用户名: 密码: 验证码:
再生水处理工艺双膜法(CMF-S/RO)试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目前,膜法广泛用于再生水处理领域。浸没式连续微滤具有过滤面积大且安装操作方便、出水水质稳定的特点;反渗透技术能够达到很高的脱盐率。微滤、反渗透两种膜技术相结合,大大延伸了再生水回用的范围,提高了系统的耐负荷冲击能力。本文利用浸没式连续微滤(CMF-S)与反渗透(RO)小试以及联合工艺的中试试验装置对污水厂二级出水经混凝沉淀预处理后续水进行深度处理,在研究双膜法产水水质的基础上,进行以下几个方面的试验研究。
     (1)设计浸没式连续微滤小试试验,完成过滤-反冲洗参数和加药过程的优化试验。结果表明,在试验期间进水条件下,工艺最佳运行参数为过滤周期50min,单独气洗40s,气水联合反洗15s;气水反冲洗过程中定期投加NaClO影响氯化学清洗效果,在满足工艺要求前提下,可适当减少NaClO投加次数(投加量)或间隔投加定量HCl,提高氯化学清洗效率。
     (2)在浸没式连续微滤中试系统上对夏季低、中、高三种负荷工况分别进行参数优化试验。低负荷和满负荷工况下得出的最佳运行参数相对于原有工艺,跨膜压差恢复率和膜污染速率从总体上考虑有所改善,因此可以对工艺的参数加以调整,提高工艺运行效率、节约运行成本。最后根据微滤系统的运行数据,通过相关性分析和多元线性回归分析,得出关于△TMP的多元线性回归模型,且拟合效果较好。微滤对浊度的去除率较高且稳定,但对溶解性物质处理效果低。
     (3)设计反渗透小试试验,以海藻酸钠、腐殖酸和牛血清白蛋白作为进水中不同种类有机物的代表配制原水进行反渗透膜透水试验。结果表明,海藻酸钠进水时运行初期膜表面便会形成致密的污染膜层,运行后期因浓度梯度造成的污染差异不大。牛血清白蛋白的膜污染速率变化先急后缓,在膜表面形成凝胶污染层。疏水性腐殖酸的比通量下降速度缓慢,且易受过滤水流条件的影响,在膜表面形成较为粗糙的层状和块状污垢。当海藻酸钠进水中存在钙离子时,有机物污染会加剧,其程度与钙离子浓度有关。
     (4)在反渗透中试系统上分析反系统运行的稳定性,并根据试验数据,采用线性回归以及显著性检验,得出反渗透膜的渗透通量模型,为后期反渗透费用模型的建立提供研究基础。
field. Continuous micro filtration-submersed (CMF-S) is characterized by large filtering areas, convenient installation and operation and stable effluent quality; reverse osmosis (RO) can achieve high desalination rate. The Combination of the two kinds of membrane technologies can greatly extend the scope of reclaimed water reuse and improve system resistance to shock-loading. This paper uses small experiments of CMF-S, RO and pilot test of combined process to reuse the effluent of the coagulation and sedimentation processes, which is the pretreatment for the secondary effluent from a municipal wastewater plant. Based on product water quality of double film system, this paper mainly focuses on the following respects.
     (1)The CMF-S trial experiments showed that, under the condition of water quality, the best filtration cycle is 50 minutes,the optimized backwash mode is using air to scour the pollutant for 40 seconds first, then using air-water backwash to take away the pollutant for 15 seconds; dosing sodium hypochlorite at regular intervals will degrade the chemical cleaning process, so the dosage and frequency of sodium hypochlorite should be reduced on condition that the technological requirement was satisfied, dosing hydrochloric acid at regular intervals can improve the efficiency of chlorine chemical cleaning.
     (2)The parameters optimization experiments of CMF-S pilot system under three loading conditions (low, medium and high) in summer were carried out. The results showed that, compared to the original technology operation paramers, the transmembrane pressure differential recovery rate and membrane pollution rate of the best operation paramers are in general improved under low and high loading conditions. So in both cases, the technology operation paramers can be adjusted to improve operation efficiency and save operating costs. At last, according to operation data of the CMF-S system, the△TMP multiple linear regression model can be obtained by way of correlation analysis and multiple linear regression analysis, and the fitting effect is good. The removal efficiency of CMF-S system is high and stable for turbidity, but is not good for soluble substances.
     (3)The RO membrane filtration test was conducted by different raw water, which used sodium alginate and humic acid and bovine serum albumin as models of kinds of different organics. The results exhibited that sodium alginate can form dense pollution layer on the membrane in early operation period, and the pollution differences caused by the concentration gradient are not notable in late operation period. Bovine serum albumin form gel pollution layer on the membrane surface and the pollution rate flattens after a rapid change. The descent rate of membrane specific flux caused by hydrophobic humic acid is quite slow, which can form rough pollution layer and block fouling on membrane surface, moreover it is susceptible to the filtration flow condition. When calcium ions exist in sodium alginate solutions, organic pollution will be increased to a high degree which is concerned with the concentration of calcium ions.
     (4)The operating stability of reverse osmosis pilot system was analyzed, and a penetration flux model can be obtained by means of the linear regression and significant inspection of the pilot test data. The model provides research foundation for later establishment of RO cost model.
引文
[1]刘新英.我国的水资源状况及对策[J].环境科学动态, 1996, 15(1): 7-8.
    [2]胡静文.天津市咸阳路再生水厂可行性研究[D].天津:天津大学环境科学与工程学院, 2005.
    [3] Miller G W. Integrated concepts in water reuse: managing global water needs[J]. Water Reuse Association, 2006, 187(1-3): 65-75.
    [4]崔玉川,傅涛.我国城市给水发展现状与特点[J].中国给水排水, 1999, 15(2): 52-54.
    [5]安鼎年,张俊贞.污水回用技术国内外现状及发展远景[J].行业发展动态, 2003.
    [6] Al-A’ama M S, Nakhla G F. Wastewater reuse in Jubail, Saudi Arabia[J]. Water Reseach, 1995, 29(6): 1579-1584.
    [7] Ammary B Y. Wastewater reuse in Jordan: Present status and future plans[J]. Desalination, 2007, 211(1-3): 164-176.
    [8] Taigbenu A E, Ncube M. Reclaimed water as an alternative source of water for the city of Bulawayo, Zimbabwe[J]. Physics and Chemistry of the Earth, 2005, 30(1): 762-766.
    [9] Cazurra T. Water reuse of south Barcelona’s wastewater reclamation plant[J]. Desalination, 2008, 218(1-3): 43-51.
    [10]国际再生水利用情况[J].工程质量, 2005, 12: 62.
    [11]张杰,曹开朗.城市污水深度处理与水资源可持续利用[J].中国给水排水, 2001, 17(3): 2-12.
    [12]周彤.污水回用决策与技术[M].北京:化学工业出版社, 2002.
    [13]王琳,王宝贞.分散式污水处理与回用[M].北京:化学工业出版社, 2003.
    [14] Chu J Y, Chen J N, Wang C, et al. Wastewater reuse potential analysis: implications for China’s water resources management[J]. Water Research, 2004, 38(1): 2746-2756.
    [15]郑淑平,马伟芳,王洪云.城市再生水回用方向的分析[J].天津市政工程, 2003, 15(3): 29-32.
    [16]魏娜,程晓如,刘宇鹏.浅谈国内外城市污水回用的主要途径[J].节水灌溉, 2006, (1): 31-36.
    [17] Kurbiel J, Zeglin K, Rybicki S M. Implementation of the Cracow municipal wastewater reclamation system for industrial water reuse[J]. Desalination, 1996, 106(1-3): 183-193.
    [18] Hamilton A J, Boland A M, Stevens D, et al. Position of the Australian horticultural industry with respect to the use of reclaimed water[J]. Agricultural Water Management, 2005, 71(3): 181-209.
    [19]樊开青,吕伟娅.再生水回用于景观水体的初步探讨[J].环境保护科学, 2005, 130(31): 28-30.
    [20]张克强,张洪生,宁安荣.国内外城市再生水灌溉绿地的研究与应用[J].农业环境科学学报, 2005, 24(增刊): 384-388.
    [21]王绍华,赵庆良,薛爽.城市污水再生水中氮源物质对回用于循环冷却水系统的影响[J].天津建设科技, 2007(增刊): 74-77.
    [22] Chen H H, Yeh H H, Shiau S. The membrane application on wastewater reclamation and reuse form the effluent of industrial WWTP in north Taiwan[J]. Desalination, 2005, 185(1-3): 227-239.
    [23]王亚娥,王楠,李杰. MIBR/纳滤组合工艺用于再生水回用工程[J].中国给水排水, 2008, 24(22): 72-74.
    [24] del Pino M P, Durham B. Wastewater reuse through dual-membrane processes: opportunities of sustainable water resources[J]. Desalination, 2001, 124(1-3): 271-277.
    [25]仇付国,王敏.再生水处理工艺对病原微生物去除效果评价[J].水处理技术, 2008, 34(8): 82-84.
    [26] Wintgens T, Melin T, Schafer A, et al. The role of membrane process in municipal[J]. Desalination, 2005, 178(1-3): 1-11.
    [27] FILMTECTM反渗透膜元件产品与技术手册[Z]. 2006.
    [28]姜尔玺,赵玉鑫,李丽.膜分离技术的应用与进展[J].黑龙江大学自然科学学报, 2002, 19(3): 9-10.
    [29] Anderson A, Laurent P, Kihn A, et al. Impact of Temperature on Nitrification in Biological Activated Carbon (BAC) Filters Used for Drinking Water Treatment[J]. Water Reseach, 2001, 35(12): 2923-2934.
    [30] Xia S J, Li X, Liu R P, et al. Study of Reservoir Water Treatment by Ultrafiltration for Drinking Water Production[J]. Desalination, 2004, 167: 23-26
    [31]许振良.膜法水处理技术[M].北京:化学工业出版社, 2001.
    [32]张萍,雅菁,姚念明.水处理技术中连续微滤膜系统的发展[J].天津城市建设学院学报, 2003, 9(4): 249-252.
    [33]扬胜武,马世虎,顾军农. CMF处理生活污水厂二级出水[J].膜技术与科学, 29(3): 61-65.
    [34] Howe K J, Ishida K P, Clark M M. Use of ATR/FTIR spectrometry to study fouling of microfiltration membranes by natural waters[J]. Desalination, 2002, 147 (1-3): 251-255.
    [35]向平.超滤膜去除饮用水中污染物的试验研究[D].重庆:重庆大学城市建设与环境工程学院, 2004.
    [36]陈治安,刘通,尹华升.超滤在饮用水处理中的应用和研究进展[J].工业用水与废水, 2006, 37(3): 7-10.
    [37] Vickers J C, Thompson M A, Kelkar U G. The Use of Membrane Filtration in Conjunctionwith Coagulation Processes for Improved NOM Removal[J]. Desalination, 1995, 102(1-3): 57-61.
    [38]许振良,马炳荣.微滤技术与应用[M]. 2005,北京:化学工业出版社.
    [39]倪明,马克.浸没式超滤膜化学清洗工程案例分析[J].膜科学与技术, 2010, 30(5): 64-66.
    [40]董金冀,陈小青.超滤膜化学清洗技术的探讨与改进[J].清洗世界, 2008, 24(6): 38-40.
    [41]葛元新,朱志良. MBR膜的污染及其清洗技术研究进展[J].清洗世界, 2005, 21(8): 24-29.
    [42] Nungsi W.新加坡在污水再生利用方面的经验[C].全国城市污水再生利用经验交流和技术研讨会.天津: 2003: 207-232.
    [43] Randles N. Large scale operating experience in membrane systems for water and waste water reclaimation[J]. Desalination, 1996, 108(1-3): 205-211.
    [44] Chakravorty B, Layson A. Ideal feed pretreatment for reverse osmosis by continuous microfiltration[J]. Desalination, 1997, 110(1-2): 143-150.
    [45] (英)希利斯P编,刘广立,赵广英译.膜技术在水和废水处理中的应用[M].北京:化学工业出版社, 2003.
    [46]陈观文,徐平.分离膜应用与工程案例[M].北京:国防工业出版社, 2007.
    [47]张宽.浅析中水回用[C].华北地区给水排水技术信息网年会论文.天津: 2010: 906-910.
    [48]刘茉娥,蔡邦肖,陈益棠.膜技术在污水治理及回用中的应用[M].北京:化学工业出版社, 2005.
    [49] Wakeman R J, Williams C J. Additional techniques to improve microfiltration[J]. Separation and Purification Technology, 2002, 26(1): 3-18.
    [50] Kabsch-Korbutowicz M. Impact of Pre-Coagulation on Ultrafiltration Process Performance[J]. Desalination, 2006, 194(1-3): 232-238
    [51] Le-Chech P, Lee E K, Chen V. Hybrid Photocatalysis/Membrane Treatment for Surface Waters Containing Low Concentrations of Natural Organic Matters[J]. Water Reseach, 2006, 40(2): 323-330.
    [52]李伟英.长江原水超滤膜处理工艺研究[D].上海:同济大学环境科学与工程学院, 2002.
    [53] Caroll T, King S,Gray S. The fouling of microfiltration membrane by NOM after eoagulation treatment[J]. Water Reseach, 2000, 34(11): 2861-2868.
    [54]周勇,潘巧明,郑根江.芳香聚酰胺类反渗透膜的研究进展[J].水处理技术, 2009, 35(1): 5-10.
    [55]兰文艺.实用环境工程手册[M].北京:化学工业出版社, 2000.
    [56] Glater J. The early history of reverse osmosi smembrane development[J]. Desalination, 1998, 117(1-3): 297-309.
    [57]王从厚,吴鸣.国外膜工业发展概况[J].膜科学与技术, 2002, 22(1): 65-72.
    [58] Nieolaisen B. Developments in membrane technology for water treatment[J]. Desalination, 2002, 153(1-3): 355-360.
    [59]周志芳.反渗透膜深度净水系统的优化运行[D].上海:东华大学环境科学与工程学院, 2007.
    [60]窦照英,张烽,徐平.反渗透水处理技术应用问答[M].北京:化学工业出版社, 2004.
    [61] Gwon E M, Yu M J, Oh H K, et al. Fouling characteristics of NF and RO operated for removal of dissolved matter from groundwater[J]. Water Research, 2003, 37(12): 2989-2997.
    [62]刘新庆.谈反渗透膜的污染与清洗[J].微电子技术, 2001, 29(2): 61-64.
    [63] Wang F L, Tarabara V V. Pore blocking mechanisms during early stages of membrane fouling by colloids[J]. Journal of Colloid and Interface Science, 2008, 328(2): 464-469.
    [64]董新海,苏百兖.膜污染途径及防止措施[J].食品与药品, 2007, 9(10A): 74-76.
    [65] Tapan N. S, Yeomin Y, Cynthia L. P, et al. Rotating reverse osmosis and spiralwound reverse osmosis filtration:A comparison[J]. Journal of Membrane Science, 2006, 285(1-2): 353-361.
    [66]周军,杨艳琴,张宏忠.反渗透膜污染及其清洗方法的研究[J].过滤与分离, 2007, 17(1): 1-4.
    [67]吴存永.反渗透膜技术在污水回用中的应用[D].南京:南京理工大学环境与生物工程学院, 2004.
    [68]张颖,顾平,王启山.预膜法用于控制膜生物反应器膜污染[J].天津大学学报, 2006, 39(B06): 316-319.
    [69]曹占平,张景丽.反渗透膜有机物污染及微生物清洗的研究[J].水处理技术, 2008, 34(2): 60-66.
    [70] Durham B, Bourbigot M M, Pankratz T, et al. Membrance as Pretreatment to Desalination in Wastewater Reuse: Operating Experience in the Municipal and Industrial Sectors[J]. Desalination, 2001, 138(1-3): 83-90.
    [71]李健,李富元,关代宇.天津开发区“双膜法”污水再生回用工程[J].中国给水排水, 2003, 19(11): 96-97.
    [72]范正虹,陈福泰,陈晓婷,等.微滤/反渗透净化污水厂二级处理出水[J].中国给水排水, 2005, 21(6): 44-46.
    [73]陈超宇.印染废水双膜法(CMF-RO)深度处理及回用研究[D].浙江:浙江大学环境与资源学院, 2010.
    [74]邢锴.膜生物反应器-反渗透组合系统中的膜污染研究[D].天津:天津大学环境科学与工程学院, 2011.
    [75]张立卿,王磊,王旭东,等.城市污水二级出水有机物分子量分布和亲疏水特性对纳滤膜污染的影响[J].环境科学学报, 2009, 29(1):75-80.
    [76]齐鲁.浸没式超滤膜处理地表水的性能及膜污染控制研究[D].黑龙江:哈尔滨工业大学市政环境工程学院, 2010.
    [77]刘锋刚,胡保安,何文杰,等.微滤膜法饮用水处理工艺中膜污染控制的研究[J].给水排水, 2007, 33(11): 16-20.
    [78]张颖,吴亿宁,任南琪.运行方式对减缓SMBR膜污染的影响研究[J].东北农业大学学报, 2003, 34(3): 258-261.
    [79] Chen J P, Kim S L, Ting Y P. Optimization of membrane physical and chemical cleaning by a statistically designed approach[J]. Journal of Membrane Science, 2003, 219(1-2): 27-45.
    [80]张博丰,马世虎.超/微滤膜的膜污染与膜清洗研究[J].供水技术, 2009, 3(6): 13-16.
    [81]俞开昌,文湘华,卜庆杰,等.次临界操作下的膜污染机理研究[J].环境污染治理技术与设备, 2004, 5(1): 23-27.
    [82]单达聪,耿爱莲. L9(34)正交试验数据Excel自动分析模板的建立和应用[J].饲料工业, 2011, 32(1): 24-27.
    [83]佟巍,屈颖,尚巍. CMF工艺处理再生水的工程实例及技术探讨[J].给水排水, 2005, 31(1): 15-17.
    [84]杨座国.膜科学技术过程与原理[M].上海:华东理工大学出版社, 2009.
    [85]冉祥军,杜海波,刘建军.纳滤膜污染原因及运行管理[J].工业水处理, 2009, 29(1): 86-89.
    [86]马琳,秦国彤.膜污染的机理和数学模型研究进展[J].水处理技术, 2007, 33(6): 1-4.
    [87] Lee S, Ang W S, Elimelech M. Fouling of reverse osmosis membranes by hydrophilic qranic matter: implications for water reuse[J]. Desalination, 2006, 187(1-3): 313-321.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700