用户名: 密码: 验证码:
浸没式超滤膜处理地表水的性能及膜污染控制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
当前我国的地表水源普遍受到污染,常规给水处理工艺已经无法满足要求日益严格的饮用水水质标准,迫切需要开发新型水处理技术。随着膜技术的进步,人们发现包括微滤和超滤在内的低压操作膜分离过程能满足要求,其中又以超滤出水水质更佳而得到更多的关注。浸没式超滤膜由于其过滤面积较大并且安装操作方便而具有更广泛的应用潜力,但就其在饮用水处理中的实际应用而言,仍存在一些关键问题需要解决。
     本论文主要针对膜特性、预处理和运行方式等对浸没式超滤膜过滤性能的影响进行研究,从预处理和运行条件两方面来研究膜污染控制技术,提出膜运行优化工艺方案,并分析用浸没式超滤膜来替代常规饮用水生产工艺的可行性,为浸没式超滤膜在水厂的实际应用提供重要技术支撑。
     首先针对不同截留分子量和材质的超滤膜对原水中有机污染物等的去除效能进行研究,结果表明,随着膜截留分子量的减小,超滤膜对浊度和有机物的去除率逐渐升高,但超滤膜对溶解性有机物的去除率较低。不同材质的超滤膜对有机物的去除率存在差异,表明不同材质的超滤膜与有机物之间存在着不同的相互作用。进而,试验针对膜材质和有机物对膜污染的影响进行研究,结果表明,大于30KDa的亲水性有机物和憎水酸容易引起可逆膜污染,而小于1KDa的亲水性有机物容易引起不可逆膜污染,但有机物引起不同材质超滤膜污染的程度不同,并且引起不同材质超滤膜污染的有机物种类也有所不同。长期膜过滤过程中,聚偏氟乙烯(PVDF)膜对分子量小于1K和1K~3KDa有机物的吸附速度比聚氯乙烯(PVC)膜和聚砜(PS)膜要快,膜污染也较快,聚砜(PS)膜抗有机污染的能力较好。
     由于浸没式超滤膜对有机物的去除作用有限,并且污染较快,试验考察了预处理对膜出水水质的改善效果及其对膜污染的控制作用。预膜滤试验中,随着预过滤膜孔径或截留分子量的减小,预膜滤对原水浊度和有机物的去除率逐渐升高,而且膜运行过程中的表面饼层阻力逐渐减小,堵孔阻力也有明显降低,但由于吸附阻力主要由小分子有机物引起,试验中采用的预膜滤不能有效降低膜的吸附阻力。其他预处理方式包括混凝、粉末活性炭(PAC)预吸附+混凝、污泥回流、炭泥回流四种,结果发现,膜前预处理对原水浊度和有机物具有较好的去除效能,可显著提高膜出水水质,其中炭泥回流对膜出水水质的改善作用最为明显,在本试验条件下其对原水中浊度、DOC、UV254、CODMn、BDOC和THMFP的去除率分别达到93.8%、37.3%、41.1%、48.7%、83.0%和57.9%。各预处理可对水中颗粒物和膜污染有机物有不同程度的去除作用,因而膜前预处理可以有效降低膜运行的跨膜压力,从而延缓膜污染。对膜运行过程中的膜阻力分析可知,各预处理均能有效降低膜表面饼层阻力和浓差极化阻力,而炭泥回流预处理还可有效降低膜的吸附阻力,且其总阻力值也最低,这主要是由于炭泥回流对原水浊度以及容易引起可逆膜污染和不可逆膜污染的有机物均具有较好的去除效能。
     研究还发现,运行条件也是影响膜过滤性能的重要因素,试验主要研究了过滤方式对膜出水水质和膜污染的影响以及临界通量的影响因素。结果表明,恒压和恒流两种过滤条件下,膜对颗粒物和有机物的去除作用相差不大。在长期运行过程中,恒压过滤引起的不可逆膜污染比恒流过滤严重,而通过选择合理的膜通量和清洗方式,采用恒流过滤可使膜在较长时间内保持稳定运行。曝气、间歇过滤间歇曝气和混凝均可以提高超滤膜过滤原水时的临界通量,几种操作方式相结合可以在膜长期运行过程中有效缓解膜污染。此外,短期通量阶梯增加试验所得出的临界通量值对浸没式超滤膜的实际应用具有一定的指导意义。
     在前面实验室研究的基础上,针对国内两处地表水进行了浸没式超滤膜处理地表水的中试研究,在浸没式超滤膜处理苏州内河水的研究中,混凝、PAC预吸附+混凝、污泥回流和炭泥回流四种预处理可以提高超滤膜的出水水质,另外炭泥回流预处理对原水中颗粒物和有机物的去除率比其他三种预处理要高,因而炭泥回流可以更加有效的缓解膜污染。对运行条件的研究结果表明,曝气和间歇过滤相结合可以较好的控制膜污染,但在应用时应选择合理的曝气强度。混凝预处理可降低膜运行的TMP,其与曝气和反洗方式相结合可以更好的缓解膜污染。在浸没式超滤膜处理东江水的研究中,膜出水浊度比水厂同期砂滤出水具有优势,均保持在0.1NTU以下,但膜对有机物的去除率与砂滤相差不大。对膜的运行条件优化研究发现,在东江水水质条件较好的情况下可选取较高的膜通量,运行时膜过滤周期应作适当的缩短,过滤周期之间采用有效的物理清洗并辅助以短时间的在线化学清洗可保证膜过滤的长期稳定运行,另外用NaClO和HCl相结合的清洗方式可使膜比通量有较大程度的恢复。
In recent years surface water has been widely contaminated in China, conventional drinking water treatment processes can no longer meet the requirements of increasingly stringent drinking water quality standards, and the development of new water treatment technology would be urgently needed. With the advances in membrane technology, low-pressure microfiltration and ultrafiltration (UF) were found to meet the requirements, in which ultrafiltration effluent quality is better and get more attention. Immersed UF membrane has a wider range of potential applications because of it has a larger filtration area and relatively easy to operate, but there are still some key issues to be resolved in the practical applications.
     This research focused on the effect of membrane characteristics, pretreatment and operating conditions on the filtration performance of immersed UF membrane, membrane fouling control technology was developed from the two aspects of pretreatment and operating conditions. The optimized operation programs were proposed, and the feasibility of conventional treatment process to be replaced by submerged UF membranes was analyzed, which could provide important technical support for the practical application of the water plant.
     In this paper the effect of different materials and molecular weight cutoff on on the organic pollutants removal by membrane in surface water was first to be studied, and the results showed that the removal efficiency of turbidity and organic matters was increased gradually with the decrease of molecular weight cutoff membrane, but the removal of dissolved organic matters was lower. The removal of organic matters by UF membranes of different materials was different, indicating that different membrane materials and organic could interact with each other. Furthermore, tests on the effect of membrane material and organic matter on membrane fouling were studied, the results showed that the hydrophilic and hydrophobic organic acids with the molecular weight cutoff more than 30KDa were the main substance caused reversible membrane fouling, and the hydrophilic organic matter with the molecular weight cutoff less than 1KDa is the main substance caused irreversible fouling. But membrane fouling caused by different materials was varying and the types of organic matter which could cause membrane fouling are also different. In the long-term membrane filtration, the adsorption of organic matter with the molecular weight of less than 1K and 1K~3KDa by PVDF membrane was faster than PVC and PS membrane, membrane fouling is also faster, PS membrane had better resistance to organic pollution.
     Since the removal of organic matter by submerged membrane was limited and the membrane fouling was faster, pretreatment and pre-filtration were studied to improve water quality and to control fouling. Pretreatment methods included coagulation, powdered active carbon (PAC) adsorption-coagulation, sludge recycling, PAC-sludge recycling. The results showed that the efffcts of pretreatment on raw water turbidity and organic matter were better, which can significantly improve the membrane effluent quality, and PAC-sludge recycling was most effective with the DOC、UV254、CODMn、BDOC and THMFP removal 93.8%、37.3%、41.1%、48.7%、83.0%和57.9%. Four kinds of membrane pretreatment could reduce the TMP since the organic matters and particles could be removed in different degree, and thus the membrane fouling was delayed. The analysis on the membrane resistance during the operation showed that pretreatment could reduce the surface cake layer resistance and concentration polarization resistance, while the PAC-sludge recycling pretreatment could also reduce adsorption resistance, and its total resistance value the lowest, which was mainly due to the turbidity, organic matters with the molecular weight cutoff more than 30KDa and less than 1KDa had been better removed efficiently. In the pre-filtration experiment, the cake layer resistance decreases with the pre-filter membrane pore size or molecular weight cutoff decreases, the pore blocking resistance also decreased significantly, but adsorption resistance mainly caused by the of organic with small molecules could not be effectively reduced.
     Operating conditions is also an important factor to affect the membrane filtration performance. The effects of operating conditions on membrane effluent quality and membrane fouling were investigated and the influencing factors of critical flux were also studied. The results showed that the removal of particulate matter and organic matter had little difference in the constant pressure and constant flux conditions. In the long run, the constant pressure filtration could caused more serious irreversible fouing than the constant flux condition, and constant flux could make membrane filtration remain stable in a long run by selecting a reasonable flux and cleaning method. Aeration, intermittent filtration and intermittent aeration and coagulation could enhance the critical flux of ultrafiltration membrane, and the combination of these operating modes could effectively alleviated membrane fouling in long-term operation. In addition, critical flux value from the short-term flux-steps tests could have a good guidance to the practical application of immersed UF membrane.
     Two pilot experiments of immersed membrane in two typical kinds of surface water were researched based on the previous study. In the pilot study in Suzhou, coagulation, PAC-coagulation, sludge recycling, PAC-sludge recycling pretreatment could improve UF effluent quality. The removal of particulates and organic matters by PAC-sludge recycling was better than the other three kinds of pretreatment, and thus PAC-sludge recycling could hae more effective mitigation of membrane fouling. Study on the operating conditions showed that the combination of aeration and intermittent filtration could have better control of fouling, but reasonable aeration intensity should be selected in application. Coagulation pretreatment can reduce the TMP, and the the combination of coagulation, aeration and backwashing could have better mitigation of membrane fouling. In the study of Dongjiang, treating the membrane effluent turbidity had an advantage over the sand filter during the same period, the tubidity of which were maintained less than 0.1NTU, but the removal of organics was the same as sand filter. The test on optimization of operating conditions found that a relatively high flux could be selected in Dongjiang of better water quality, membrane filtration cycle should be shortened appropriately, and effective physical cleaning and auxiliary to short-term Enhanced Flux Maintenance (EFM) cleaning would ensure the long-term stable operation of membrane filtration. The combination with NaClO and HCl cleaning could have a greater degree of recovery on membrane performance.
引文
1马军,关小红.饮用水安全与健康.科学中国人. 2007, 6: 73~76
    2李圭白,张杰.水质工程学.中国建筑工业出版社. 2005: 1~6
    3水污染对健康的影响.给水排水动态. 2007, 40(4): 40~41
    4王志强,陈昱,林育纯,等.福建省11个县饮用水水质与胃癌死亡率的关系.中国公共卫生学报.1997, 16(2): 79-80
    5连世元,赵彦红.对我国淡水资源可持续利用的探讨.河北师范大学学报. 2005, 28(3): 37~39
    6张宏仁.中国的淡水资源.四川新闻网. 2006
    7 K. James, I., John E. Tobiason. Enhanced Coagulation: US Requirements and a Broader View. Water Science and Technology. 1999, 40(9): 22~25
    8方长青.论水资源及其保护.浙江林学院学报. 2002,19(2):214~216
    9中华人民共和国环境保护部. 2007中国环境状况公报.中华人民共和国环境保护部. 2008: 4~14
    10中华人民共和国环境保护部. 2008中国环境状况公报.中华人民共和国环境保护部. 2009: 4~22
    11国家环境保护总局. 2000年中国环境状况公报.北京, 2000: 17~27
    12李丽娟,梁丽乔,刘昌明,张丽,姜德娟,李九一.近20年我国饮用水污染事故分析及防治对策.地理学报. 2007, 62(9): 917~924
    13孟伟.中国流域水环境污染综合防治战略.中国环境科学. 2007, 27(5): 712~716
    14 China water conservancy delegation. The present status and prospects of China water Issues. The Second international forum, Hague. 2000:1~5
    15王维哲.大骨节病的有机物病因及其作用机理.中国环境科学. 1989, 9(3): 191~195
    16 G.C. Zhang, Z.S. Wang. Mechanism Study of the Coagulant Impact on the Mutagenic Activity in Water. Water Res. 2000, 34(6): 1781~1790
    17 C.R. Reiss, C. Robert, C. Owen, J.S. Taylor. Control of MIB, Geosmin and TON by Membrane Systems. AQUA. 2006, 55(2): 95~108
    18许川,舒为群,曹佳.我国水环境微囊藻毒素污染及其健康危害研究.癌变.畸变.突变. 2007. 19(3): 202~205
    19欧桦瑟,高乃云,庞维海,张可佳,黎雷.水中藻源神经毒素的检测及其去除方法的研究进展.中国给水排水. 2008, 24(20): 10~14
    20 J.J. Rook. Formation of Haloforms during Chlorination of Natural Waters. Water Treat. Exam. 1974, 23(2): 234~243
    21 T.A. Bellar, J.J. Lichtenberg, R.C. Kroner. The Occurrence of Organohalides in Chlorinated Drinking Waters. J. AWWA. 1974, 66(12): 703~707
    22李新伟.饮用水种有毒有机物的流行病学及毒性研究进展.国外医学:卫生学分册. 2005, 4: 210~214
    23 USEPA (2001) Record of Decision for the Western Groundwater Operable Unit OU-3, Aerojet Sacramento Site, July 20.
    24于鑫,张晓健,王占生.水源水及饮用水中的有机物对人体健康的影响.中国公共卫生. 2003, 19(4): 481~482
    25 J. Stauffer. The Water Crisis. Earthscan Publications Std., London,1998:1~20
    26吕炜.饮用水中重点有机污染物对人体健康危害的研究进展.中国预防医学杂志. 2007, 8(5): 668~670。
    27王占生,刘文君.微污染水源饮用水处理.中国建筑工业出版社, 2001:2~7
    28程晨,陈振楼,毕春娟,等.中国地表饮用水水源地有机类内分泌干扰物污染现况分析.环境污染与防治. 2007, 29(6): 446~450, 454
    29 S.Y. Amstislavksy, E.A. Kizilova, V.P. Eroschenko. Preimplantation Mouse Embryo Development as a Target of the Pesticide Methoxychlor. Reprod. Toxicol. 2003, 17(1): 79~86
    30王兰.环境内分泌干扰物对健康影响的研究进展.中国医师杂志. 2003, 5(1): 1~2
    31左金龙,崔福义.饮用水中污染物质及处理工艺的研究进展.癌变.畸变.突变. 2007, 19(3): 174~180
    32付婉霞,聂正武,高杰,肖艳.饮用水氨氮的去除方法综述.能源环境保护. 2006, 20(3): 15~17
    33姜登岭,张晓健.饮用水中磷与细菌再生长的关系.环境科学. 2004, 25(5): 57~60
    34何茹,鲁金凤,马军,张涛,陈伟鹏.臭氧催化氧化控制溴酸盐生成效能与机理. 2008, 29(1): 99~103
    35张可佳,高乃云,隋铭皓,卢宁.饮用水中高氯酸盐污染现状与去除技术的综述.四川环境. 2008, 27(1): 91~95
    36 R.M. Hardie, P.G. Wall, P Gott, M Bardhan, L.R. Bartlett. Infectious diarrhea in tourists staying in a resort hotel. Emerg Infect Dis.. 1999, 5(1): 168~171
    37 P. Gale. Risk assessment model for a water-borne outbreak of Cryptosporidiosis. Water Research and Technology. 2000, 41 (7): 1~7
    38李圭白,杨艳玲.超滤-第三代城市饮用水净化工艺的核心技术.供水技术. 2007, 1(1): 1~312
    39李圭白,杨艳玲,李星.第三代饮用水净化工艺初探.中国给水排水. 2006, 22(21): 1~5
    40张红振,刘汉湖.我国城市供水的水质现状、问题及对策.净水技术. 2005, 24 (4): 56 ~58.
    41侯俊,王超,吉栋梁.我国饮用水水源水质标准的现状及建议.中国给水排水. 23(20): 103~106
    42许保玖.给水处理理论.中国建筑工业出版社,2000: 59, 464~465
    43 United States Environmental Protection Agency. The drinking water standards and health advisories. 2006
    44中华人民共和国卫生部卫生法制与监督司.生活饮用水卫生规范. 2001, 6: 8~112
    45张岚,陈昌杰,陈亚妍.我国生活饮用水卫生标准.中国公共卫生. 2007, 23(11): 1281~1282
    46但德忠,陈维果.我国饮用水卫生标准的变革及特点.中国给水排水. 2007, 23(16): 99~104
    47秦钰慧,张丽霞.我国生活饮用水水质卫生规范简介.环境与健康杂志. 2002, 19(1): 8
    48王丽霞.我国饮用水水质标准研究现状综述.化学工程与装备, 2009, 6: 113~115
    49刘锐平.高锰酸钾及其复合剂氧化吸附集成化除污染效能与机制.哈尔滨工业大学博士学位论文. 2005: 6~7
    50 B. A. Kimberly, E. Lbrahim, M. Lechevallier. Conventional and Optimized Coagulation for NOM Removal.J. AWWA. 2000, 92(10):44~58
    51李满,赵磊,钟振堃.改性石英砂滤料在水处理中的应用.水科学与工程技术. 2007, 3: 62~64
    52李德生,黄晓东,王占生.生物沸石反应器作为微污染水源预处理工艺的试验研究.环境科学学报. 2000, 20(S1): 51~53
    53 J. Y. Hu, T. Aizawa, Y. Ookubo, et al. Adsorptive Characteristics of Ionogenic Aromatic Pesticides in Water on Powered Activated Carbon. Wat. Res. 1998, 32(9): 2593~2600
    54 J. L. Sotelo, G. Ovejero, J. A. Delgado, et al. Comparison of Adsorption Equilibrium and Kinetics of Four Chlorinated Organics from Water onto GAC. Wat. Res. 2002, 36(3): 599~608
    55 T. Karanfil, J. E. Kilduff. Role of Granular Activated Carbon Surface Chemistry on the Adsorption of Organic Compounds. 1. Priority Pollutants. Environ. Sci. Technol. 1999, 33(18): 3217~3224
    56 M. R. Graham, R. S. Summers, M. R. Simpson, et al. Modeling Equilibrium Adsorption of 4-methylisoborneol and Geosmin in Natural Waters. Wat. Res. 2000, 34(8): 2291~2300
    57 G. Newcombe, M. Drikas, R. Hayes. Influence of Characterized Natural Organic Material on Activated Carbon Adsorption: II. Effect on Pore Volume Distribution and Adsorption on 4-methylisoborneol. Wat. Res. 1997, 31(5): 1065~1073
    58 G. Cathalifaud, J. Ayele, M. Mazet. Aluminium Effect upon Adsorption of Natural Fuvic Acids onto PAC. Wat. Res. 1998, 32(8): 2325~2334
    59 G. Cathalifaud, J. Ayele, M. Mazet. Optimisation of Micropollutant Removal onto Powered Activated Carbon during the Coagulation-flocculation Step. Wat. SRT-Aqua. 1995, 44(2): 55~59
    60 C. Pelekani, V. L. Snoeyink. Competitive Adsorption in Natural Water: Role of Activated Carbon Pore Size. Wat. Res. 1999, 33(5): 1209~1219
    61陈孝云,林秀兰,魏起华,林金春,欧水丽.活性炭表面化学改性及应用研究进展.科学技术与工程. 2008, 8(19): 5463~5467
    62 B.K. Kim, S.K. Ryu, B.J. Kim, S.J. Park. Adsorption Behavior of Propylamine on Activated Carbon Fiber Surfaces as Induced by Oxygen Functional Complexes. J. Colloid Interf. Sci. 2006, 302(2): 695~697
    63 S. Pal, K.H. Lee, J.U. Kim, S.H. Han, J.M. Song. Adsorption of Cyanuric Acid on Activated Carbon from Aqueous Solution: Effect of Carbon Surface Modification and Thermodynamic Characteristics. J. Colloid Interf. Sci. 2006, 303(1): 39~48
    64 J. Jaramilloa, V. Gómez-Serranob, P.M.álvareza. Enhanced Adsorption of Metal Ions onto Functionalized Granular Activated Carbons Prepared from Cherry Stones. J. Hazard. Mater. 2009, 161(2-3): 670~676
    65 B.H. Hameed, A.A. Rahman. Removal of Phenol from Aqueous Solutions by Adsorption onto Activated Carbon Prepared from Biomass Material. J. Hazard. Mater. 2009, 160(2-3): 576~581
    66 L.S. Li, W.P. Zhu, P.Y. Zhang, Q.Y. Zhang, Z.L. Zhang. TiO2/UV/O3-BAC Processes for Removing Refractory and Hazardous Pollutants in Raw Water. J. Hazard. Mater. 2006, 128(2-3): 145~149
    67 L.S. Li, W.P. Zhu, P.Y. Zhang, Q.Y. Zhang, Z.L. Zhang. AC/O3-BAC Processes for Removing Refractory and Hazardous Pollutants in Raw Water. J. Hazard. Mater. 2006, 135(1-3): 129~133
    68王占生,刘文君.我国给水深度处理应用状况与发展趋势.给水排水. 2005, 21(9): 29~33
    69陈杰.氯胺去除与控制饮用水中污染物的效能及机理研究.哈尔滨工业大学博士学位论文. 2006: 9~14
    70 S. Madaeni. The Application of Membrane Technology for Water Disinfection. Water Res. 1999, 33(2): 301~308
    71 J.G. Jacangelo, S.S. Adham, J.M. Laine. Mechanism of Cryptosporidium, Giardia and MS2 Virus Removal by MF and UF. J. AWWA. 1995, 88(9): 117~121
    72 J.Q. Sang, X.H. Zhang, L.Z. Li, Z.S. Wang. Improvement of Organics Removal by Bio-Ceramic Filtration of Raw Water with Addition of Phosphorus. Water Res. 2003, 37(19): 4711~4718
    73 K. Biswasa, S. Craika, D. W. Smitha, et al. Synergistic Inactivation of Cryptosporidium Parvum Using Ozone Followed by Free Chlorine in Natural Water. Wat. Res. 2003,37(19):4737~4747
    74李圭白,林生,曲久辉.用高锰酸钾去除饮水中微量有机污染物.给水排水. 1989, 16(6): 7~11
    75张锦,李圭白,马军.高锰酸盐复剂对给水处理中混凝的强化效应.工业用水与废水. 2003, 34(3): 12~14
    76杨艳玲.高锰酸钾安全改善受污染水预氯化消毒技术研究.哈尔滨工业大学博士论文, 2003: 28~49
    77 M. R. Jekel.Effect and Mechanisms Involved in Preoxidation and Particle Separation Processes. Wat. Sci. Tech. 1998, 37(10): 1~7
    78 B. Seredyńska-Sobecka, M. Tomaszewska, A.W. Morawski. Removal of Humic Acids by the Ozonation-Biofiltration Process. Desalination. 2006, 198(1-3): 265~273
    79 V. Camel, A. Bermond. The Use of Ozone and Associated Oxidation Processes in Drinking Water Treatment. Wat. Res. 1998, 32(11): 3208~3222
    80 T. Hedberg, T. A. Wahlberg. Upgrading of Water Works with a New Biooxidation Process for Removal of Manganese and Iron. Wat. Sci. Tech. 1998, 37(9): 121~126
    81 T. Hedberg, T. A. Wahlberg. Upgrading of Water Works with a New Biooxidation Process for Removal of Manganese and Iron. Wat. Sci. Tech. 1998, 37(9): 121~126
    82 J. Gregor. Arsenic Removal during Conventional Aluminium-based Drinking-water Treatment. Wat. Res. 2001, 35(7): 1659~1664
    83 T. Zhang, J. Ma. Catalytic Ozonation of Trace Nitrobenzene in Water with Synthetic Goethite. J. Mol. Catal. A: Chem. 2008, 279(1): 82~89
    84 T. Zhang, J.F. Lu, J. Ma, Z.M. Qiang. Comparative Study of Ozonation and Synthetic Goethite-Catalyzed Ozonation of Individual NOM Fractions Isolated and Fractionated from a Filtered River Water. Water Res. 2008, 42(6-7): 1563~1570
    85 L. Zhao, J. Ma, Z.Z. Sun, X.D. Zhai. Catalytic Ozonation for the Degradation of Nitrobenzene in Aqueous Solution by Ceramic Honeycomb-Supported Manganese. Appl. Catal. B: Environ. 2008, 83(3/4): 256~264
    86 D. P. Jeanine, K. E. James. Effect of Ozone on Disinfection By-product Formation of Algae. Water Science and Technology. 1998, 37(2): 49~55
    87 F. Digiano, C. Philp, D. T. Lecourt. Biodegradation kinetics of ozonated NOM and aldehydes. J.AWWA. 2001, 93(8): 92~103
    88 U. Gunten. Ozonation of drinking water: Part II. Disinfection and Byproduct Formation in Presence of Bromide, Iodide or Chlorine. Water Research. 2003, 37: 1469~1487
    89 A. Yavich, K. H. Lee, K. C. Chen, et al. Evaluation of Biodegradability of NOM after Ozonation. Water Research. 2004, 38(12): 2839~2846
    90 W. J. Huang, H. S. Peng, M. Y. Peng, et al. Removal of Bromate and Assimilable Organic Carbon form Drinking Water Using Granular Activated Carbon. Water Science and Technology. 2004, 50(8): 73~80
    91 M. J. McGuire. Advances in Treatment Processes to Solve Off-flavor Problems in Drinking Water. Wat. Sci. Tech. 1999, 40(6): 153~163
    92 A. Anderson, P. Laurent, A. Kihn, et al. Impact of Temperature on Nitrification in Biological Activated Carbon (BAC) Filters Used for Drinking Water Treatment. Wat. Res. 2001, 35(12): 2923~2934
    93 B. T. Croll. The Installation of GAC and Ozone Surface Water Plants in Anglian Water, UK. Ozone Sci. Engineer. 2002, 18(1): 19~40
    94 WHO. Guidelines for drinking-water quality. 3rd ed. 2005
    95 J. H. Qu, H. Y. Li, H. J. Liu, et al. Ozonation of Alachlor Catalyzed by Cu/Al2O3 in Water. Catalysis Today. 2004, 90(4): 291~296
    96 P. Laurent, M. Prevost, J. Cigana, et al. Biodegradable Organic Matter Removal in Biological Filters: Evaluation of the Chabrol Model. Wat. Res. 1999, 33(6): 1387~1398
    97 R. M. Hozalski, E. J. Bouwer, G. Sudha. Removal of Natural Organic Matter (NOM) from Drinking Water Supplies by Ozone-biofiltration. Wat. Sci. Tech. 1999, 40(9): 157~163
    98 M. T. T. Lipponen, P. J. Martikainen, R. E. Vasara, et al. Occurrence of Nitrifiers and Diversity of Ammonia-oxidizing Bacteria in Developing Drinking Water Biofilms. Wat. Res. 2004, 38(20): 4424~4434
    99 A. I. Sch?fer, U. Schwicker, M. M. Fischer, et al. Microfiltration of Colloids and Natural Organic Matter. J. Membrane Sci. 2000, 171(2): 151~172
    100 S. J. Xia, X. Li, R. P. Liu, et al. Study of Reservoir Water Treatment by Ultrafiltration for Drinking Water Production. Desalination. 2004, 167: 23~26
    101 B. Philip, A. Gary. Alternative Methods for Membrane Filtration of Arsenic from Drinking Water. Desalination. 1998, 117: 1~10
    102 T. Lebeau, C. Lelievre, H. Buisson, et al. Immersed Membrane Filtration for the Production of Drinking Water: Combination with PAC for NOM and SOCs Removal. Desalination. 1998, 117: 219~231
    103 B. Bolto, D. Dixon, R. Eldridge, et al. Removal of Natural Organic Matter by Ion Exchange. Wat. Res. 2002, 36(20): 5057~5065
    104 D. Hongve, J. Baann, G. Becher, et al. Experiences from Operation and Regeneration of an Anionic Exchanger for Natural Organic Matter Removal. Wat. Sci. Technol. 1999, 40(9): 215~221
    105曹国凭,马浩,关会玲.超滤技术在地表水处理中的应用和研究进展.工业水处理. 2009, 29:(2): 6-9
    106 M. Drouiche, H. Lounicl, D. Belhocine, H. Grid, N. Mamer. Economic Study of the Treatment of Surface Water by Small Ultrafiltration Units. Water SA. 2001, 27(2): 199~204
    107 H.G. Judith, T. Michael. A Comparison of Ultrafiltration onVarious River Waters. Desalination. 1998, 119: 79~84
    108 M. Kabsch-Korbutowicz. Impact of Pre-Coagulation on Ultrafiltration Process Performance. Desalination. 2006, 194(1-3): 232~238
    109 P. Le-Chech, E.K. Lee, V. Chen. Hybrid Photocatalysis/Membrane Treatment for Surface Waters Containing Low Concentrations of Natural Organic Matters. Water Res. 2006, 40(2): 323~330
    110 X.D. Wang, L. Wang, Y. Liu, W.S. Duan. Ozonation Pretreatment for Ultrafiltration of the Second Effluent. J. Membr. Sci. 2007, 287(2): 187~191
    111 H.K. Oh, S. Takizawa, S. Ohgaki, H. Katayama, K. Oguma, M.J. Yu. Removal of Organics and Viruses Using Hybrid Ceramic MF System without Draining PAC. Desalination. 2007, 202(1-3): 191~198
    112 J.J. Lee, H.W. Walker. Effect of Process Variables and Natural Organic Matter on Removal of Microcystin-LR by PAC-UF. Environ. Sci. Technol. 2006, 40(23): 7336~7342
    113柯水洲,文卫,肖定华.超滤法处理湘江原水的试验研究.净水技术, 2005, 24(5): 24~26
    114李海超,石岩,董秉直.超滤膜处理黄浦江原水的中试研究.华北水利水电学院学报. 2007, 28(2): 104~106
    115 C. Guigui, J.C. Roucha, L. Durand-Bourlier, V. Bonnelyeb, P. Aptel. Impact of Coagulation Conditions on the In-line Coagulation/UF Process for Drinking Water Production. Desalination. 2002, 147: 95~100
    116 J. M. Laine, K. Glucina, L. Malleret, A. Bruchet, I. Baudin, J. G. Jacangelo. Assessment of Membrane Processes for Taste and Odour Removal. Water Science and Technology: Water Supply. 2001, 1(4): 19~24
    117 Y. K. Park, C. H. Lee, S. H. Lee, N. Y. Jang. Purification of Polluted River Water by Ultrafiltration-ozonization-biological Activated Carbon Ffiltration. Water Science and Technology. 1997, 35(7): 179~186
    118夏圣骥,徐斌,姚娟娟,等.粉末活性炭—超滤膜工艺净化松花江水.华南理工大学学报(自然科学版). 2007, 35(6): 133~136
    119 N. Shuji, N. Ichiro, M. Tadaaki. Drinking water Treatment by Using Ultrafiltration Hollow Fiber Membranes. Desalination, 1996, 106: 55~61
    120尹华升,陈益清,陈治安,等.微絮凝—超滤和混凝—沉淀—过滤处理微污染水库水对比试验.水处理技术, 2006, 32(12): 51~53
    121夏圣骥,金家明,彭剑峰,等.超滤膜处理水库水研究.工业水处理, 2005, 259(7): 48~49
    122李发站,吕锡武,王华成,等. UF膜与砂滤生物接触氧化联用处理富营养化湖泊水.水处理技术, 2006, 32(6): 41~44
    123 H.H. Yeh, S.H. Lin, S.J. Kao. Comparison of the Finished Water Quality among an Integrated Membrane Process, Conventional and Other Advanced Treatment Processes. Desalination. 2000, 131: 237~244
    124 K.H. Lim, H.S. Shin. Operating characteristics of aerated submerged biofilm reactor for drinking water treatment. Wat. Sci. Tech., 1997, 36(12): 101~108
    125 S.C. Hoof, J.G. Minnery, B. Mack. Dead-end ultrafiltration as alternative pretreatment to reverse osmosis in seawater desalination: a case study. Desalination. 2001, 139(1/2/3): 161~168
    126 Q.L. Li, M. Elimelech. Synergistic Effects in Combined Fouling of a Loose Nanofiltration Membrane by Colloidal Materials and Natural Organic Matter. J. Membr. Sci. 2006, 278(1-2): 72~82
    127陆晓峰,陈仕意,刘光全,王彬芳.超滤膜的吸附污染研究.膜科学与技术. 1997, 17(1): 37~41
    128董秉直,曹达文,范瑾初,李景华,徐强. UF膜过滤天然原水阻力特性的研究.水处理技术. 2001, 27(2): 80~83
    129 S. G. Yiantsios, A. J. Karabelas. An Experimental Study of Humic Acid andPowdered Activated Carbon Deposition on UF Membranes and Their Removal by Backwashing. Desalination. 2010, 140: 195~209
    130 J. Brinck, A. S. Jonsson, B. Jonsson, J. Lindau. Influence of pH on the Adsorptive Fouling of Ultrafiltration Membranes by Fatty Acid. Journal ofMembrane Science. 2000, 164: 187~194
    131 D. Mignard, D. H. Glass. Fouling During the Cross-flow Ultrafiltration of Proteins:a Mass-transfer Model. Jounal of Membrane Science. 2001, 186: 133~143
    132 N. Delgrange Vincent, C. Cabsssud, M. Cabassud, L. Durand Bourlier. J. M. Laine. Neural Networks for Long Term Prediction of Fouling and Backwash Efficiency in Ultrafiltration for Drinking Water Production. Desalination. 2000, 131: 353~362
    133 S. Curcio, V. Calabro, G. Iorio. Monitoring and Control of TMP and Feed Flow Rate Pulsatile Operations during Ultrafiltration in a Membrane Module. Desalination. 2002, 146: 217~222
    134 W. Tsujimoto, H. Kimura, T. Izu, Taksshi Trie. Membrane Filtration and Pre-treatment by GAC. Desalination. 1998, 119: 323~326
    135 K. Khatib, J. Rose, O. Barres, W. Stone, J.Y. Bottero, C. Anselme. Physicochemical Study of Fouling Mechanisms of Ultrafiltration Membrane on Biwa Lake (Japan). Journal of Membrane Science. 1997, 130: 53~62
    136何文杰,顾金辉,康华,等.混凝—超滤工艺处理滦河水的中试研究.中国给水排水. 2007, 23(9): 73~76
    137王琳,王宝贞.饮用水深度处理技术.化学工业出版社, 2002:65~68
    138 S. Mozia, M. Tomaszewska, A.W. Morawski. Application of an ozonation- adsorption-ultrafiltration system for surface water treatment. Desalination. 2006, 190(1/2/3): 308~314
    139 Y. Lu, Z.W. Ding, L.Y. Liu, Z.J. Wang, R.Y. Ma. The Influence of Bubble Characteristics on the Performance of Submerged Hollow Fiber Membrane Module Used in Microfiltration. Sep. Purif. Technol. 2008, 61(1): 89~95
    140 R. Ghosh. Enhancement of Membrane Permeability by Gas-Sparging in Submerged Hollow Fiber Ultrafiltration of Macromolecular Solutions: Role of Module Design. J. Membr. Sci. 2006, 274(1-2): 73~82
    141 E. Zondervan, B. Roffel. Evaluation of Different Cleaning Agents Used for Cleaning Ultra Filtration Membranes Fouled by Surface Water. J. Membr. Sci. 2007, 304(1-2): 40~49
    142罗敏.浸没式超滤膜在大型给水厂中的应用.给水排水. 2009, 35(12): 17~22
    143 J.G. Jacangelo, S.S. Adham, J.M. Laine. Mechanism of Cryptosporidium,Giardia and MS2 Virus Removal by MF and UF. J. AWWA. 1995, 88(9): 117~121
    144 S.S. Adham. J.G. Jacangelo, J.M. Laine. Characteristics and Costs of MF and UF Plants. J. AWWA. 1996, 88(5): 22~31
    145 A.R. Gere. Microfiltration Operating Costs. J. AWWA. 1997, 89(10): 10~12
    146刘鹤,李永峰,程国玲.膜分离技术及其在饮用水中的应用.上海科学技术大学学报. 2008, 22(1): 48~53
    147孙丽华,李星,杨艳玲,孙文鹏,李圭白.浸没式超滤膜运行中膜污染控制方法试验研究.哈尔滨商业大学学报(自然科学版). 2009, 25(6): 664~668
    148张艳,李圭白,陈杰.采用浸没式超滤膜技术处理东江水的中试研究中国环境科学. 2009, 29(1): 6~10
    149徐超,付婉霞,王宏田,王新萍,李伟.浸没式超滤膜处理低浊度水的中试研究.给水排水. 2010, 36(2): 21~24
    150杨小丽,王世和,卢宁.一体式MBR控制膜污染的最佳曝气强度及影响因素.水处理技术, 2006, 32 (5) : 12~16.
    151郑祥,樊耀波.膜生物反应器运行条件的优化及膜污染的控制.给水排水. 2001, 27 (4) : 41~44
    152王志伟,吴国超,谷国维.平板膜生物反应器操作运行条件对膜污染特性的影响.膜科学与技术, 2005, 25 (5) : 31~35
    153张国俊,刘忠洲.膜过程中超滤膜污染机制的研究及其防治技术进展.膜科学与技术, 2001, 21(4): 39-45
    154 X.Y. Li, H.P. Chu. Membrane Bioreactor for the Drinking Water Treatment of Polluted Surface Water Supplies. Water Res. 2003, 37(19): 4781~4791
    155 H.Y. Ng, T.W. Tan, S.L. Ong. Membrane Fouling of Submerged Membrane Bioreactors: Impact of Mean Cell Residence Time and the Contributing Factors. Environ. Sci. Technol. 2006, 40(8): 2706~2713
    156 Y. Lu, Z.W. Ding, L.Y. Liu, Z.J. Wang, R.Y. Ma. The Influence of Bubble Characteristics on the Performance of Submerged Hollow Fiber Membrane Module Used in Microfiltration. Sep. Purif. Technol. 2008, 61(1): 89~95
    157 R. Ghosh. Enhancement of Membrane Permeability by Gas-Sparging in Submerged Hollow Fiber Ultrafiltration of Macromolecular Solutions: Role of Module Design. J. Membr. Sci. 2006, 274(1-2): 73~82
    158 E. Zondervan, B. Roffel. Evaluation of Different Cleaning Agents Used forCleaning Ultra Filtration Membranes Fouled by Surface Water. J. Membr. Sci. 2007, 304(1-2): 40~49
    159孙丽华.以超滤膜为核心的组合工艺处理地表水试验研究.哈尔滨工业大学博士论文. 2008: 18~19
    160刘文君,吴红伟,王占生,张弥,樊康平,徐欣.饮用水中BDOC测定动力学研究.环境科学. 1999, 20(4): 20~23
    161林细萍,卢益新,张德明,阮远彪. THMFP及HAAFP的测定方法.中国给水排水. 2003, 19(10): 98~100
    162刘小为.单宁酸与给水处理过程相关的若干化学行为研究.哈尔滨工业大学市政环境工程学院. 2007: 41-45
    163乔春光,魏群山,王东升,刘丽君,黄晓东,张金松,魏洽,李明俊.南方天然水体DOM的化学分级、变化特征及三卤甲烷生成势(THMFP)特性研究.环境科学学报. 2006, 26(6): 944~948
    164 Yasumoto Magara, Shoichi Kunikane. Advanced membrane technology for application to water treatment, Water Science and Technology, 1998, 37(10):91~99
    165华耀祖.超滤技术与应用.化学工业出版社. 2003:31~40
    166徐又一,徐志康.高分子膜材料.化学工业出版社. 2005:53~61
    167李圭白,杨艳玲.超滤-第三代城市饮用水净化工艺的核心技术.供水技术. 2007, 1(1): 1~3
    168 J.D. Lee, S.H. Lee, M.H. Jo, P.K. Park, C.H. Lee, J.W. Kwak. Effect of Coagulation Conditions on Membrane Filtration Characteristics in Coagulation-Microfiltration Process for Water Treatment. Environ. Sci. Technol. 2000, 34(17): 3780~3788
    169 M. Kabsch-Korbutowicz. Impact of Pre-Coagulation on Ultrafiltration Process Performance. Desalination. 2006, 194(1-3): 232~238
    170 H.K. Oh, S. Takizawa, S. Ohgaki, H. Katayama, K. Oguma, M.J. Yu. Removal of Organics and Viruses Using Hybrid Ceramic MF System without Draining PAC. Desalination. 2007, 202(1-3): 191~198
    171 J.J. Lee, H.W. Walker. Effect of Process Variables and Natural Organic Matter on Removal of Microcystin-LR by PAC-UF. Environ. Sci. Technol. 2006, 40(23): 7336~7342
    172 Q.L. Li, B.J. Marinas, V.L. Snoeyink, C. Campos. Three-ComponentCompetitive Adsorption Model for Flow-through PAC Systems. 1. Model Development and Verification with a PAC/Membrane System. Environ. Sci. Technol. 2003, 37(13): 2997~3004
    173费霞丽.净水厂生产废水优化回用工艺的试验研究.哈尔滨工业大学博士论文. 2005: 42~46
    174 X.H. Guan. Re-use of water treatment works sludge to enhance particulate pollutant removal from sewage. Wat. Res., 2005, 39 (4): 3433~3440
    175 W. Chu. Lead metal removal by recycled alum sludge. Wat. Res., 1999, 33 (2): 3019~3025
    176 AWWA, Water Quality and Treatment. A Handbook of Community Water Supplies, American Water Works Assoc., 4th ed., McGraw-Hill Inc., 1990
    177邓玲,王晔.超滤过程中膜的吸附现象是造成膜污染的关键.过滤与分离,1997, 11(4):13~17
    178董秉直,曹达文,范瑾初.膜技术应用于净水处理的研究和现状.给水排水, 1999, 25(10): 28~31
    179郑成.膜污染及其防治.膜科学与技术, 1997, 17(2): 5~14
    180张国俊,刘中州.膜过程中超滤膜污染机制的研究及其防治技术进展.膜科学与技术, 2001, 21(4): 39~45
    181 R.W. Field, D. Wu, J.A. Howell, et al. Critical flux concept for microfiltration fouling. Journal of Membrane Science. 1995, 100: 259~272
    182 A. Huerra, A. Rasmussen, Q. Jonsson. Removal of spores in skim milk by microfiltration. Progress in Membrane Science and Technology. The Netherlands, 1997: 136
    183 M. Dormer, M. Decloux, A. Lebert, et al. Use of experimental design to establish optimal crossflow filtration conditions: application to raw cane sugar clarification. Journal of Food Process Engineering. 1994, 17: 73~92
    184 R.W. Field, D. Wu, J.A. Howell, B.B. Gupta. Critical flux concept for microfiltration fouling. J. Membr. Sci. 1995, 100(3): 259~272
    185 K.V. Harit, R.J. Yas, A.D. Bennett, et al. Performance of crosbow microfiltration during constant transpressure and constant flux operation. Internal Dairy J, 2002, 12: 473~485
    186 P. Le-Clech, B. Jefferson, I.S. Chang, S.J. Judd. Critical flux determination by the flux-step method in a submerged membrane bioreactor, J. Membr. Sci.2003, 227 (6): 81~93
    187 B.D. Cho, A.G. Fane. Fouling transients in nominally sub-critical flux operation of a membrane bioreactor. J. Membr. Sci. 2002, 209(2): 391~403
    188 S. Ognier, C. Wisniewski, A. Grasmick, Membrane bioreactor fouling in sub-critical filtration conditions: a local critical flux concept. J. Membr. Sci. 2004, 229 (8): 171~177
    189 A. Brookes, B. Jefferson, G. Guglielmi, S.J. Judd. Sub-critical fouling in a membrane bioreactor: impact of flux and MLSS, Sep. Sci. Technol. 2006, 41 (16): 1279~1291
    190田家宇.浸没式膜生物反应器组合工艺净化受污染水源水的研究.哈尔滨工业大学博士论文. 2009:14~15
    191 J.W. Lee, J.I. Chun, H.J. Jung, D.H. Kwak, T. Ramesh, W.G. Shim, H.Moon. Comparative studies on coagulation and adsorption as a pretreatment method for the performance improvement of submerged MF membrane for secondary domestic wastewater treatment, Sep. Sci. Technol. 2005, 40(13): 2613–2632
    192 W.S. Ang, S. Lee, M. Elimelech. Chemical and Physical Aspects of Cleaning of Organic-Fouled Reverse Osmosis Membranes. J. Membr. Sci. 2006, 272(1-2): 198~210
    193 K. Kimura, Y. Hane, Y. Watanabe, G. Any, N. Ohkuma. Irreversible Membrane Fouling during Ultrafiltration of Surface Water. Water Res. 2004, 38(14-15): 3431~3441
    194 H. Yamamura, S. Chae, K. Kimura, Y. Watanabe. Transition in Fouling Mechanism in Microfiltration of Surface Water. Water Res. 2007, 41(17): 3812~3822
    195 H. Yamamura, K. Kimura, Y. Watanabe. Mechanism Involved in the Evolution of Physically Irreversible Fouling in Microfiltration and Ultrafiltration Membranes Used for Drinking Water Treatment. Environ. Sci. Technol. 2007, 41(19): 6789~6794

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700