005,194:136-142
    [43] Gerard Barbezat. Advanced thermal spray technology and coating for lightweight engine blocks for the automotive industry. Surface and Coatings Technology, 2005,200:1990-1993
    [44] A Vaidya, T Streibl, L Li, et al. An intergrated study of thermal spray process-structure-property correlation. Materials Science and Engineering, 2005, A403:191-204
    [45]徐滨士.表面工程与热喷涂技术及其发展.中国表面工程,1998,1:3-10
    [46] Susumu Uozato, Kazuhiro Nakata, Masao Ushio. Evaluation of ferrus powder thermal spray coatings on diesel engine cylinder bores. Surface and Coatings Technology, 2005,200:2580-2586
    [47]蔡挺.热喷涂技术的现状和应用.广东有色金属学报,1999,1:56-63
    [48] J Porcayo Calderon, E Brito Figueroa, J G Gonzalez Rodriguez. Oxidation behavior of Fe-Si thermal spray coatings. Materials Letters, 1999,38:45-53
    [49] M P Planche, H Liao, B Normand, et al. Relationships between NiCrBSi particle characteristics and corresponding coating properties using different thermal spraying processes. Surface and Coatings Technology, 2005,200:2465-2473
    [50] D Toma, W Brandl, G Marginean. Wear and corrosion behavior of thermal sprayed cermet coatings. Surface and Coatings Technology, 2001,138:149-158
    [51] R Molins, B Normand, G Rannou, et al. Interlamellar boundary characterization in Ni-based alloy thermally sprayed coating. Materials Science and Engineering, 2003,A351:325-333
    [52] M Mohanty, R W Smith, M De Bonte, et al. Sliding wear behavior of thermally sprayed 75/25 Cr3C2/NiCr wear resistant coatings. Wear, 1996,198:251-266
    [53] S Matthews, M Hyland, B James, et al. Microhardness variation in relation to carbide development in heat treated Cr3C2–NiCr thermal spray coatings. Acta Materialia, 2003,51:4267–4277
    [54] S Stewart, R Ahmeda, T Itsukaichi. Rolling contact fatigue of post-treated WC-NiCrBSi thermal spray coatings. Surface and Coatings Technology, 2005,190:171-189
    [55]马吕生,黄福祥,黄乐等.铜基引线框架材料的研究与发展.功能材料,2002,33(1):1-4
    [56]高保娇,高建峰,蒋红梅等.微米级铜-银双金属粉镀层结构及其抗氧化性.物理化学学报,2000,16(4):366-369
    [57] Joseph T S. Hotter gas increases atomization efficiency. MPR, 1999,54(11):24-28
    [58]任振安,郭作兴,吴山力.工艺参数对铜基激光熔敷层组织及耐磨性的影响.焊接学报,2002,23(1):69-72,80
    [59]支龙,王耀华,谭业发等.铝青铜热喷涂层/GCr15钢干摩擦磨损性能.机械工程材料,2005,29(5):52-53,56
    [60]张忠礼,李德元,张楠楠.电弧喷涂铝青铜涂层的力学性能.表面技术,2006,35(2):10-12
    [61]董世运,韩杰才,王茂才等.激光熔敷铜合金的组织特征及结晶过程分析.金属热处理,2000(3):1-3
    [62] S Alam, S Sasaki, H Shimura. Friction and wear characteristics of aluminium bronze coating on steel substrates sprayed by a low pressure plasma technique. Wear, 2001,248(1-2):75-81
    [63] H A Sundquist, A Matthews, D G Teer. Ion-plated aluminium bronze coating for sheet metal forming dies. Thin Solid Films, 1980,73(2):309-314
    [64] W Poole, J L Sullivan. The role of aluminum segregation in the wear of aluminum bronze steel interfaces under conditions of brundary lubrication. ASLE Trans, 1978,23(4): 401-408
    [65] W Poole, J L Sullivan. The wear of aluminum bronze on steel in the presence of aviation fuel. ASLE Trans, 1979,22(2):154-161
    [66] J L Sullivan, L F Wong, Wear of aluminum bronze on steel under condition of boundary lubrication. Tribol. Int, 1985,118(5):275-281
    [67] J V Reid, J A Schey. The effect of surface hardness on friction. Wear, 1987,118(1):113-125
    [68] J V Reid, J A Schey. Adbesion of copper alloys. Wear, 1985,104:1-20
    [69] G Carro, J J Wert. An X-Ray diffraction study of triaxial normal residual stresses in worn aluminum bronze surfaces. Wear, 1981,115(3):285-299
    [70] J J Wert, S A Singgerman, S G Caldwell, et al. The role of stacking fault energy and induced residual stresses in the sliding wear of aluminum bronze. Wear, 1983,91(3):253-267
    [71] J J Wert, W M Cook. The influence of stacking fault energy and adhesion of the wear of copper and aluminum bronze. Wear, 1988,123(2):171-191
    [72] Z Shi, Y Sun, A Bloyce. Unlubricated rolling sliding wear mechanisms of comples aluminum bronze against steel. Wear, 1996,193:235-241
    [73] Z Shi, A Bloyce, Y Sun, et al. Influence of sufrace melting on dry rolling sliding wear of aluminum bronze against steel. Wear, 1996,193:300-306
    [74] Li Yuangyuan, Ngai Tungwai Leo, Zhang Datung, et al. Elements inter-diffusion in the turning of wear-resistance aluminum bronze. Journal of Universituy of Science and Technology Beijing, 2002,9(6):461-465
    [75] Ngai Tungwai Leo, Xia Wei, Zhang Datong, et al. Tool wear mechanism in turning of novel wear-resisting aluminum bronze. Trans.Nonferrous Met.Soc.China, 2002,12(12):165-169
    [76] Li Yuangyuan, Ngai Tungwai Leo, Xia Wei, et al. Mechancial friction and wear behaviors of a novel high-strength wear-resisting aluminum bronze. Wear, 1996(197):130-136
    [77] J Gronostajski, W Chmura, Z Gronostajski. Bearing materials obtained by recycling of aluminum and aluminum bronze chips. Journal of Materials Processing Technology, 2002,125:483-490
    [78]张鲁阳.我国冷作磨具选材的趋向.金属热处理,1999,2:4-6
    [79] Z G Wei, H Y Peng, W H Zou. Aging Effects in a Cu-12Al-5Ni-2Mn-1Ti shape memory alloy. Met Trans, 1997,28(A):955
    [80] Z Zak Fang, Aathony Griffo, Brian Whrite, et al. Fracture resistant super hard materials and hard-metals composite with functionally designed Microstructure. International Journal of Refractory Metal and Hard Materials, 2001,(19):453-459
    [81] Z F Zhang, Z G Wang, Y M Hu. Effect of grain size on grain boundary strengthening of copper bicrystals under cyclic loading. Materials Science and Technology, 2000,16(2):157-162
    [82] B Thaddenus, Massalski. Binary alloy phase diagrams(second edition). ASM International, 1992,?:141-143
    [83]冯耀荣,李鹤林.高强铝青铜的热处理.金属热处理,1990,6:7-13
    [84]张玉平,孙刚.含硅铝青铜及其热处理.铸造设备研究,1996,5:17-18
    [85] M Sahoo. Mechnical properties characterization of slow cooled aluminum bronzes. AFS Trans, 1986,l(94):97-108
    [86]杨鸿飞. QAL110-4-4热处理工艺实验研究.热加工工艺,1979,3:28-30
    [87]徐世毅,苏清友. QAL110-4-4铝青铜多次热处理的组织与性能研究.材料工程,1991,5:8-10
    [88]芦建国,王应楠. QAL110-3-1.5铝铁锰青铜热处理工艺对机械性能的影响.金属热处理,1987,7:34-37
    [89]王国军,沈伟行.挤制QAL110-3-1.5铝青铜管调至前后的性能组织分析.轴承,1998,7:24-25
    [90]刘英杰,成克强.磨损失效分析.北京:机械工业出版社,1991,1-50
    [91]屈晓斌,陈建敏,周惠娣等.材料磨损失效及其预防研究现状与发展趋势.摩擦学学报,1999,19(2):187-192
    [92] R Chattopadhyay. Surface Wear analysis, treatment, and prevention. USA:ASM International, 2001,68-120
    [93]孙家枢.金属的磨损.北京:冶金工业出版社,1992,357-360
    [94] I M Hutchings. Tribological Friction and Wear of Engineering Materials. Great Britain:Edward Arnold, 1992,40-140
    [95] Hui Wang, Weiming Xia, Yuan sheng Jin. A study on abrasive wear on Ni-based coatings with a WC hard phase. Wear, 1996,195:47-52
    [96] J Esteban Fernandez, Ma del Rocio Fernandez, R Vijande Diaz, et al. Abrasive wear analysis using factorial experiment design. Wear, 2003,255:38-43
    [97] C Navas, R Colaco, J de Damborenea, et al. Abrasive wear behaviour of laser clad and flame sprayed-melted NiCrBSi coatings. Surface and Coatings Technology, 2006,200:6854-6862
    [98] J Rodriguez, A Martin, R Fernandez, et al. A experimental study of the wear performance of NiCrBSi thermal spray coatings. Wear, 2003,255:950-955
    [99] Hyung Jun Kim, Soon Young Hwang, Chang Hee Hwang, et al. Assessment of wear performance of flame sprayed and fused Ni-based coatings. Surface and Coatings Technology, 2003,172:262-269
    [100] M P Panche, H Liao, B Normand, et al. Relationship between NiCrBSi particle characteristics and corresponding coating properties using different thermal spraying processing. Surface and Coatings Technology, 2005,200:2465-2473
    [101] J M Miguel, J M Guilimany, S Vizcaino. Tribological study of NiCrBSi coating obtained by different processes. Tribology international, 2003,36:181-187
    [102]唐英,王云山等.激光熔敷镍基自熔性合金粉末的研制.天津工业大学学报,2003,22(5):52-55
    [103]苏义祥,门志慧.铁镍稀土自熔性合金粉末研究与应用.粉末冶金技术,2004,22(6):337-340
    [104]路阳,李文生,王智平.新型模具Cu-14Al-X合金材料的研制.热加工工艺,2002(3):45-47
    [105]路阳,王智平,李文生.热处理对铜合金模具材料组织和硬度的影响.金属热处理,2002(3):40-42
    [106]黄培云.粉末冶金原理.北京:冶金工业出版社,2000
    [107]宋吉德,韩任田.雾化工艺因素对喷焊粉末性能的影响.粉末冶金工业,1997,7(2):33-36

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700