用户名: 密码: 验证码:
激光快速成形技术制作纯钛植入材料的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
LRF技术与传统金属加工技术相比具有显著的优势。为了详细了解LRF技术用于纯钛植入材料制作的可行性,本研究利用LRF技术制作了纯钛植入材料,并对LRF Ti的物理机械性能、生物安全性、生物相容性和耐腐蚀性进行了评价。
     第Ⅰ部分LRF Ti的制备和相关机械性能评价
     选用合适的工艺参数制作LRF Ti材料,选用的激光成形工艺参数为:激光功率:2700W;光斑直径:3mm;光束扫描速度:500mm/min;保护气体是氩气:载粉气流量250L/h,约束气流量5~7.5L/min,送粉速度4.2 g/min。采用多道搭接Z向生长方式成形,成形过程层高0.5 mm。然后根据国家标准测试LRF Ti材料的机械性能、显微硬度和疲劳强度,并对材料的化学成分和组织结构进行观察和分析,对LRF Ti用作植入材料的生物力学相容性进行评价。
     结果:按照国家标准GB/T 228-2002进行拉伸实验,LRF Ti试样的抗拉强度(475 MPa)、屈服强度(383MPa)均高于GB/T 13810-1997中TA2纯钛板材的标准(440MPa、320 MPa),特别是延伸率,LRF Ti试样达到27%,远高于医用TA2延伸率标准中18%的规定。试样的氧含量(0.083%)低于YY0315-1999标准中TA1、TA2的氧含量(0.15%、0.25%)。从拉伸断面扫描电镜照片可以看出断面主要为大小不一的韧窝,可以判断为典型的韧性断裂。杨氏模量(103.7GPa)稍低于TA2的弹性模量(108 Gpa)。扫描电镜(SEM)微观组织照片显示LRF Ti的微观组织结构均匀,无气孔、裂纹等缺陷;α和β相相互交织成网篮状组织。显微硬度值(188.4~206.3)稍高于CP Ti(TA2)的显微硬度值(166.3~181.9)。LRF Ti在室温下循环107次时的疲劳强度极限是250-275MPa,高于TA1的193 MPa和TA2的230 MPa。
     结论:利用纯钛粉末通过LRF技术制备了规格为90mm×30mm×15mm、外表规则光滑、亮白色、低氧含量(0.083%)的LRF Ti试样。LRF Ti试样具有更好的生物力学相容性,机械性能满足牙科植入物用纯钛材的要求,符合生物医学硬组织替代材料的标准。
     第Ⅱ部分LRF Ti的生物安全性评价
     本研究按照标准GB/T 16886.5-2002、YY/T 0279-1995、YY/T 0127.1-93、YY/T 0127.2-93,分别从细胞毒性试验、口腔粘膜刺激试验、溶血试验、急性全身毒性试验和骨内植入试验等方面,综合评价LRF Ti的生物安全性。
     结果:LRF Ti的细胞毒性测试结果为0级,材料缝合处动物口腔颊囊粘膜无病理反应,即对粘膜无刺激反应。溶血率为2.68%,小于5%,不会引起急性溶血。将LRF Ti材料浸提液注射入动物体内,每组动物在不同时间段的体重变化无显著性差异(P>0.05),在72h的观察期内,无急性毒性症状出现。骨内埋植试验结果可见种植体与骨组织接触紧密,周围骨组织无吸收现象。种植体表面有骨陷窝和骨组织形成,周围骨组织内的成骨细胞和成纤维细胞的细胞突向种植体表面伸出,LRF Ti和CP Ti种植体没有明显差别。
     结论:LRF Ti具有优良的生物安全性。
     第Ⅲ部分LRF Ti的生物相容性评价
     通过比较LRF Ti和CP Ti表面的接触角和表面能、小鼠颅骨成骨细胞在试样表面的附着动力学、成骨细胞碱性磷酸酶活性以及细胞在试样表面的形态,评价LRF Ti材料的生物相容性。
     结果表明:LRF Ti的表面能大于CP Ti。在成骨细胞培养的初期,两者的细胞增殖速度无差异;随着细胞培养时间的延长,LRF Ti组的成骨细胞增殖速度快于CP Ti组,碱性磷酸酶的活性增加;细胞形态显示细胞功能活跃,活性增加。
     结论:LRF Ti能够刺激成骨细胞的增值生长,具有良好的生物相容性。第Ⅳ部分LRF Ti的耐腐蚀性能评价
     根据国家标准,通过对比观察LRF Ti和医用钛及钛合金在不同溶液中的金属离子析出情况、应力加载下的耐腐蚀情况,以及氟离子和pH值对电化学行为的影响等,评价LRF Ti材料的耐腐蚀性能。
     结果:在人工唾液、乳酸、2%NaF人工唾液(PH=7)和2%NaF人工唾液(PH=3)中,LRF Ti的钛离子析出量分别是62ng/ml、302ng/ml、24.7μg/ml和156.7μg/ml,低于CP Ti的66.1ng/ml、353ng/ml、33.1μg/ml和295.7μg/ml。氟与钛表面的氧化膜反应形成腐蚀产物Na3TiF6;在2%NaF人工唾液(PH=3)中,钛离子的析出量最大。在应力和氟离子的共同作用下,CP Ti的腐蚀程度比LRF Ti严重。在人工唾液、2%NaF人工唾液(PH=7)和2%NaF人工唾液(PH=3)中,LRF Ti的自腐蚀电位分别为-469mV、-925mV和-943mV,均高于CP Ti的-555mV、-943mV和-956mV;自腐蚀电流密度分别为2.14×10-6 Acm-2、2.65×10-6 Acm-2和4.51×10-6 Acm-2 ,均小于CP Ti的2.18×10-6Acm-2、4.49×10-6Acm-2和6.63×10-6Acm-2;膜电阻(2.77×106?cm2、3.41×105?cm2和4.3×104?cm2)和传递电阻(6.71×104?cm2、2028?cm2和4.4×103?cm2)分别高于CP Ti的膜电阻(1.42×106?cm2、6.65×104?cm2和16.93?cm2)和传递电阻(236.9?cm2、44.1?cm2和2.56×103?cm2)。
     结论:pH值的降低和溶液中氟离子的存在能够加速钛离子的释放。在人工唾液和含氟溶液中LRF Ti耐电化学腐蚀和耐应力腐蚀性能比CP Ti好。
To investigate the feasibility of laser rapid forming titanium(LRF Ti)for medical implant materials,this paper evaluated the mechanical properties, biological safety,biocompatibility and corrosion behavior of LRF Ti according to national standard.
     PartⅠFabrication of pure titanium specimens by LRF technique and the test of mechanical properties
     Pure Ti specimens were fabricated by LRF technique with suitable parameters.The parameters used in the test were:power,2200W;spot diameter, 3mm.The powder was delivered in a gas jet through nozzles coaxially with the laser beam.Powder feeder rate was 4.2g/min.The process was occurred in closed chambers with controlled inert atmospheres(Ar:250L/h, 5-7.5L/min).The layer thickness was 0.5mm.To evaluate the mechanical properties of LRF Ti,the specimens underwent tensile test,microhardness test,chemical composition analysis,microstructure observation and fatigue test.
     Results:The tensile strength and yield strength of LRF Ti were 475 MPa and 383MPa,they were higher than TA2 respectively according to GB/T 13810-1997.The elongation(27%) was far higher than TA2(18%). The oxygen content of LRF Ti was 0.083% and far below TA1(0.15%) and TA2(0.25%) according to YY0315-1999.The fracture surface of tensile specimens was ductile. Yang’s modulus of LRF Ti(103.7GPa) was slightly lower than TA2 (108GPa).The microstructure of LRF Ti was basket -weave structure. The Vickers hardness is 188.4~206.3.The fatigue strength of LRF Ti was 250-275MPa at the end of 107cycles while TA1 and TA2 were 193 and 230 MPa respectively.
     Conclusion: The LRF Ti specimens fabricated completely were silvery with a smooth surface with low oxygen content. The LRF Ti had better mechanical compatibility and the mechanical properties meet the requirement of pure titanium implant materials.
     PartⅡBiological safety test of LRF Ti
     Biological tests were carried out to evaluate the biological safety of LRF Ti for biomedical materials according to standards GB/T 16886.5-2002,YY/T 0279-1995,YY/T 0127.1-93 and YY/T 0127.2-93.The biological tests included Cytotoxicity test, oral mucous membrane irritation test ,hemolysis test, acute systemic toxicity test and bone implant test.
     Results: The cytotoxicity rank of LRF Ti was 0; The oral mucous membrane surround LRF Ti specimens had no pathological reaction and membrane irritation. Hemolysis ratio was 2.68% and fell bellow the standard limits (5% ,YY/T 0127.1-93),LRF Ti didn’t result in hemolysis. The animals had no signs of toxicity during 72 hour after injected with the leaching liquor of LRF Ti,the weights of animals had no statistical difference between different test periods compared to controlled group. The animals had no bone absorption near the LRF Ti implants , the implants contacted bone tissue tightly. There were bone lacunas and new osseous tissue formation on the surface of LRF Ti implants. The synapsis of osteoblasts and fibroblasts stretched to the surface of LRF Ti implants. The reacton of bone tissue surrounded LRF Ti implants had no difference with CP Ti implants in vivo.
     Conclusion: LRF Ti had excellent biological safety and meet the requirement of biological test standard.
     PartⅢBiocompatibility test of LRF Ti
     Cell culture tests in vitro were undertook to evaluate the biocompatibility of LRF Ti. The cell cranium osteoblasts of mouse were used in the experiment. The contact angles and total surface energies of LRF Ti and CP Ti specimens were tested also.
     Results: The total surface energy of LRF Ti sample was higher than CP Ti sample. The cell growth rate had no statistical difference between LRF Ti and CP Ti samples. The multiplication of LRF Ti specimen was faster than CP Ti specimen with the cultivation time increased. The alkaline phosphatase (ALP) activity were increased consequently. The morphology of osteoblast indicated high activity of osteoblast on the surface of LRF Ti specimen.
     Conclusion: LRF Ti stimulated osteoblasts multiplication and had favorable biocompatibility.
     PartⅣThe corrosion behavior of LRF Ti
     Electrochemical test,static immersion test and stress-corrosion test were used to evaluate the corrosion behavior of LRF Ti according to standard. The influence of fluoride and pH value on the corrosion resistance of LRF Ti were also investigated.
     Results:In artificial saliva,1%lactic acid solution,2%NaF artificial saliva (pH=7) and 2%NaF artificial saliva (pH=3),the amounts of Ti ion released from LRF Ti sample(62ng/ml,302ng/ml,24.7μg/ml and 156.7μg/ml) were lower than CP Ti (66.1ng/ml, 353ng/ml, 33.1μg/ml and 295.7μg/ml) respectively;The corrosion products were Na3TiF6. The greatest amounts of metal ion release were observed in 2% NaF artificial saliva (pH=3). LRF Ti had less corrosion products and pitting corrosion than CP Ti in stress-corrosion test. In artificial saliva, 2%NaF artificial saliva(pH=7) and 2%NaF artificial saliva (pH=3),the free circuit potential (Ecorr) of LRF Ti (-469mV,-925mV and-943mV) were higher than those of CP Ti (-555mV,-943mV and-956mV);the current density of LRF Ti (2.14×10-6 Acm-2、2.65×10-6 Acm-2 and 4.51×10-6 Acm-2) were lower than those of CP Ti (2.18×10-6Acm-2、4.49×10-6Acm-2 and 6.63×10-6Acm-2),the film resistance (2.77×106?cm2、3.41×105?cm2 and 4.3×104?cm2)and transfer resistance (6.71×104?cm2、2028?cm2 and 4.4×103?cm2)of LRF Ti were higher than those of CP Ti(1.42×106?cm2、6.65×104?cm2and16.93?cm2)(236.9?cm2、44.1 ?cm2and 2.56×103?cm2)respectively。
     Conclusion: Low pH value and fluoride in the solution could accelerate Ti iron release,LRF Ti had better corrosion resistance for long-term implants than CP Ti.
引文
1、 Bothe RT,Breine U,Davenport HA.Reaction of bone to multiple implants[J].Surg Gynecol Obstel,1940,71:598-602
    2、 Branemark PI, Adell R, Breine U, Hansson BO, Lindstrom J, Ohlsson A.Intraosseous anchorage of dental prostheses:I experimentalstudies[J]. Scand J Plast Reconstr Surg,1969,3(2): 81-100
    3、 Branemark PI,Hansson B,AdellL R, Breine U, Lindstrom J, Ohlsson A. Osseointegrated implants in the treatment of edentulous jaw:experience from a 10~year period [J]. Scand J Reconstr Surg Suppl, 1977,16:1-4
    4、 袁名炎.金属工艺学Ⅱ[M].第 1 版.北京:航空工业出版社,1993:78-79
    5、 M. H. 列兹尼科夫著,郭东红译.高强度钢高温合金加钛合金的切削加工[M].北京机械工业出版社,1980,4~7
    6、 Aparicio C,Olive J . Comparative surface microanalysis of failed Branemark implants[J]. Int J Maxillofac Implants,1992 ,7 :94~103
    7、 Duret F,Blouin JL,Duret B. CAD-CAM in dentistry[J].J Am Dent Assoc, 1988, 117(6):715-20
    8、 Rekow D. CAD/CAM system-what is the state of the art? [J]. J Am Dent Assoc,1991, 122(12):43-48
    9、 Samet N, Resheff B, Gelbard S, Stern N. A CAD/CAM system for the production of metal coping for porcelain-fused-to-metal restoration[J]. J Prosthet Dent, 1995, 73(5):457
    10、川中正雄. CAD/CAM にょゐクラゥンの作制[J]. 齿科材料器械,1991,10(5):660-64
    11、Evans DB.Correcting the fit of implant-retained restorations by electric discharge machining[J].J Prosthetic Dent,1997,7(2):212-5
    12、Chai J, McGivney GP, Munoz CA, Rubenstein JE. A multicenter longitudinal clinical trial of a new system for restorations[J]. J Prosthet Dent, 1997, 77(1):1-11
    13、Contreras EF, Henriques GE, Giolo SR, Nobilo MA.Fit of cast commercially pure titanium and Ti-6Al-4V alloy crowns before and after marginal refinement by electrical discharge machining[J].J Prosthet Dent, 2002, 88(5): 467-472
    14、朱林泉等.快速成型与快速制造技术[M].北京:国防工业出版社,2003.5
    15、Oda Y, Ueno S, Kudon Y. An application of powder metallurgy to dentistry[J]. Bull Tokyo Dent Coll,1995,36(4):175-82
    16、Oda Y,Ueno S,Kudon Y.Fabrication of denture base by sintered titanium alloys[J]. Quintessence of Dental Technology,1998, 23(5):569-75
    17、Dewidar MM, Lim J.K.Properties of solid core and porous surface Ti-6Al-4V implants manufactured by powder metallurgy.Journal of Alloys and Compounds,in press
    18、Henriques AR,Bellinati CE,Silva RM Production of Ti–6%Al–7%Nb alloy by powder metallurgy (P/M) [J].Journal of Materials Processing Technology,2001,118(1-3): 212- 215
    19、巢永烈,丁旭艳,梁星,韩晓莉.粉末冶金制作钛合金试件的力学性能测试[J].上海口腔医学,2001,10(2):119-121
    20、梁星,丁旭艳,巢永烈,韩晓莉.真空烧结粉末冶金法制作的钛合金试件的显微结构观察[J].口腔材料器械杂志.2000,9(3):131-133
    21、Haikel Y, Wittenmeyer W. A new method for the quantitative analysis of a endodontic microleakage[J]. J Endodon ,1999 ,25 :172
    22、FV.莱内尔著,殷声,赖和怡译.粉末冶金原理和应用[M].北京:冶金工业出版社,1989
    23、Yutaka ODA,Satoshi U,Yasuyuki K.An application of powder metallurgy to dentistry[J ]. Bull Tokyo Dent Cull,1995,36(4) :175-182.
    24、中国机械工业教育协会组编.金属工艺学[M].第 1 版.北京:机械工业出版社,2001.75
    25、Waterstrat RM, Rupp NW,Franklin O.Production of a cast titanium base partial denture[J].J Dent Res,1978,57:254
    26、Nakajima H . Titanium in dentistry :Development and research in the USA[J ].Dental Materials Journal ,1996 ,15 :771
    27、Watanabe I. Castability of titanium and dental alloys[J ] . J Dent Res,1997,76 :402
    28、徐君武.现代口腔修复学[M].第1版.北京:高等教育出版社, 1997:429,479
    29、Takahashi J,Zhang JZ,Okszaki M.Castability and surface hardness of titanium cast platesobtained from experimental phosphate-bonded silica molds[J].Dent Mater J,1994,l2:238-244
    30、Chai T,Stein RS.Porosity and accuracy of multiple-unit titanium castings[J].J Prosthet Dent, 1995,73(6):534-541
    31、Watanabe I,Watkins JH,Nakajima H.Effect of pressure difference on the quality of titani- um castings[J].J Dent Res,1997,76(3):773-779
    32、Detlef K,Chee KC.Rapid prototyping issues in the 21st century[J].Computers in Industry,1999,39(1):3~10
    33、颜永年,张人估.基于RP的早期、多回路反馈模具快速制造系统[J].中国机械工程,1999,10(9):994~997
    34、张伟,洪国栋.成形能量场与离散化堆积成形一般模型初探[J].中国机械工程,1997, 8(5):18~20
    35、Urso PS.Stereolithographic anatomical modeling process.U.S.Patent No:5741215. April.21.1998,
    36、Bianchi SD,Ramieri G, Gioanni PP.The validation of stereolithographic amatomical replicas: the authorgs' own experience and a review of the literature. Radiol Med Torino,1997,94(5):503-10
    37、Barker TM, Earwaker WJ, Lisle DA. Accuracy of stereolithographic models of human anatomy. Australas Radiol,1994,38(2):106-11
    38、Hibi H, Sawaki Y, Ueda M. Three-dimensional model simulation in orthognathic surgery. Int J Adult Orthodon Orthognath Surg,1997,12(3):226-32
    39、Maeda Y, Minoura M, Tsutsumi S, Okada M, Nokubi T.A CAD/CAM system for removable denture. Part I: Fabrication of complete dentures. Int J Prosthodont, 1994,7(1):17—21
    40、金树人,姚月玲,高 勃,王忠义.应用快速成型法制作磨牙树脂全冠[J].第四军医大学学报, 2003, 24(8):700-702
    41、高勃,谭永生,李延民,黄卫东,王健,王忠义.应用激光近形制造方法制作口腔修复体的基础研究-用LOM 法由层析测量数据制作实体牙颌模型[J].实用口腔医学杂志,2000,16(5):341-142
    42、高勃,谭永生,卿候,李延民,黄卫东,王健.应用激光快速成型方法复制下颌骨——(2)用LOM由三维重建数据制作下颌骨[J].实用口腔医学杂志,2000,16(2):140-142
    43、邱明国,张绍祥,谭立文,刘正津,王欲甦,邓俊辉,唐泽圣,朱飞,何鹏.应用激光快速成形分层实体制造方法复制颞骨[J].第三军医大学学报.2002,24(8):910-912
    44、黄雪梅,焦 婷,林艳萍.应用CAD/CAM 与快速成形技术重建颌面器官[J].生物工程医学杂志,2005,22(2):320-323
    45、Zein I, Hutmacher DW, Tan KC, Teoh SH. Fused deposition modeling of novel scaffold architectures for tissue engineering applications. Biomaterials, 2002, 23(4):1169–85
    46、Hutmacher DW, Schantz T, Zein I, Ng KW, Teoh SH, Tan KC. Mechanical properties and cell cultural response of polycaprolactone scaffolds designed and fabricated via fused deposition modeling[J]. J Biomed Mater Res,2001,55(2):203–16
    47、Kim SS, Utsunomiya H, Koski JA, Wu BM, Cima MJ, Sohn J, Mukai K, Griffith LG, Vacanti JP.Survival and function of hepatocytes on a novel three-dimensional synthetic biodegradable polymer scaffold with an intrinsic network of channels[J]. Ann Surg,1998,228(1):8–13
    48、Zeltinger J, Sherwood JK, Graham DA, Mueller R, Griffith LG.Effects of pore size and void fraction on cellular adhesion,proliferation, and matrix deposition[J]. Tissue Eng, 2001, 7(5):557–72
    49、Lam CXF, Mo XM, Teoh SH. Scaffold development using 3D printing with a starch-based polymer[J].Mater Sci Eng C,2002,20(1–2):49–56
    50、Housholder R,Molding process, US Patent 4247508, filed December3,1979, published January 27,1981
    51、Deckard C.,Methods and apparatus for producing parts by selective laser sintering,US Patent 4863538, filed October 17,1986, published September 5,1989
    52、Grenda Ed,Worldwid e Guide to Rapid Prototyping, http://home.att.net/_castleisland/.
    53、Tolochko N,Mozzharov S, Laoui T. Selective laser sintering of single- and two-component metal powders[J].Rapid Prototyping Journal,2003,9(2):68–78
    54、Kruth JP,WangX ,Laoui T. Lasers and materials in selective laser sintering[J].AssemblyAutomation,2003,23(4):357–371
    55、Barlow JW ,Lee CH,Crawford RH.Method and system for fabricating artificial bone implants. U.S. Patent No.5639402.June 17.1997
    56、Barlow JW ,Lee CH,Crawford RH.ArtificiaI bone implants.U.S. Patent App1.No.09/765801.June 28.2001
    57、Harlan NR,Reyes R,Bourell DL.Titanium castings using laser—scanned data and selective laser—sintered zirconia molds[J].Journal of Materials Engineering and Performance,2001,10:410
    58、朱晓瑜,王忠义,高 勃,王晓波,曹健.应用选择性激光烧结快速成形方法复制下颌骨三维实体模型[J].牙体牙髓牙周病学杂志,2005,15(3):144-147
    59、Kruth JP, Wang X, Laoui T,. Lasers and materials in selective laser sintering,Keynote paper,in: Proceedings of the Third Laser Assisted Net Shape Engineering,LANE 2001,August,Erlangen,Germany, pp. 3–24
    60、Morgan RH. High density net shape components by direct laser re-melting of single-phase powders[J].J Mater,2002,37(15):3093–3100
    61、Wehmollera M, Warnkeb PH, Zilianc C.Implant design and production—a new approach by selective laser melting. International Congress Series,2005, 1281: 690–695
    62、Hutfless J,Approaching new markets with near net shape technologies,in: Proceedings of the Fourth Laser Assisted Net Shape Engineering, LANE 2004,vol. 1,September 2004,Erlangen,Germany,pp.79–92
    63、Abe F, Osakada K, Shiomi M. The manufacturing of hard tools from metallic powders by selective laser melting[J].Journal of Materials Processing Technology, 2001,111(1-3):210–213
    64、Abe F, Santos EC, Kitamura Y.Influence of forming conditions on the titanium model in rapid prototyping with the selective laser melting process[J]. Journal of Mechanical Engineering Science, Proceedings of IMechE,2003, 217C(1): 119–126
    65、Santos EC, Osakada K, Shiomi M.Microstructure and mechanical properties of pure titanium models fabricated by selective laser melting[J]. Journal of Mechanical Engineering Science, Proceedings of ImechE,2004,218C(7):711–719
    66、Keicher DM,Smugeresky JE,RomeroJA.Using the laser engineered net shaping (LEN S) process to produce complex components from a CAD solid model.SPIE,2293: 91—971
    67、Gremaud M,Wagmiere JD,Zryd A. Laser metal forming: process fundamentals[J]. Surface Engineering,1996,12(3):251—2591
    68、Pham DT, Gault RS. A comparison of rapid prototyping technologies[J].Int J Mach Tools Manuf,1998,38(10–11):1257–87
    69、Kobryn PA, Moore EH, Semiatin SL. The effect of laser power and traverse speed on microstructure, porosity, and build height in laser deposited Ti–6Al–4V[J]. Scr Mater, 2000,43(4):299–305
    70、Peng L, Taiping Y, Sheng L. Direct laser fabrication of nickel alloy samples[J]. Int J Mach Tools Manuf,2005,45(11):1288–94
    71、Jeng JY, Peng SC, Chou CJ. Metal rapid prototype fabrication using selective laser cladding technology[J]. Int J Adv Manuf Technol,2000,16(9):681–7
    72、Lasform,Aeromet,http://www.aerometcorp.com/
    73、Li YM,Huang WD,Feng LP.The multi-layer laser cladding of Ni60alloy[J].Acta Metall,1999,12(5):1025-1028
    74、冯莉萍,黄卫东,李延民,陈静,林鑫,丁国陆.基材晶体取向对激光多层熔覆微观组织的影响[J].中国激光,2001,10:256-261
    75、Zhang K,Liu WJ,Shang XF.Research on the processing experiments of laser metal deposition shaping[J]. Optics & Laser Technology,2007,39(3):549-557
    76、高勃,李延民,陈静黄卫东,王忠义.应用激光近形制造方法制作口腔修复体的基础研究 —Rene95 合 金 粉 末 激 光 近 形 制 造 件 组 织 与 结 构 [J]. 实 用 口 腔 医 学 杂志,2002,18(6):483-487
    77、高勃,李延民,陈静,黄卫东,王忠义.应用激光近形制造方法制作口腔修复体的基础研究 ——Rene95 合 金 粉 末 近 形 制 造 件 的 机 械 性 能 [J]. 实 用 口 腔 医 学 杂志,2004,20(3):263-265
    78、高勃,严晓东,陈静,汤慧萍,黄瑜.激光立体成形Ti—Zr合金腐蚀性能研究[J]. 实用口腔医学杂志, 2006,22(3):325-328
    79、高 勃,严晓东,王忠义,陈静.工艺参数的匹配对牙科Ti-Zr合金激光立体成形性的影响[J].第四军医大学学报,2005,26(21):1927-1929
    80、严晓东,高 勃,王忠义,陈静.钛锆合金粉末激光立体成形试件的机械性能[J].医学研究生学报,2006,19(9):780-782
    81、严晓东,高 勃,陈静,王忠义.钛合金口腔修复体的激光快速成形制备技术中钛粉末利用率的研究[J].口腔颌面修复学杂志,2005,6(1):65-67
    82、严晓东,高 勃,王忠义,陈静.MTT法评价牙科激光快速成形钛锆合金的细胞毒性[J].临床口腔医学杂志,2006,22(5):261-26
    83、王晓波.冠、桥及全口钛基托的激光立体成形制备研究[D].西安:第四军医大学博士论文,2005
    84、Lewis GK, Schlienger E. Practical considerations and capabilities for laser assisted direct metal deposition[J]. Materials and Design,2000,21: 417-423
    85、Paul CP,Jain A, Ganesh P,Laser rapid manufacturing of Colmonoy-6 components[J]. Optics and Lasers in Engineering,2006,44:1096–1109
    86、Paul CP,Ganesh P,Mishra SK.Investigating laser rapid manufacturing for Inconel-625 components[J].Optics & Laser Technology,2007,39(4):800-805
    87、Matsumoto M, Shiomi M, Osakada K.Finite element analysis of single layer forming on metallic powder bed in rapid prototyping by selective laser processing[J]. International Journal of Machine Tools & Manufacture,2002,42:61 –67
    88、杨海欧,陈静,李延民,冯莉萍,林鑫,黄卫东.Rene95 高温合金激光快速成形试样的力学性能[J].稀有金属材料与工程,2003,32(4):276-279
    89、Abbott DH, Arcella FG. Laser Forming Titanium Components[J]. Advanced Materials & Processes,1998,(5):29-30
    90、Hollander DA, Walter MV, Wirtz TT.Structural, mechanical and in vitro characterization of individually structured Ti–6Al–4V produced by direct laser forming[J].Biomaterials,2006, 27:955–963
    91、Wu X,Sharman R,Mei J,et al. Direct laser fabrication and microstructure of a burn-resistant Ti alloy[J].Materials & Design,2002,23(3):239-247
    92、Susan DF,Puskar JD,Brooks JA,et al. Quantitative characterization of porosity in stainless steel LENS powders and deposits[J]. MaterialsCharacterization,2006,57(1):36-43
    93、冯莉萍,林 鑫,陈大融李延民,杨海欧,材料对激光多层涂覆定向凝固显微组织的影响[J].航空材料学报,2004,24(1):7-11
    94、陈静,杨海鸥,杨健,黄卫东.TC4钛合金的激光快速成形特性及熔凝组织[J].稀有金属快报, 2004,23(4):33-37
    95、Wu XH,Liang J,Mei JF.Microstructures of laser-deposited Ti–6Al–4V[J]. Materials and Design,2004,25:137–144
    96、Lee EU,Vasudevan AK,Sadananda K.Effects of various environments on fatigue crack growth in Laser formed and IM Ti–6Al–4V alloys[J]. International Journal of Fatigue,2005,27:1597–1607
    97、Watari F,Yokoyama A,Omori M.Biocompatibility of materials and development to functionally graded implant for bio-medical application[J].Composites Science and Technology,2004,64 (6):893-908
    98、Pimenova NV, Starr TL. Electrochemical and corrosion behavior of Ti–xAl– yFe alloys prepared by direct metal deposition method[J]. Electrochimica Acta, 2006,51:2042–20491
    99、Majumdar JD, Pinkerton A,Liu Z,Manna I,Li L.Mechanical and electrochemical properties of multiple-layer diode laser cladding of 316L stainless stell[J].Applied Surface Science,2005,247:373-377
    100、 吴江,高勃,谭华,姚月玲,陈静,王晓波.激光快速成形技术制造全口义齿钛基托[J].中国激光,2006, 33(8):1139-1142
    101、 GB/T 228-2002 金属材料 室温拉伸试验方法
    102、 GB 8653 金属杨氏模量、弦线模量、切线模量和泊松比试验方法(静态法)
    103、 GB/T 4698-1996 海绵钛、钛及钛合金化学成分分析方法
    104、 GB/T 4342-1991 金属显微维氏硬度试验方法
    105、 YY 0315-1999 纯钛人工牙种植体
    106、 GB/T 13810-1997 外科植入物用钛及钛合金加工材
    107、 ASTME 466-96 金属轴向疲劳试验方法.
    108、 陈治清.口腔材料学[M].第 2 版, 北京:人民卫生出版社,2001:19-69, 27,153
    109、 Tillitson EW,Craig RG,Peyton FA.Friction and Wear of Restorative DentalMaterials[J].J Dent Res,1971;50(1):149-154
    110、 马军萍.非贵金属、纯钛及烤瓷材料磨耗性能的实验研究[D].西安:第四军医大学硕士论文,2001
    111、 http://www.oceanint.com/content3/ Ocean International Suppliers, products in 6% Molybdenum, Duplex, Super Duplex, and Titanium.
    112、 Piattelli A, Scarano A, Piattelli M, Vaia E, Matarasso S. Hollow implants retrieved for fracture: a light and scanning electron microscope analyses of 4 cases[J]. J Periodontol,1998,69:185–9.
    113、 ckert SE, Meraw SJ, Cal E, Ow RK. Analysis of incidence and associated factors with fractured implants: a retrospective study[J].Int J Oral Maxillofac Implants,2000,15 (5): 662-7
    114、 Morgan MJ, James DF, Pilliar RM. Fractures of the fixture component of an osseointe- grated implant[J]. Int J Oral Maxillofac Implants,1993,8:409–14.
    115、 Piattelli A, Piattelli M, Scarano A, Montesani L. Light and scanning electron microsco- pic report of four fractured implants[J].Int J Oral Maxillofac Implants,1998,13:561–4.
    116、 Smith DC,Williams DF.Biocompatibility of Dental Materials.Vol IV.Boca Raton, Flo- ride: CRC Press Inc.1982:43-49
    117、 国家医药管理局 中华人民共和国医药行业标准,口腔材料生物学评价 1995.
    118、 GB/T 16886.1-2001 医疗器械生物学评价 第一部分:评价与试验
    119、 GB/T 16886.5-2002 医疗卫生器械生物学评价第五部分:细胞毒性试验:体外法
    120、 Mosmann T.Rapid calorimetric assay for cellar growth and survival;Application to pro- liferation and cytotoxicity assay[J].J Immunol Methods,1993,65:55
    121、 Sabita Stivastava,Stephen DG.Screening of in vitro cytoxicity by the adhesive test[J]. Biomaterials,1990;11(3):133
    122、 YY/T 0279-1995 口腔材料生物试验方法 口腔粘膜刺激试验
    123、 YY/T 0127.1-1993 口腔材料生物试验方法 溶血试验
    124、 YY/T 0127.2-1993 口腔材料生物试验方法 静脉注射急性全身毒性试验
    125、 巢永烈,梁星.种植义齿学[M].北京:北京医科大学中国协和医科大学联合出版社,1999,24,30~31
    126、 YY/T 0127.4-1998 口腔材料生物学评价 第 2 单元:口腔材料生物试验方法 骨埋植试验进行组织学分级
    127、 Patrick D , Zosky J , luberk. The longitudinal clinic efficacy of Core - Vent dental implants : a five year report[J]. J Oral Implant,1989,15(2) :95~103
    128、 Buser D , Weber HF , Donath K . Soft tissue reaction to non - submerged unloaded titanium implants in beagle dogs[J]. J Peridontol ,1992 ,63(3) :226~236
    129、 Roessler S, Born R, Scharnweber D, Worch H, Sewing A, Dard M. Biomimetic coatings functionalized with adhesion peptides for dental implants[J].J Mater Sci Mater Med,2001,12(10-12):871
    130、 Brunette DM. The effects of implant surface topography on the behavior of cells[J].Int J Oral Maxillofac Implants,1988,3(4):231
    131、 Kirkpatrick CJ, Wagner M, Kohler H, Bittinger F, Otto M, Klein CL. The cell and mo- lecular biological approach to biomaterial research: a perspective[J]. J Mater Sci Mater Med,1997,8(3):131
    132、 Ziats NP,Miller KM,Anderson JM.In vitro and in vivo interactions of cells with biom- aterials[J].Biomaterials,1998,9:5
    133、 Rupp F,Scheideler,L Rehbein D, Axmann D,Geis-Gerstorfer J.Roughness induced dy- namic changes of wettability of acid etched titanium implant modifications[J]. Biomaterials ,2004,25: 1429–1438
    134、 Goodman SB, Davidson JA,Fomasier VL.Histological reaction to titanium alloy and hydroxyapatite particles in the rabbit tibia[J]. Biomaterials,1993,10(14):723-728
    135、 Glantz PO, Bjorlin G, Sundstrom B.Tissue reactions to some dental implant materials. An in vivo study in white rats[J]. Odontol Revy,1975,26(3):231-8.
    136、 Buser D, Schenk RK, Steineman N. Influence of surface characteristics of titanium im- plants. A histomorphometric study in miniature pigs[J].J Biomed Mater Res,1991, 25: 889 – 902.
    137、 Ronold HJ, Lyngstadaas SP, Ellingsen JE. Analysing the optimal value for titanium implant roughness in bone attachment using a tensile test[J]. Biomaterials, 2003, 24:4559–4564
    138、 Santis D, Guerriero C, Armato U.Adult human bone cells from jaw bones cultured on plasma-sprayed or polished surfaces of titanium or hydroxyapatite discs[J]. J Mater Sci Mater Med,1996,7:21–8.
    139、 Martin JY, Schwartz Z, Hummert TW. Effect of titanium surface roughness on proli- feration, differentiation, and protein synthesis of human osteoblast-like cells (MG63) [J].J Biomed Mater Res,1995,29:389–401.
    140、 Itakura Y,Kosugi A ,Sudo H.Development of a new system for evaluating the biocomp- atibility of implants materials using an osteogene cell line[J]. J Biomed Mater Res,1988, 22:613
    141、 司徒镇强,吴军正.细胞培养[M]. 陕西:世界图书出版牡,l996:111~116
    142、 张春宝,陈富林,张 蓉,马轩祥,宋应亮.Ti 一 75 合金对人成骨细胞的生长、增殖和功能分化的影响[J].实用口腔医学杂志,2000,16(1):24-26
    143、 Ku CH, Pioletti DP, Browne M, Gregson PJ.. Effect of different Ti–6Al–4V surface treatments on osteoblasts behaviour[J]. Biomaterials,2002,23(6):1447–54.
    144、 Schakenraad JM, Busscher HJ,Wildevuur CR. The influence of substratum surface free energy on growth and spreading of human fibroblasts in the presence and absence of serum proteins[J].J Biomed Mater Res,1986,20(6):773-784
    145、 Webb K, Hlady V, Tresco PA. Relative importance of surface wettability and charged functional groups on NIH 3T3 fibroblast attachment, spreading, and cytoskeletal organization[J].J Biomed Mater Res,1998;41(3):422
    146、 Redey SA, Michel N, Bernache-Assollant D.Behavior of human osteoblastic cells on stoichiometric hydroxyapatite and type A carbonate apatite: role of surface energy[J]. J Biomed Mater Res,2000;50:353–64.
    147、 Hallab NJ , Bundy KJ , O′Connor K. Evaluation of metallic and polymeric biomaterial surface energy and surface roughness characteristics for directed cell adhesion [J].Tissue Engineering ,2001,7 (1) :55
    148、 Feng B,Weng J,Yang BC.Characterization of surface oxide films on titanium and adhesion of osteoblast[J].Biomaterials,2003,24(25):4663-4670
    149、 Schakenraad JM, Busscher HJ, Wildevuur CR.Thermodynamic aspects of cell sprea -ding on solid substrata[J]. Cell Biophys,1988;13:75–91.
    150、 Meyer U, Szulczewski DH, Moller K.Attachment kinetics and different -tiation of osteoblasts on different biomaterials[J]. Cell Mater,1993,3:129–40.
    151、 Bottino MC, Coelho PG, Yoshimoto M. Histomorphologic evaluation of Ti–13Nb –13Zr alloys processed via powder metallurgy. A study in rabbits[J]. Materials Science and Engineering: C, 2006,In Press
    152、 刘道新.材料的腐蚀与防护[M].第 1 版.西安:西北工业大学出版社,2006,2
    153、 郭天文.牙科铸钛理论和技术[M].第 1 版.北京世界图书出版公司,1997,3-4
    154、 Pazzaglia UE,Minoia C,Gualtieri G, Gualtieri I, Riccardi C, Ceciliani L. Metal ions in body fluids after arthroplasty[J]. Acta Orthop Scand,1986,57:415–8
    155、 Long M,RACK HJ.Titanium alloys in total Joint replacement—a materials science perspective [J]. Biomaterials,1998,19:1621~1639.
    156、 Bliy RI.titanium wear debris in fielded cemented total hip arthroplasty [J]. J Arthroplasty,1992,7(3):3I5-323.
    157、 JB/T 7901-1999 金属材料实验室均匀腐蚀全浸试验方法。
    158、 ISO 10271:2001(E) Dental metallic materials-Corrosion test methods.
    159、 ISO TR 10271.Dentisty-determination of Tarnish and Corrosion of Metals and Alloys.Switzarland,1993:3
    160、 Imam MA,Fraker AC. Titanium alloys as implant materials. In:Brown SA,Lemons JE,editors. Medical applications of titanium and its alloys: the material and biological issues,ASTM STP1272. Philadelphia: American Society for Testing and Materials,1996:3–16.
    161、 Jacobs JJ,Silverton C, Hallab NJ, Skipor AK, Patterson L, Black J, Galante JO. Metal release and excretion from cementless titanium alloy total knee replacements[J]. Clin Orthop Relat Res,1999;358:173–80.
    162、 Jacobs JJ, Skipor AK, Black J, Urban R, Galante JO. Release and excretion of metal in patients who have a total hip-replacement component made of titanium-base alloy.J Bone Joint Surg Am. 1991 Dec;73(10):1475-86.
    163、 Browne M,Gregson PJ. Surface modification of titanium alloy implants[J]. Biomater- ials,1994,15:894–8.
    164、 Jandhyala BS,Hom GJ.PhysiologicaL and pharmacological properties of vanadium[J]. Life Sci,1983,33:1325
    165、 Okazaki Y, Tateishi T, Ito Y. Corrosion resistance of implant alloys in pseudo physic- ological solution and role of alloying elements in passive films[J]. Mater Trans JIM, 1997;38:78–84.
    166、 Imam MA, Fraker AC.Titanium alloys as implant materials. In: Brown SA, Lemons JE, editors. Medical applications of titanium and its alloys: the material and biological iss- ues, ASTM STP 1272. philadelphia: American Society for Testing and Materials; 1996. p. 3–16
    167、 Okazaki Y,Rao S,Asao S.Effects of Ti,Al and V concentrations on cell viability[J]. MaterTrans JIM,1998;39:1053–62
    168、 Jacobs JJ, Skipor AK, Black J, Urban R, Galante JO. Release and excretion of metal in patients who have a total hipreplacement component made of titanium-base alloy[J]. J Bone Joint Surg Am,1991,73(10):1475-86.
    169、 Agins HJ, Alcock NW, Bansal M, Salvati EA, Wilson PD Jr, Pellicci PM, Bullough PG. Metallic wear in failed titanium-alloy total hip replacements[J]. J Bone Surg Am,1988; 70-A:347–56
    170、 Wang JY,Wicklund BH,Gustilo RB, Tsukayama DT. Titaniurn, chromium and cobalt ions modulate the release of boneassociated cytokines by human monocytes/macro- phages in vitro[J]. Biomaterials,1996,17:2233-2240
    171、 Okazaki Y, Nishimura E. Comparison of metal release from metallic biomaterials in Vitro[J]. Biomaterials, 2005,26:11-21
    172、 Koike M,Nakamura S,Fujii H. In vitro assessment of release from titanium by immer- sion tests[J]. J Jpn Prosthodont Soc,1997,41:675–9.
    173、 Wisbey A,Gregson PJ,Peter LM,Tuke M. Effect of surface treatment on the dissolution of titanium-based implant materials[J].Biomaterials,1991,12:470–3.
    174、 Huang HH,Chiu YH,Lee TH, Wu SC,Yang HW, Su KH,Hsu CC. Ion release from NiTiorthodontic wires in artificial saliva with various acidities[J]. Biomaterials,2003,24: 3585–92.
    175、 Pr?bster L, Lin W, Hüttemann H. Effects of fluoride prophylactic agents on titanium surfaces[J]. Int J Oral Maxillofac Implants,1992;7:390.
    176、 Pearson. Hard and soft acids and basis. Stroudsburg: Dowden,Hutchinson and Rors, 1973.
    177、 Eckert SE, Meraw SJ, Cal E, Ow PK. Analysis of incidence and associated factors with fractured implants: a retrospective study[J].Int J Oral Maxillofac Implants,2000,15(5): 662-667
    178、 Yokoyama K,Ichikawab K,Murakami H, Miyamoto Y,Asaoka K.Fracture mechanisms of retrieved titanium screw threadin dental implant[J].Biomaterials,2002,23:2459–2465
    179、 Cook SD, Thomas KA, Harding AF, Collins CL, Haddad RJ,Milicic M,Fischer WL. The in vivo performance of 250 internal fixation devices: a follow-up study[J]. Biomaterials,1987,8:177–84
    180、 Dall DM, Learmonth ID, Solomon MI. Fracture and loosening of charnley femoral stems[J]. J Bone Jt Surg,1993,75-B:259–65
    181、 GB/T 15970.1-1995 金属和合金的腐蚀 应力腐蚀试验第 1 部分:试验方法总则
    182、 GB/T 15970.2-2000 金属和合金的腐蚀 应力腐蚀试验第 1 部分:弯梁试样的制备和应用
    183、 GB/T 16545-1996 金属和合金的腐蚀 腐蚀试样上腐蚀产物的清除
    184、 GB/T 18590-2001 金属和合金的腐蚀 点蚀评定方法
    185、 Lucas LC,Lemons JE.Biodegradation of restorative metallic systems[J]. Adv Dent Res,1992,6 :32
    186、 Yokoyama K,Kaneko K,Miyamoto Y.Fracture associated with hydrogen absorption of sustained tensile-loaded titanium in acid and neutral fluoride solutions[J].Journal of Biomedical Materials Research Part A,2004,68A(1):150-158
    187、 Yokoyama K,Kaneko K,Moriyama K.Delayed fracture of Ni-Ti superelastic alloys in acidic and neutral fluoride solutions[J].Journal of Biomedical Materials Research Part A,2004,69A(1):105-113
    188、 Kononen MH, Lavonius ET, Kivilahti JK.SEM observations on stress corro- sion cracking of commercially pure titanium in a topical fluoride solution[J]. Dent Mater, 1995,11(4): 269-272.
    189、 Yokoyama K, Ogawa T,Asaoka K.Hydrogen absorption of titanium and nickel- titanium alloys during long-term immersion in neutral fluoride solution[J].Journal of Biomedical Materials Research Part B: Applied Biomaterials,2006,78B(1):204-210
    190、 Yokoyama K,Kaneko K,Moriyama K.Hydrogen embrittlement of Ni-Ti superelastic alloy in fluoride solution[J].Journal of Biomedical Materials Research Part A,2003,65A(2):182-187
    191、 Toumelin-Chemla F,Rouelle F,Burdairon G. Corrosive properties of fluoride- containing odontologic gels against titanium. J Dentistry,1996,24:109-115
    192、 Schiff N, Grosgogeat B, Lissac M ,Dalard F. Influence of fluoride content and pH on the corrosion resistance of titanium and its alloys. Biomaterials, 2002, 23(9): 1995-2001.
    193、 Reclaru L, Meyer JM. Effects of fluorides on titanium and other dental alloys in dentistry. Biomaterials, 1998,19: 85-92.
    194、 Nakagawa M, Matsuya S, Shiraishi T,Ohta M. Effect of fluoride concentration and pH on corrosion behavior of titanium for dental use. J Dent Res, 1999 ,78(9):1568-72.
    195、 扈显琦,梁成浩.交流阻抗技术的发展与应用.腐蚀与防护,2004,25(2):57-60
    196、 Hurlen T, Wilhelmsen W. Passive behavior oftitanium.ElectrochimActa,1986,31:1139– 46.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700