用户名: 密码: 验证码:
正倒向随机微分方程和高维模型的统计推断
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着现代社会的发展与金融领域研究的日益深入,金融产品已经成为人们生活中不可或缺的组成部分,投资组合分析,资产定价及金融风险度量等辅助金融市场交易的数理模型和分析工具层出不穷,自上世纪九十年代以来频发的世界范围内的金融危机也凸现出这类研究的巨大意义,倒向随机微分方程(BSDE)正是在此大环境下被发掘出其旺盛的生命力,正倒向随机微分方程(FBSDE)也逐渐巩固了它在金融业界的地位.此外在数理经济,工程技术,生物科技等各个领域研究者遭遇了越来越多的大样本海量数据或复杂抽样数据,一方面维数的膨胀为数据信息的模式识别和规律发现布置了维数灾难,而另一方面高维数据中蕴藏的丰富信息也带来了维数福音,这就要求寻找更有效的方法处理高维数据满足统计建模和计量经济分析等方面的需求.
     BSDE自问世以来已被广泛的应用于数理金融与生物动力系统等领域,它与正向随机微分方程(OSDE)的本质区别在于BSDE依赖于终端条件,这恰好符合某些金融市场或生态环境运行态势的典型特征,然而这类终端相依模型的统计推断工作仍悬而未决.本论文首次构建了FBSDE模型并提出了FBSDE终端相依的积分型半参数估计和终端控制变量估计,简要拓展了模型的贝叶斯分析法,三种方法均以终端条件为基础解决了上述目标相依的问题.由于引入了积分形式,控制变量与贝叶斯观点,新模型的估计与OSDE估计的经典推断技术大相径庭或更为复杂,但保留了估计的相合性与渐近正态性,数据模拟进一步验证了估计在有限样本内的良好表现.
     为了降低多元非参数回归维数灾难的影响,本论文引进了一种基于数值模拟的两步估计法,具体的是受到模拟外推法的启发将多元非参数回归模型分解为两部分,第一部分作为模型的主体其估计可达到参数收敛速度,第二部分足够小到可利用截断参数也较小的正交基函数展开作出近似,这两部分的线性组合即构成了多元回归函数的两步估计.这一方法不需借助回归函数的任何结构性假设,且对较小的截断参数也能保证估计的相合性,与受到维数诅咒的一般非参数估计如核平滑方法和局部线性估计等相比,我们提出的两步估计更具优越性.
     近年来模型误定问题在统计学与计量经济学界也日渐引起广泛关注,一个不容忽视的障碍是当模型存在全局误定,即使其覆盖了大量参数与预测变量的信息,误定导致的与真实模型的偏离不仅不会消除反而会被加剧.本文采用了广义矩方法(GMM)对发散维数误定模型进行推断,详细阐述了新估计在局部相合性,全局相合性和渐近正态性等方面的渐近表现.为了减小全局误定的偏差,一种可完善模型及估计的半参数修正方法在理论结果和数值试验均证实了它自身的有效性.
     本论文共分为五个章节,全文组织与创新如下:
     第一章为FBSDE模型,多元非参数回归模型和发散维参数模型述评,扼要回顾了各类统计建模过程与现有推断方法的进展,指出了它们存在的优势与不足,提出了FBSDE模型的三种终端相依估计,多元回归模型的两步估计与发散维误定模型的GMM与半参数误定纠偏方法的研究背景与理论基础.
     第二章着重探索了如下FBSDE模型的终端相依统计推断,假设在观测时间区间[0,T]内的初始观测点为t1,记录等时间间隔的观测时间点为{ti=t1+(i-1)Δ,i=1,…,n},相应的观测数据序列为{Xi,Yi,i=1,…,n},终端条件ξ服从某已知分布,抽取样本{ξi,1≤i≤m}.借助积分型方程的离散化重新建立具有线性生成元的模型为我们分别提出了模型中未知成分Zt的非参数估计和生成元的半参数估计
     Zt2在x0处的N-W型核估计其渐近性质满足下述定理.
     定理2.1除了满足条件(2.1),(2.2)和(2.3),{Xi:Xi∈(x0-h,x0+h),i=1,…,n}来自平稳的p-混合马尔科夫过程,且对于0<ρ<1,其ρ-混合系数满足ρ(l)=ρl,假设它的概率密度函数p(x)在支撑上连续有界,p(x0)>0,Zx0>0,且p(x)和Zx在x0的邻域内是二阶连续可微的.当n→∞时,若有nh→∞,nh5→0和nh△2→0均成立,则其中
     参数β=(b,c)τ的估计可借助常规的参数估计方法得到,例如最小二乘估计,最小化下式通过下面的定理我们明确了半参数估计的渐近正态性.
     定理2.2除了(2.1)-(2.4),假设{Xi,i=1,…,n}来自p-混合系数满足p(l)=ρl的平稳p-混合马尔科夫过程,对于00,Zx0>0,且p(x)和Zx在x0的邻域内是二阶连续可微的.当n→∞时,若有nh→∞,nh5→0和nhΔ2→0,那么这里σ2=Var(ζ/T).
     第三章里引入了终端控制变量模型,离散化倒向方程并对终端取条件期望,其中m(Xt,ξ)=E(Zt(Bt+Δ-Bt)|Xt,ξ),ut=Zt(Bt+Δ-Bt)-m(Xt,ξ),对样本观测间隔△取值的两种情况分别展开讨论.△趋于0且收敛速度很快时,不妨通过最小二乘法得到β的相合估计,最小化下式若△趋于0的速度较慢,可得关于参数β的估计方程为可通过常规方法得到半参数估计βTC的显式表示.这里给出△下降很快时估计的渐近性质.
     定理3.1除了假设条件(2.1),(2.2),(2,3)和(3.1)成立,{Xi,i=1,…,n}来自平稳的ρ-混合马尔科夫过程,对于0<ρ<1,ρ(l)=ρl,(Xt,ξ)有概率密度函数pXt,ξ(x0,ξ0),此外,函数pXt,ξ(x0,ξ0),m(x0,ξ0)和Zx0,ξ0如在(x0,ξ0)的邻域内存在二阶连续导数.当n,m→∞,h→0时,若满足nmh2→∞,则有本章结束前我们还简要分析了FBSDE模型的贝叶斯推断方法,包括单一风险投资及多风险投资场合下参数的后验分布及贝叶斯推断方法的主要步骤,该课题将在今后的研究中被给予关注.
     在不对回归函数强加任何结构性假设的前提下解决高维非参数估计的维数问题,是第四章的主要目的.我们的研究对象是如下多元回归模型提出基于数值模拟的两步估计法和相应实施的步骤,最终r(x)的两步估计为随后研究了估计量r的渐近性质.
     定理4.1若期望E(Y2)和E(fU2(U,σU2))存在,U(1),…,U(d)表示U的独立分量,且对任意的z=x+u∈X∪u有fZ(z)>0,Pm(x)Pm'(x)的最大特征根有界,r(x)属于(4.2.13)定义的索伯列夫椭球集S(β,L),并且具有余弦基展开的形式,则估计的偏满足这里r特别的对任意j,当并且那么对有
     在最后一章中,我们探索了发散维数误定模型的广义矩方法,估计函数向量g(x,θ)全局有偏时,广义矩估计在满足识别条件等前提下具有如下性质,
     定理5.1假设5.1-5.2成立,n趋于无穷,若有则Q(θ)存在局部极小值θn,使得
     定理5.2假设5.1-5.3成立,且存在某正常数C使得λmin∧>C,若有(13)成立,则θn满足(14).
     定理5.3假设5.1-5.4成立,n趋于无穷,若有则D代表依分布收敛.
     而对于有一个可加项被误定的可加模型,θn0处修正的估计函数为并得到了半参数纠偏的修正估计为下面的定理陈述了调整后估计的渐进无偏性与相合性.
     定理5.4假设可加模型(16)只有r(xn2,θn2)被误定,r(xn2,θn2)和r0(xn2)对xn2存在二阶连续偏导,则对任意j=1,2,…,qn,0     定理5.5定理5.1的条件和假设5.5成立时,若有则必定存在Q(θ)的局部最小元θn,满足
     数值模拟实验进一步阐释了上述各种方法.
With the development of modern society and the deepening of financial field, financial products have become the indispensable part of people's life, and various mathematical models and analysis tools for dealing with the fi-nancial market transactions, which including investment portfolio analysis, asset pricing and financial risk measure, also emerge in an endless stream. S-ince the nineteen nineties, the worldwide financial crises happened frequently have highlighted the significance of such research to prevent these disaster-s. Backward stochastic differential equation (BSDE) has been well devel-oped in financial mathematics, and Forward-backward stochastic differential equations (FBSDE) is also playing its increasingly important role. In addi-tion, among the fields of the economic and financial, engineering technology, biotechnology and others, we encounter more large sample complicated data, especially the high-dimension data, which bring not only the model specifica-tion great challenges by the curse of dimensionality, and also rich information hidden behind just like the gospel of dimensionality. All these above require us finding effective way managing multivariate and high-dimensional data in order to cope with their applications in statistical modeling and econometric analysis, etc.
     Backward Stochastic Differential Equation (BSDE) has been well stud-ied and widely applied in mathematical finance. The main difference from the original stochastic differential equation (OSDE) is that the BSDE is designed to depend on a terminal condition, which is a key factor in some financial and ecological circumstances. However, to the best of our knowledge, the terminal-dependent statistical inference for such a model has not been ex-plored in the existing literature. This paper proposes two terminal-dependent estimation methods via a terminal control variable model and the integral form of Forward-backward Stochastic Differential Equation (FBSDE). The reasons why we do so are that the resulting models contain terminal condition as model variable and therefore the newly proposed inference procedures in-herit the terminal-dependent characteristic. In this paper, the FBSDE is first rewritten as the regression versions and then the semi-parametric estimation procedures are proposed. Because of the control variable and integral form, the newly proposed regression versions are more complex than the classical ones and thus the inference methods are somewhat different from which de-signed for the OSDE. Even so, the statistical properties of the new methods are similar to the classical ones. Simulations are conducted to demonstrate finite sample behaviors.
     To reduce the curse of dimensionality arising from nonparametric esti-mation procedure for multiple nonparametric regression, in this paper we sug-gest a simulationbased two-stage estimation. We first introduce a simulation-based method to decompose the multiple nonparametric regression into two parts. The first part can be estimated with the parametric convergence rate and the second part is small enough so that it can be approximated by or-thogonal basis functions with a small trade-off parameter. Then the linear combination of the first and second step estimators results in a two-stage estimator for multiple regression function. Our method does not need any specified structural assumption on regression function and it is proved that the newly proposed estimation is always consistent even if the trade-off pa-rameter is designed to be small. Thus when the common nonparametric estimator such as local linear smoothing collapses because of the curse of dimensionality, our estimator still works well.
     Misspecified models have attracted much attention in some fields such as statistics and econometrics. When a global misspecification exists, even the model contains a large number of parameters and predictors, the mis-specification cannot disappear and sometimes it instead goes further away from the true one. Then the inference and correction for such a model are of very importance. In this paper we use the generalized method of moments (GMM) to infer the misspecified model with diverging numbers of param-eters and predictors, and to investigate its asymptotic behaviors, such as local and global consistency, and asymptotic normality. Furthermore, we suggest a semiparametric correction to reduce the global misspefication and, consequently, to improve the estimation and enhance the modeling. The theoretical results and the numerical comparisons show that the corrected estimation and fitting are better than the existing ones.
     This dissertation consists of five chapters. Its main conclusions and innovations are organized as follows:
     In Chapter1, after reviewing the FBSDE model, multiple nonparametric model and the misspecified model with diverging numbers of parameters and predictors, we survey briefly various statistical modelings and existing infer-ence methods, and point out their relative merits. We put forward research backgrounds and theory foundations for three kinds terminal-dependent sta-tistical inference for the FBSDE, simulation-based two-stage estimation for multiple nonparametric regression, GMM and misspecification correction for misspecified models with diverging number of parameters.
     Chapter2investigates the following FBSDE model, expresses the FBSDE as a statistical framework, assuming g(t, Yt, Zt)=bYt+cZt.
     Let{Xi,Yi,i=1,...,n} be the observed time series data. Since the distribution of ξ is supposed known, we can get its sample as{ξi,1≤i≤m} for m≥1/Δn, then the original model can be approximately rewritten through integral discretization as
     Then address the proper estimator of g and Zt. We might adopt the N-W kernel nonparametric method to estimate Zt as Its asymptotic property is shown as below.
     Theorem2.1Besides the conditions (2.1),(2.2) and (2.3), suppose that Xi∈(x0-h, x0+h) is a stationary ρ-mixing Markov process with the p-mixing coefficients satisfying ρ(l)=ρl for0<ρ<1, and has a common probability density p(x) satisfying p(x0)>0. Furthermore, functions p(x) and Zx have continuous two derivatives in a neighborhood of X0. As n→∞, if nh→∞, nh5→0and nhΔ2→0, then
     From the above, it is simple to deduce the estimator of β=(b, c)τ with common parametric methods. For example, the least square (LS) estimator is obtained by minimizing The following theorem states the result aomost standard as the asymptotic normality with the convergence rate of (n)
     Theorem2.2Besides the conditions(2.1),(2.2),(2.3)and(2.4), suppose that{Xi,i=1,…,n}is a stationary ρ-mixing Markou process with the ρ-mixing coefficients satisfying ρ(l)=ρ for0<ρ<1and has a common probability density p(x)satisfying p(x0)>0. Furthermore,functions p(x) and Zx have continuous two derivatives in a neighborhood of x0.As n→∞, if nh→∞,nh5→0and nhΔ2→0,then where σ2=Var(ξ/T).
     In chapter3,we first introduce the terminal control variable model, where m(Xt,ξ)=E(Zt(B+Δ-Bt)|Xt,ξ),ut=Zt(Bt+Δ-Bt)-m(Xt,ξ). When Δ tends to zero quite fast,we can derive the estimator of β by mini-mizing Otherwise,the flollowing estimating equation could be used to derive the estimator of β: Then the estimators have the closed representations of βTC,whose asymp-totic distribution is as follows.
     Theorem3.1Besides the conditions(2.1),(2.2),(2.3)and(3.1),sup-pose that {Xi,i=1,…,n}is a stationary ρ-mixing Markou process with the ρ-mixing coefficients satisfying ρ(l)=ρl for0     By the end of this Chapter we also briefly analyzes the FBSDE mod-el by means of the Bayesian method in the cases including one single risk investment, and K candidates instead, and infer the posterior distributions and major estimation procedures.
     To reduce the curse of dimensionality arising from nonparametric esti-mation procedures for multiple nonparametric regression without any speci-fied structural assumption on the regression function, in Chapter4we suggest a simulation-based two-stage estimation, then the resultant estimator is and we present its asymptotic behavior as follow,
     Theorem4.1If E(Y2) and E(fU2(U, σU2)) both exist, the components U(1),...U(d) of U are designed to be independent, fz(z)>0for all z=x+u∈∈X∪U the maximum eigenvalue of Pm(x)P'm(x) is bounded, and r(x) belongs to the Soblev ellipsoid S(β,L) defined in (4.2.13), and can be expressed by a series expansion of the cosine basis functions as above, then Particulary, if βj=β0and mj=O(nδ) for all j and then with ρ=β0d/(2(β0d+1))-log(γU(m)Ld)/(β0d+1) log n).
     The last Chapter we use the generalized method of moments (GMM) to infer the misspecified model with diverging numbers of parameters and predictors, which means g{x,θ) is globally biased such as, We only consider the estimator of GMM defined by and investigate its asymptotic behaviors, such as local and global consistency, and asymptotic normality.
     Theorem5.1Suppose the Assumptions5.1-5.2hold. When n tends to infinity, if then there is a local minimizer θn of Q(θ) such that
     Theorem5.2Under the Assumptions5.1-5.3, if λminΛ>C for a positive constant C, and (13) holds, then θn satisfies (14).
     Theorem5.3Suppose the Assumptions5.1-5.4hold. When n tends to infinity, if then where D stands for the convergence in distribution.
     Furthermore, the additive regression model is defined by finally an corrected version of estimating function valued at θn0is given by consequently, we suggest an corrected estimator as The theoretical results show that the corrected estimation and fitting are better than the existing ones.
     Theorem5.4Suppose that in additive regression model (16) only the term r(xn2,θn2) is misspecified, r(xn2,θn2) and r0(xn2) have two continuous derivatives with respect to xn2. Then for j=1,2,...,qn and0     Theorem5.5Under the condition of Theorem5.1and Assumption5.5, then there is a local minimizer θn of Q(θ) such that, if then
     Simulations are used to illustrate various methods.
引文
[1]Yacine Ait-Sahalia. Testing continuous-time models of the spot interest rate. Review of Financial studies,9(2):385-426,1996.
    [2]Yacine Ait-Sahalia and Andrew W Lo. Nonparametric estimation of state-price densities implicit in financial asset prices. The Journal of Finance, 53(2):499-547,1998.
    [3]Michael G Akritas and Dimitris N Politis. Nonparametric methods in continuous-time finance:A selective review. Recent Advances and Trends in Nonparametric Statistics, page 283,2003.
    [4]SC Albright, WL Winston, and C Zappe. Data analysis and decision making with microsoft excel. pacific grove, calif.:Brooks,1999.
    [5]Theodore Wilbur Anderson and Cheng Hsiao. Formulation and estimation of dynamic models using panel data. Journal of econometrics,18(1):47-82, 1982.
    [6]Joshua Angrist, Victor Chernozhukov, and Ivan Fernandez-Val. Quantile regression under misspecification, with an application to the us wage struc-ture. Econometrica,74(2):539-563,2006.
    [7]Joshua D Angrist and Alan B Krueger. The effect of age at school entry on educational attainment:an application of instrumental variables with moments from two samples. Journal of the American Statistical Association, 87(418):328-336,1992.
    [8]Gurdip Bakshi, Charles Cao, and Zhiwu Chen. Empirical performance of alternative option pricing models. The Journal of Finance,52(5):2003-2049, 1997.
    [9]Badi H Baltagi and Dong Li. Series estimation of partially linear panel data models with fixed effects. Annals of Economic and Finance,3:103,2002.
    [10]Richard Bellman. Adaptive control processes:a guided tour, volume 4. Princeton university press Princeton,1961.
    [11]Patrice Bertail and Dimitris N Politis. Extrapolation of subsampling distri-bution estimators:The iid and strong mixing cases. Canadian Journal of Statistics,29(4):667-680,2001.
    [12]Jean-Michel Bismut. Conjugate convex functions in optimal stochastic con-trol. J. Math. Anal. Appl.,44:384-404,1973.
    [13]Fischer Black, Emanuel Derman, and William Toy. A one-factor model of interest rates and its application to treasury bond options. Financial analysts journal, pages 33-39,1990.
    [14]Fischer Black and Piotr Karasinski. Bond and option pricing when short rates are lognormal. Financial Analysts Journal, pages 52-59,1991.
    [15]Fischer Black and Myron Scholes. The pricing of options and corporate liabilities. The journal of political economy, pages 637-654,1973.
    [16]Richard C Bradley and Wlodzimierz Bryc. Multilinear forms and measures of dependence between random variables. Journal of Multivariate Analysis, 16(3):335-367,1985.
    [17]Andreas Buja, Trevor Hastie, and Robert Tibshirani. Linear smoothers and additive models. The Annals of Statistics, pages 453-510,1989.
    [18]Wray L Buntine and Andreas S Weigend. Computing second derivatives in feed-forward networks:A review. Neural Networks, IEEE Transactions on, 5(3):480-488,1994.
    [19]Tianxi Cai, Lu Tian, Scott D Solomon, and LJ Wei. Predicting future responses based on possibly mis-specified working models. Biometrika, 95(1):75-92,2008.
    [20]Zongwu Cai, Mitali Das, Huaiyu Xiong, and Xizhi Wu. Functional coefficient instrumental variables models. Journal of Econometrics,133(1):207-241, 2006.
    [21]Zongwu Cai and Qi Li. Nonparametric estimation of varying coefficient dynamic panel data models. Econometric Theory,24(5):1321,2008.
    [22]Emmanuel Candes and Terence Tao. The dantzig selector:statistical es-timation when p is much larger than n. The Annals of Statistics, pages 2313-2351,2007.
    [23]Raymond J Carroll, David Ruppert, Leonard A Stefanski, and Ciprian M Crainiceanu. Measurement error in nonlinear models:a modern perspective, volume 105. Chapman and Hall/CRC,2010.
    [24]Gary Chamberlain. Asymptotic efficiency in estimation with conditional moment restrictions. Journal of Econometrics,34(3):305-334,1987.
    [25]KC Chan, G Andrew Karolyi, Francis A Longstaff, and Anthony B Sanders. Alternative models of the term structure:An empirical comparison. Journal of Finance,47:1209-1227,1992.
    [26]David A Chapman and Neil D Pearson. Is the short rate drift actually nonlinear? The Journal of Finance,55(1):355-388,2000.
    [27]Song Xi Chen and Liang Peng. Empirical likelihood for high dimensional data.2008.
    [28]Xi Chen and Lu Lin. Nonparametric estimation for fbsdes models with applications in finance. Communications in Statistics Theory and Methods, 39(14):2492-2514,2010.
    [29]George M Constantinides. A theory of the nominal term structure of interest rates. Review of Financial Studies,5(4):531-552,1992.
    [30]John R Cook and Leonard A Stefanski. Simulation-extrapolation estimation in parametric measurement error models. Journal of the American Statistical Association,89(428):1314-1328,1994.
    [31]John C Cox, Jonathan E Ingersoll Jr, and Stephen A Ross. A theory of the term structure of interest rates. Econometrica:Journal of the Econometric Society, pages 385-407,1985.
    [32]John G Cragg. More efficient estimation in the presence of heteroscedasticity of unknown form. Econometrica:Journal of the Econometric Society, pages 751-763,1983.
    [33]Peter Craven and Grace Wahba. Smoothing noisy data with spline functions. Numerische Mathematik,31(4):377-403,1978.
    [34]Xia Cui, Wensheng Guo, Lu Lin, and Lixing Zhu. Covariate-adjusted non-linear regression. The Annals of Statistics,37(4):1839-1870,2009.
    [35]Robert E Cumby, John Huizinga, and Maurice Obstfeld. Two-step two-stage least squares estimation in models with rational expectations. Journal of Econometrics,21(3):333-355,1983.
    [36]Aurore Delaigle, Peter Hall, and Hans-Georg Miiller. Accelerated conver-gence for nonparametric regression with coarsened predictors. The Annals of Statistics, pages 2639-2653,2007.
    [37]Francis X Diebold, Lee E Ohanian, and Jeremy Berkowitz. Dynamic equilib-rium economies:A framework for comparing models and data. The Review of Economic Studies,65(3):433-451,1998.
    [38]Manuel A Dominguez and Ignacio N Lobato. Consistent estimation of mod-els defined by conditional moment restrictions. Econometrica,72(5):1601-1615,2004.
    [39]Stephen G Donald, Guido W Imbens, and Whitney K Newey. Choosing the number of moments in conditional restriction models. Forthcoming in Econometrica.
    [40]David L Donoho and Jain M Johnstone. Ideal spatial adaptation by wavelet shrinkage. Biometrika,81(3):425-455,1994.
    [41]Darrell Duffie and Larry G Epstein. Stochastic differential utility. Econo-metrica:Journal of the Econometric Society, pages 353-394,1992.
    [42]Sam Efromovich. Nonparametric curve estimation:methods, theory and applications. Springer,1999.
    [43]Martin Eichenbaum and Lars Peter Hansen. Estimating models with in-tertemporal substitution using aggregate time series data. Journal of Busi-ness (?) Economic Statistics,8(1):53-69,1990.
    [44]Nicole El Karoui, Shige Peng, and Marie Claire Quenez. Backward stochastic differential equations in finance. Mathematical finance,7(1):1-71,1997.
    [45]Nicole El Karoui and Marie-Claire Quenez. Dynamic programming and pricing of contingent claims in an incomplete market. SIAM journal on Control and Optimization,33(1):29-66,1995.
    [46]Robert F Engle, Clive WJ Granger, John Rice, and Andrew Weiss. Semi-parametric estimates of the relation between weather and electricity sales. Journal of the American statistical Association,81(394):310-320,1986.
    [47]Randall L Eubank. Nonparametric regression and spline smoothing, volume 157. CRC press,1999.
    [48]William N Evans and Jeanne S Ringel. Can higher cigarette taxes improve birth outcomes? Journal of Public Economics,72(1):135-154,1999.
    [49]Jianqing Fan. Local linear regression smoothers and their minimax efficien-cies. The Annals of Statistics, pages 196-216,1993.
    [50]Jianqing Fan. A selective overview of nonparametric methods in financial econometrics. Statistical Science,20(4):317-337,2005.
    [51]Jianqing Fan and Irene Gijbels. Local polynomial modelling and its applica-tions, volume 66. Chapman & Hall/CRC,1996.
    [52]Jianqing Fan, Jiancheng Jiang, Chunming Zhang, and Zhenwei Zhou. Time-dependent diffusion models for term structure dynamics. Statistica Sinica, 13(4):965-992,2003.
    [53]Jianqing Fan and Jinchi Lv. Sure independence screening for ultrahigh dimensional feature space. Journal of the Royal Statistical Society:Series B (Statistical Methodology),70(5):849-911,2008.
    [54]Jianqing Fan and Heng Peng. Nonconcave penalized likelihood with a di-verging number of parameters. The Annals of Statistics,32(3):928-961, 2004.
    [55]Jianqing Fan, Heng Peng, and Tao Huang. Semilinear high-dimensional model for normalization of microarray data:a theoretical analysis and partial consistency. Journal of the American Statistical Association, 100(471):781-796,2005.
    [56]Jianqing Fan, Yichao Wu, and Yang Feng. Local quasi-likelihood with a parametric guide. Annals of statistics,37(6B):4153,2009.
    [57]Jianqing Fan and Qiwei Yao. Nonlinear time series:nonparametric and parametric methods. Springer Verlag,2003.
    [58]Jianqing Fan and Chunming Zhang. A reexamination of diffusion estimators with applications to financial model validation. Journal of the American Statistical Association,98(461):118-134,2003.
    [59]Jianqing Fan and Jian Zhang. Sieve empirical likelihood ratio tests for nonparametric functions. Annals of statistics, pages 1858-1907,2004.
    [60]Danielle Florens-Zmirou. On estimating the diffusion coefficient from dis-crete observations. Journal of applied probability, pages 790-804,1993.
    [61]Jerome H Friedman and Werner Stuetzle. Projection pursuit regression. Journal of the American statistical Association,76(376):817-823,1981.
    [62]A Ronald Gallant and Halbert White. There exists a neural network that does not make avoidable mistakes. In Neural Networks,1988., IEEE Inter-national Conference on, pages 657-664. IEEE,1988.
    [63]Theo Gasser and Hans-Georg Muller. Kernel estimation of regression func-tions. Springer,1979.
    [64]Yang Ge and Wenxin Jiang. On consistency of bayesian inference with mixtures of logistic regression. Neural computation,18(1):224-243,2006.
    [65]Alan E Gelfand and Adrian FM Smith. Sampling-based approaches to cal-culating marginal densities. Journal of the American statistical association, 85(410):398-409,1990.
    [66]Andrew Gelman, John B Carlin, Hal S Stern, and Donald B Rubin. Bayesian data analysis. Chapman & Hall/CRC,2004.
    [67]Helyette Geman. Cat-calls. Risk,7(9):86-89,1994.
    [68]Edward I George and Robert E McCulloch. Approaches for bayesian variable selection. Statistica sinica,7:339-374,1997.
    [69]S Ghosal. Reference priors in multiparameter nonregular cases. Test, 6(1):159-186,1997.
    [70]Subhashis Ghosal. Miscellanea. probability matching priors for non-regular cases. Biometrika,86(4):956-964,1999.
    [71]Walter R Gilks, Sylvia Richardson, and David J Spiegelhalter. Markov chain Monte Carlo in practice, volume 2. Chapman & Hall/CRC,1996.
    [72]Emmanuel Gobet, Marc Hoffmann, and Markus Reifβ. Nonparametric esti-mation of scalar diffusions based on low frequency data is ill-posed. Technical report, Discussion Papers, Interdisciplinary Research Project 373:Quantifi-cation and Simulation of Economic Processes,2002.
    [73]Henry L Gray and William R Schucany. The generalized jackknife statistic. Marcel Dekker New York,1972.
    [74]Alastair R Hall and Atsushi Inoue. The large sample behaviour of the gen-eralized method of moments estimator in misspecified models. Journal of Econometrics,114(2):361-394,2003.
    [75]Peter Hall and Joel L Horowitz. Nonparametric methods for inference in the presence of instrumental variables. The Annals of Statistics,33(6):2904-2929,2005.
    [76]Peter Hall and Prakash Patil. Formulae for mean integrated squared error of nonlinear wavelet-based density estimators. The Annals of Statistics, pages 905-928,1995.
    [77]James Hansen, Helene Wilson, Makiko Sato, Reto Ruedy, Kathy Shah, and Erik Hansen. Satellite and surface temperature data at odds? Climatic Change,30(1):103-117,1995.
    [78]Lars P Hansen and Jose A Scheinkman. Back to the future:generating moment implications for continuous-time markov processes,1993.
    [79]Lars Peter Hansen. Large sample properties of generalized method of mo-ments estimators. Econometrica:Journal of the Econometric Society, pages 1029-1054,1982.
    [80]Lars Peter Hansen and Ravi Jagannathan. Assessing specification errors in stochastic discount factor models. The Journal of Finance,52(2):557-590, 1997.
    [81]Lars Peter Hansen and Thomas J Sargent. Formulating and estimating dynamic linear rational expectations models. Journal of Economic Dynamics and Control,2:7-46,1980.
    [82]Lars Peter Hansen and Kenneth J Singleton. Generalized instrumental vari-ables estimation of nonlinear rational expectations models. Econometrica: Journal of the Econometric Society, pages 1269-1286,1982.
    [83]Wolfgang Hardle and Hua Liang. Partially linear models. Springer,2007.
    [84]Trevor Hastie and Robert Tibshirani. Generalized additive models, volume 43. Chapman & Hall/CRC,1990.
    [85]Trevor Hastie and Robert Tibshirani. Varying-coefficient models. Journal of the Royal Statistical Society. Series B (Methodological), pages 757-796, 1993.
    [86]W Keith Hastings. Monte carlo sampling methods using markov chains and their applications. Biometrika,57(1):97-109,1970.
    [87]Jerry A Hausman and William E Taylor. A generalized specification test. Economics Letters,8(3):239-245,1981.
    [88]Nils Lid Hjort and Ingrid K Glad. Nonparametric density estimation with a parametric start. The Annals of Statistics, pages 882-904,1995.
    [89]Nils Lid Hjort and MC Jones. Locally parametric nonparametric density estimation. The Annals of Statistics, pages 1619-1647,1996.
    [90]Nils Lid Hjort, Ian W McKeague, and Ingrid Van Keilegom. Extending the scope of empirical likelihood. The Annals of Statistics,37(3):1079-1111, 2009.
    [91]Joel L Horowitz. Applied nonparametric instrumental variables estimation. Econometrica,79(2):347-394,2011.
    [92]Joel L Horowitz and Sokbae Lee. Nonparametric instrumental variables estimation of a quantile regression model. Econometrica,75(4):1191-1208, 2007.
    [93]Joel L Horowitz and Marianthi Markatou. Semiparametric estimation of re-gression models for panel data. The Review of Economic Studies,63(1):145-168,1996.
    [94]Marian Hristache, Anatoli Juditsky, and Vladimir Spokoiny. Direct estima-tion of the index coefficient in a single-index model. The Annals of Statistics, 29(3):593-623,2001.
    [95]Peter J Huber. Robust regression:asymptotics, conjectures and monte carlo. The Annals of Statistics,1(5):799-821,1973.
    [96]Guido W Imbens. One-step estimators for over-identified generalized method of moments models. The Review of Economic Studies,64(3):359-383,1997.
    [97]David Rios Insua and Peter Miiller. Feedforward neural networks for non-parametric regression. Springer,1998.
    [98]Jiming Jiang, Partha Lahiri, and Shu-Mei Wan. A unified jackknife theory for empirical best prediction with m-estimation. The Annals of Statistics, 30(6):1782-1810,2002.
    [99]Wenxin Jiang. Bayesian variable selection for high dimensional generalized linear models:convergence rates of the fitted densities. The Annals of S-tatistics, pages 1487-1511,2007.
    [100]Wenxin Jiang and Martin A Tanner. Hierarchical mixtures-of-experts for ex-ponential family regression models:approximation and maximum likelihood estimation. Annals of Statistics, pages 987-1011,1999.
    [101]Michael I Jordan and Robert A Jacobs. Hierarchical mixtures of experts and the em algorithm. Neural computation,6(2):181-214,1994.
    [102]Ioannis Karatzas and Steven E Shreve. Methods of mathematical finance, volume 39. Springer Verlag,1998.
    [103]Yuichi Kitamura. Comparing misspecified dynamic econometric models us-ing nonparametric likelihood. Department of Economics, University of Wis-consin,2000.
    [104]Thomas J Kniesner and Qi Li. Nonlinearity in dynamic adjustment: Semiparametric estimation of panel labor supply. Empirical Economics, 27(1):131-148,2002.
    [105]Roger Koenker and Jose AF Machado. Gmm inference when the number of moment conditions is large. Journal of Econometrics,93(2):327-344,1999.
    [106]AN Kolmogorov and Yu A Rozanov. On strong mixing conditions for station-ary gaussian processes. Theory of Probability (?) Its Applications,5(2):204-208,1960.
    [107]Clifford Lam and Jiangqing Fan. Profile-kernel likelihood inference with diverging number of parameters. Annals of statistics,36(5):2232,2008.
    [108]HKH Lee. Consistency of posterior distributions for neural networks. Neural Networks,13(6):629-642,2000.
    [109]Kyeong Eun Lee, Naijun Sha, Edward R Dougherty, Marina Vannucci, and Bani K Mallick. Gene selection:a bayesian variable selection approach. Bioinformatics,19(1):90-97,2003.
    [110]Gaorong Li, Lu Lin, and Lixing Zhu. Empirical likelihood for a varying coef-ficient partially linear model with diverging number of parameters. Journal of Multivariate Analysis,105(1):85-111,2012.
    [111]Qi Li and Thanasis Stengos. Semiparametric estimation of partially linear panel data models. Journal of Econometrics,71(1):389-397,1996.
    [112]Lu Lin, Xia Cui, and Lixing Zhu. An adaptive two-stage estimation method for additive models. Scandinavian Journal of Statistics,36(2):248-269,2009.
    [113]Lu Lin and Feng Li. Stable and bias-corrected estimation for nonparametric regression models. Journal of Nonparametric Statistics,20(4):283-303,2008.
    [114]Lu Lin, Feng Li, Lixing Zhu, and Wolfgang Karl Hardle. Mean volatility regressions. Technical report, SFB 649 discussion paper,2010.
    [115]Jin Ma and Jiongmin Yong. Forward-backward stochastic differential equa-tions and their applications, volume 1702. Springer,2007.
    [116]Yanyuan Ma, Jeng-Min Chiou, and Naisyin Wang. Efficient semiparametric estimator for heteroscedastic partially linear models. Biometrika,93(1):75-84,2006.
    [117]Esfandiar Maasoumi and Peter CB Phillips. On the behavior of inconsistent instrumental variable estimators. Journal of Econometrics,19(2):183-201, 1982.
    [118]Harry Markowitz. Portfolio selection*. The journal of finance,7(1):77-91, 1952.
    [119]Duncan McCallum and AVIS David. A linear algorithm for finding the convex hull of a sihiple polygon. Information Processing Letters,1979.
    [120]N Metroplis, AW Rosenbluth, MN Rosenbluth, and AH Teller. Equation of state calculations by fast computing machines. J. Chem. Phys.,21 (6):1986-1092,1953.
    [121]Rupert G Miller. The jackknife-a review. Biometrika,61(1):1-15,1974.
    [122]Alain Monfort. A reappraisal of misspecified econometric models. Econo-metric Theory,12:597-619,1996.
    [123]Carl N Morris. Natural exponential families with quadratic variance func-tions. The Annals of Statistics,10(1):65-80,1982.
    [124]Elizbar A Nadaraya. On estimating regression. Theory of Probability (?) Its Applications,9(1):141-142,1964.
    [125]Prasad A Naik and Chih-Ling Tsai. Single-index model selections. Biometri-ka,88(3):821-832,2001.
    [126]Kanta Naito. Semiparametric density estimation by local 12-fitting. The Annals of Statistics,32(3):1162-1191,2004.
    [127]Glen Newey. Discourse rights and the drumcree marches:a reply to o'neill. The British Journal of Politics & International Relations,4(1):75-97,2002.
    [128]Whitney K Newey. Generalized methods of moments specification testing. Princeton University Economic Research Program,1983.
    [129]Whitney K Newey. Adaptive estimation of regression models via moment restrictions. Journal of Econometrics,38(3):301-339,1988.
    [130]Whitney K Newey. 16 efficient estimation of models with conditional mo-ment restrictions. Handbook of statistics,11:419-454,1993.
    [131]Whitney K Newey and Daniel McFadden. Large sample estimation and hypothesis testing. Handbook of econometrics,4:2111-2245,1994.
    [132]Whitney K Newey and Kenneth D West. A simple, positive semi-definite, heteroskedasticity and autocorrelation consistent covariance matrix. Econo-metrica:Journal of the Econometric Society, pages 703-708,1987.
    [133]Steven J Novick and Leonard A Stefanski. Corrected score estimation via complex variable simulation extrapolation. Journal of the American Statis-tical Association,97(458):472-481,2002.
    [134]David Nualart and Wim Schoutens. Backward stochastic differential equa-tions and feynman-kac formula for levy processes, with applications in fi-nance. Bernoulli,7(5):761-776,2001.
    [135]Etienne Pardoux and Shige Peng. Adapted solution of a backward stochastic differential equation. Systems & Control Letters,14(1):55-61,1990.
    [136]Etienne Pardoux and Shige Peng. Backward stochastic differential equations and quasilinear parabolic partial differential equations. In Stochastic partial differential equations and their applications, pages 200-217. Springer,1992.
    [137]Etienne Pardoux and Shanjian Tang. Forward-backward stochastic differen-tial equations and quasilinear parabolic pdes. Probability Theory and Related Fields,114(2):123-150,1999.
    [138]Valentin Patilea. Convex models, mls and misspecification. The Annals of Statistics,29(1):94-123,2001.
    [139]Magda Peligrad. Properties of uniform consistency of the kernel estima-tors of density and regression functions under dependence assumptions. S-tochastics:An International Journal of Probability and Stochastic Processes, 40(3-4):147-168,1992.
    [140]Shige Peng. Probabilistic interpretation for systems of quasilinear parabolic partial differential equations. Stochastics Stochastics Rep,37(1-2):61-74, 1991.
    [141]Shige Peng and Zhen Wu. Fully coupled forward-backward stochastic dif-ferential equations and applications to optimal control. SIAM Journal on Control and Optimization,37(3):825-843,1999.
    [142]Dimitris N Politis and Joseph P Romano. A general resampling scheme for triangular arrays of a-mixing random variables with application to the problem of spectral density estimation. The Annals of Statistics, pages 1985-2007,1992.
    [143]Stephen Portnoy. Asymptotic behavior of likelihood methods for exponential families when the number of parameters tends to infinity. The Annals of Statistics,16(1):356-366,1988.
    [144]James L Powell. Censored regression quantiles. Journal of econometrics, 32(1):143-155,1986.
    [145]MB Priestley and MT Chao. Non-parametric function fitting. Journal of the Royal Statistical Society. Series B (Methodological), pages 385-392,1972.
    [146]Dimitris Rizopoulos, Geert Verbeke, and Geert Molenberghs. Shared param-eter models under random effects misspecification. Biometrika,95(1):63-74, 2008.
    [147]M Rosenblatt. Density estimates and markov sequencesf. Selected Works of Murray Rosenblatt, page 240,2011.
    [148]Murray Rosenblatt. A central limit theorem and a strong mixing condition. Proceedings of the National Academy of Sciences of the United States of America,42(1):43,1956.
    [149]David Ruppert, Simon J Sheather, and Matthew P Wand. An effective band-width selector for local least squares regression. Journal of the American Statistical Association,90(432):1257-1270,1995.
    [150]David Ruppert and Matthew P Wand. Multivariate locally weighted least squares regression. The annals of statistics, pages 1346-1370,1994.
    [151]Susanne M Schennach. Instrumental variable estimation of nonlinear errors-in-variables models. Econometrica,75(1):201-239,2007.
    [152]Susanne M Schennach. Point estimation with exponentially tilted empirical likelihood. The Annals of Statistics,35(2):634-672,2007.
    [153]QM Shao. A remark on the invariance principle for ρ-mixing sequences of random variables. Chinese Annals of Mathematics Series A,9(4):409-412, 1988.
    [154]Bernard W Silverman. Density estimation for statistics and data analysis, volume 26. Chapman & Hall/CRC,1986.
    [155]Michael Smith and Robert Kohn. Nonparametric regression using bayesian variable selection. Journal of Econometrics,75(2):317-343,1996.
    [156]Paul Speckman. Kernel smoothing in partial linear models. Journal of the Royal Statistical Society. Series B (Methodological), pages 413-436,1988.
    [157]Richard Stanton. A nonparametric model of term structure dynamics and the market price of interest rate risk. The Journal of Finance,52 (5):1973-2002,1997.
    [158]LA Stefanski and JR Cook. Simulation-extrapolation:the measurement er-ror jackknife. Journal of the American Statistical Association,90(432):1247-1256,1995.
    [159]James H Stock and Jonathan H Wright. Gmm with weak identification. Econometrica,68(5):1055-1096,2000.
    [160]Mervyn Stone. Cross-validatory choice and assessment of statistical predic-tions. Journal of the Royal Statistical Society. Series B (Methodological), pages 111-147,1974.
    [161]Mervyn Stone. An asymptotic equivalence of choice of model by cross-validation and akaike's criterion. Journal of the Royal Statistical Society. Series B (Methodological), pages 44-47,1977.
    [162]Yuxia Su and Lu Lin. Semi-parametric estimation for forward-backward stochastic differential equations. Communications in Statistics Theory and Methods,38(11):1759-1775,2009.
    [163]Martin A Tanner. Tools for statistical inference:observed data and data augmentation methods. Springer-Verlag New York,1991.
    [164]Aad W Van der Vaart. Asymptotic statistics, volume 3. Cambridge univer-sity press,2000.
    [165]Grace Wahba. How to smooth curves and surfaces with splines and cross-validation,1979.
    [166]Grace Wahba. Spline models for observational data, volume 59. Society for industrial and applied mathematics,1990.
    [167]Matt P Wand and M Chris Jones. Kernel smoothing, volume 60. Chapman & Hall/CRC,1995.
    [168]Kaiping Wang and Lu Lin. Semi-parametric density estimation for time-series with multiplicative adjustment. Communications in Statistics Theory and Methods,37(8):1274-1283,2008.
    [169]Larry Wasserman. All of nonparametric statistics. Springer Science+ Busi-ness Media,2006.
    [170]Geoffrey S Watson. Smooth regression analysis. Sankhya:The Indian Jour-nal of Statistics, Series A, pages 359-372,1964.
    [171]Mark W Watson. Measures of fit for calibrated models,1991.
    [172]Halbert White. Regularity conditions for cox's test of non-nested hypotheses. Journal of Econometrics,19(2):301-318,1982.
    [173]Weiqiang Yang and Li Yang. Nonparametric estimation and simulation of backward stochastic differential equation. Journal of Shandong University (Natural Science),41(2):34-38,2006.
    [174]Lin Zhengyan and Lu Chuanrong. Limit theory for mixing dependent random variables, volume 378. Kluwer Academic Pub,1996.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700