用户名: 密码: 验证码:
缝洞型介质等效连续模型油水两相流动模拟理论研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
缝洞型介质存在广泛,在流体力学、材料科学、生物科学和化学科学中,许多问题的研究对象都具有缝洞型介质的特征,如缝洞型碳酸盐岩油气储层、地下喀斯特含水层、生物组织结构等。缝洞型介质由于含有基岩孔隙和丰富的缝洞结构,介质类型多,尺度差别大,流动规律复杂,流动模拟困难,传统的连续介质理论已不适用,有必要开展缝洞型介质的流动模拟研究。等效连续介质模型结合了离散介质模型能够准确描述缝洞型介质中的复杂流动的特点,并可沿用经典的连续介质渗流理论进行分析,在理论及求解方法上均具有雄厚的经验和基础,本论文对等效连续介质模型在缝洞型介质流动模拟中的应用展开研究。首先,建立了复杂多尺度介质等效渗透率张量求解的等效原则和计算原理,分别对裂缝型介质和缝洞型介质的等效渗透率张量确定方法进行了研究。建立了考虑基岩渗透性和不同交界面条件(包括连续边界条件、Beavers-Joseph滑移速度边界条件和Beavers-Joseph-Saffman滑移速度边界条件)的广义立方定律和单裂缝多孔介质的等效渗透率理论计算公式;基于单裂缝多孔介质渗透特性的研究结果,提出了较经典的立方定律更加准确和高效的裂缝预处理方法;将裂缝预处理方法运用到裂缝型介质等效渗透率张量求解的等效流动数学模型中,并采用边界元方法求解数学模型;在此基础上,根据所建立的裂缝型介质表征单元体积的确定方法,对等效连续模型的有效性判定进行了研究;针对缝洞型介质,建立了基于裂缝预处理方法和缝洞型介质网格块镜像反映处理方法的缝洞型介质等效流动数学模型,采用有限元-混合有限元耦合求解方法求解数学模型,从而得到缝洞型介质的等效渗透率张量;利用等效渗透率张量表征的连续介质体等效替换原缝洞型介质体,形成新的等效研究区域。其次,建立了全张量渗透率等效连续介质单相及两相流动模拟理论与方法,分别采用有限元方法和混合有限元方法求解单相和两相流动数学模型。最后,给出了缝洞型介质等效流动模拟数值实例的研究,验证论文所建立的缝洞型介质等效连续模型流动模拟理论的有效性和可靠性。本研究丰富了等效连续介质模型理论,拓宽其适用范围。研究结果为缝洞型介质流动分析的参数确定和规律研究提供了理论依据,是目前可以解决缝洞型介质油水两相流问题技术上可行的有效方法。
Fractured-vuggy media (FVM) occurs extensively in the field of fluid mechanics, materials sciences, biomedical science and chemistry, the study objects of many scientific problems are characteristic of FVM, such as carbonate formation of fractured-vuggy oil-gas reservoirs, underground Karst aquifers and biological tissues. Modeling and numerical simulation of fluid flow in FVM is a challenging issue due to the co-existence of multi-scale void spaces filled with different fluids and the complexity of the topology configuration, which results in the conventional continuum theory is not suitable for modeling fluid flow in this kind of media, accordingly it is necessary to develop a new methodology for modeling fluid flow in FVM more accurately. Equivalent continuum model (ECM) is proposed for estimating the equivalent permeability tensor (EPT), an equivalent intrinsic property of the FVM, and modeling two-phase fluid flow considering full tensorial permeability, integrating complexity of the flow calculation offered by continuum model with the realism of fracture and vug systems as captured by discrete model, this thesis presented the methodology of the equivalent continuum model for modeling fluid flow in FVM. First, methods of the determination of the equivalent permeability tensor (EPT) of fracture-vug-media block depending on the equivalent principle of ECM and basic calculation theory of EPT we presented are developed. A coupled Darcy-Stokes model is developed to describe the flow in single- fractured porous media. General cubic law and equivalent permeability considering the matrix permeability is proposed by applying classical continuous boundary conditions, Beavers–Joseph slipping velocity boundary conditions and Beavers–Joseph-Saffman slipping velocity boundary conditions respectively. Based on the research of permeability properties of single-fractured porous media, pretreatment of fractured media is developed to replace each fracture and surrounding porous media with continuous media characterized by equivalent permeability calculated by the theoretical formula we proposed for simplicity and efficiency of the problem; The equivalent-flow mathematical model considering the pretreatment of fractured media is established for calculating EPT of fractured media with the boundary element method; The methodology for efficiency decision of ECM is presented to predict the representative element volume (REV) of fractured reservoirs by calculating EPT; According to the structure of FVM and the flow characteristic in variable-scale space, FVM is divided into porous flow regions and free flow regions(containing fractures and vugs) governed by Darcy and Stokes equations with the Beavers–Joseph–Saffman boundary condition on the interface. The operation of two-step mirror imaging is implemented to any original block with asymmetric boundaries, so as to form new grid block with symmetric boundaries subject to periodic boundary conditions, finite-element method coupled with mixed finite-element method is used to solve the model to get the EPT of FVM block. Second, the mathematical models considering full tensorial permeability for single phase flow or two phase flow are presented and solved via finite element method and mixed finite element method respectively. Last, several numerical examples of modeling fluid flow in FVM were presented to demonstrate the validity and efficiency of our method. This research enhances the application scope of ECM. The research result provides a theoretical evidence to determine the parameters when analyzing the flow in FVM, which offer a feasible approach for modeling oil-water two-phase flow in FVM technically.
引文
[1]吕爱民.碳酸盐岩缝洞型油藏油藏工程方法研究[D].东营:中国石油大学, 2007.
    [2]王建坡,沈安江,蔡习尧,等.全球奥陶系碳酸盐岩油气藏综述[J].地层学杂志, 2008, 32(4): 363-373.
    [3]罗平,张静,刘伟,等.中国海相碳酸盐岩油气储层基本特征[J].地学前缘, 2008, 15(1): 36-50.
    [4]江怀友,宋新民,王元基,等.世界海相碳酸盐岩油气勘探开发现状与展望[J].海洋石油, 2008, 28(4): 6-14.
    [5]谢锦龙,黄冲,王晓星.中国碳酸盐岩油气藏探明储量分布特征[J].海相油气地质, 2009, 14(2): 24-30.
    [6]姚军,王子胜.缝洞型碳酸盐岩油藏试井解释理论与方法[M].东营:中国石油大学出版社, 2007.
    [7] Popov, P., Efendiev, Y., Qin, G. Multiscale modeling and simulations of flows in naturally fractured Karst reservoirs[J]. Communication in Computational Physics, 2009, 6(1): 162-184.
    [8]陈志海,戴勇,郎兆新.缝洞性碳酸盐岩油藏储渗模式及其开采特征[J].石油勘探与开发, 2005, 32(3): 101-105.
    [9] Chidyagwai, P., Rivière, B. On the solution of the coupled Navier-Stokes and Darcy equations[J]. Computer Methods in Applied Mechanics and Engineering, 2009, 198(47-48): 3806-3820.
    [10]郑松青,李阳,张望明,等.缝洞型油藏复合介质模型及流体流动数学模型[J].大庆石油地质与开发, 2009, 28(2): 63-66.
    [11]张志才,陈喜,石朋,等.喀斯特流域分布式水文模型及植被生态水文效应[J].水科学进展, 2009, 20(6): 806-811.
    [12]宋付权,许友生,吴锋民.我国生物渗流的研究现状和展望[J].浙江师范大学学报(自然科学版), 2007, 30(4): 372-376.
    [13] Snow, D. Anisotropic permeability of fractured media[J]. Water Resources Research, 1969, 5(6): 1273-1289.
    [14] Kamath, J., Lee, S.H., Jensen, C.L., et al. Modeling fluid flow in complex naturally fractured reservoirs[C]. SPE India Oil and Gas Conference and Exhibition. New Delhi, India: Society of Petroleum Engineers Inc., 1998.
    [15] Teimoori, A. Calculation of the effective permeability and simulation of fluid flow in naturally fractured reservoirs[D]. Sydney: University of New South Wales, 2005.
    [16]姚军,李亚军,黄朝琴,等.裂缝性油藏等效渗透率张量的边界元求解方法[J].油气地质与采收率, 2009, 16(6): 80-83.
    [17]李亚军,姚军,黄朝琴,等.裂缝性油藏等效渗透率张量计算及表征单元体积研究[J].水动力学研究与进展: A辑, 2010, 25(1): 1-7.
    [18] Neale, G.H., Nader, W.K. The permeability of a uniformly vuggy porous medium[J]. SPE Journal, 1973, 13(2): 69-74.
    [19] Arbogast, T., Brunson, D.S. A computational method for approximating a Darcy-Stokes system governing a vuggy porous medium[J]. Computational Geosciences, 2007, 11(3): 207-218.
    [20] Arbogast, T., Brunson, D.S., Bryant, S.L., et al. A preliminary computational investigation of a macro-model for vuggy porous media[J]. Computational Geosciences, 2004, 15(4): 28-30.
    [21] Arbogast, T., Lehr, L.H. Homogenization of a Darcy-Stokes system modeling vuggy porous media[J]. Computational Geosciences, 2006, 10(3): 291-302.
    [22] Popove, P., Bi, L., Efendiev, Y. Multiphysics and multiscale methods for modeling fluid flow through naturally fractured vuggy carbonate reservoirs[C]. Paper SPE 105378, present at the 15th SPE Middle East Oil & Gas Show and Conference held in Bahrain International Exhibition Centre, Kingdom oh Bahrain: 2007.
    [23] Brinkman, H.C. A calculation of the viscous force exerted by a flowing fluid on a dense swarm of particles[J]. Journal of Applied Sciences Research, 1947, 1(1): 27-34.
    [24] Joseph, D.D., Tao, L.N. Lubrication of a porous Bearing-Stokes' solution[J]. Journal of Applied Mechanics, 1966, 33(4): 753-761.
    [25] Beavers, G.S., Joseph, D.D. Boundary conditions at a naturally permeable wall[J]. Journal of Fluid Mechanics, 1967, 30: 197-207.
    [26] Saffman, P.G. On the boundary condition at the surface of a porous medium[J]. Studies in Applied Mathematics, 1971, L(2): 93-101.
    [27] Jones, I.P. Low Reynolds number flow past a porous spherical shell[J]. Mathematical Proceedings of the Cambridge Philosophical Society, 1973, 73(1): 231-238.
    [28] Salinger, A.G., Aris, R., Derby, J.J. Finite element formulations for large-scale, coupled flows in adjacent porous and open fluid domains[J]. International Journal for Numerical Methods in Fluids, 1994, 18(12): 1185-1209.
    [29] Gartling, D.K., Hickox, C.E., Givler, R.C. Simulation of coupled viscous and porous flow problems[J]. International Journal of Computational Fluid Dynamics, 1996, 7(1): 23-48.
    [30] Discacciati, M., Miglio, E., Quarteroni, A., et al. Mathematical and numerical models for coupling surface and groundwater flows[J]. Applied Numerical Mathematics, 2002, 43(1-2): 57-74.
    [31] Layton, W., Schieweck, F., Yotov, I. Coupling fluid flow with porous media flow[J]. SIAM Journal on Numerical Analysis, 2003, 40(6): 2195-2218.
    [32] Arbogast, T., Brunson, D.S. A computational method for approximating a Darcy-Stokes system governing a vuggy porous medium[J]. Computational Geosciences, 2007, 11(3): 207-218.
    [33] Urquizaa, J.M., N'Dria, D., Garona, A., et al. Coupling Stokes and Darcy equations[J]. Applied Numerical Mathematics, 2008, 58(5): 525-538.
    [34]冯民富,祁瑞生,朱瑞,等.关于Darcy方程和Stokes方程耦合问题的非协调稳定化方法[J].应用数学和力学, 2010, 31(3): 368-369.
    [35] Kanschat, G., Riviere, B. A strongly conservative finite element method for the coupling of Stokes and Darcy flow[J]. Journal of Computational Physics, 2010, 229(17): 5933-5943.
    [36] Karper, T., Mardal, K.A., Winther, R. Unified finite element discretizations of Coupled Darcy-Stokes flow[J]. Numerical Methods for Partial Differential Equations, 2008, 25(2): 311-326.
    [37] Lee, S.H., Durlofsky, L.J., Lough, M.F., et al. Finite difference simulation of geologically complex reservoir with tensor permeabilities[J]. SPE Reservoir Evaluation & Engineering, 1998, 1(6): 567-574.
    [38]谢海兵,马远乐,桓冠仁,等.非结构网格油藏数值模拟方法研究[J].石油学报, 2001, 22(1): 63-68.
    [39] Klausen, R.A., Russell, T.F. Relationships among some locally conservative discretization methods which handle discontinuous coefficients[J]. Computational Geosciences, 2004, 552(8): 341-377.
    [40] Brezzi, F., Fortin, M. Mixed and hybrid finite element methods[M]. New York: Springer-Verlag, 1991.
    [41] Hoteit, H., Firoozabadi, A. Multicomponent fluid flow by discontinuous Galerkin and mixed methods in unfractured and fractured media[J]. Water Resource Reseach, 2005, 44(11): 114-129.
    [42] Chavent, G., Jaffre, J. Mathematical models and finite elements for reservoir simulation[M]. North-Holland: Elsevier, 1986.
    [43] Long, J.C.S., Remer, J.S., Wilson, C.R. Porous media equivalents for networks of discontinuous fractures[J]. Water Resources Research, 1982, 18(3): 645-658.
    [44]张奇,夏颂佑,俞国青.裂隙基岩渗透张量反分析及等效连续介质模型[J].河海大学学报, 1994, 22(3): 74-80.
    [45]张宜虎.岩体等效水力学参数研究[D].北京:中国地质大学, 2006.
    [46]张乾飞.复杂渗流场演变规律及转异特征研究[D].南京:河海大学, 2002.
    [47]肖裕行,王泳嘉,卢世宗,等.裂隙岩体水力等效连续介质存在性的评价[J].岩石力学与工程学报, 1999, 18(1): 75-80.
    [48]薛守义.论连续介质概念与岩体的连续介质模型[J].岩石力学与工程学报, 1999, 18(2): 230-232.
    [49] Min, K., Jing, L., Stephansson, O. Determining the equivalent permeability tensor for fractured rock masses using a stochastic REV approach method and application to the field data from Sellafield, UK[J]. Hydrogeology Journal, 2004, 12(5): 497-510.
    [50]荣冠,周创兵,王恩志.裂隙岩体渗透张量计算及其表征单元体积初步研究[J].岩石力学与工程学报, 2007, 26(4): 740-746.
    [51]张贵科,徐卫亚.裂隙网络模拟与REV尺度研究[J].岩土力学, 2008: 1675-1680.
    [52] Stagg, K.G., Zienkiewicz, O.C. Rock mechanics in engineering practice[M]. London: Allen & Unwin Ltd., 1969.
    [53]葛家理.现代油藏渗流力学原理[M].北京:石油工业出版社, 2003.
    [54]周志芳.裂隙介质水动力学原理[M].北京:高等教育出版社, 2007.
    [55] Bear, J. Dynamics of fluids in porous media[M]. New York: American Elsevier Pub. Co., 1972.
    [56] Barenblatt, G.I., Zheltov, I.P., Kochina, I.N. Basic concept in the theory of homogeneous liquids in fissured rocks[J]. Journal of Applied Mathematics and Mechanics, 1960, 24(5): 1286-1303.
    [57] Warren, J.E., Root, P.J. The behavior of naturally fractured reservoirs[J]. SPE Journal, 1963, 3(3): 245-255.
    [58] Kazemi, H., Steth, M.S., Thomas, G.W. The interpretation of interference tests in naturally fractured reservoirs with uniform fracture distribution[J]. SPE Journal, 1969, 9(4): 463-472.
    [59] de Swaan, A.O. Analytic solutions for determining naturally fractured reservoir properties by well testing[J]. SPE Journal, 1976, 16(3): 117-122.
    [60]蒋继光.裂缝性储集层内渗滤问题的精确解[J].力学学报, 1977(4): 263-269.
    [61]蒋继光.裂缝性储集层内渗滤问题的精确解[J].力学学报, 1983(2): 367-370.
    [62]陈钟祥,姜礼尚.双重介质渗流方程组的精确解[J].水文地质工程地质, 1979(3): 45-47.
    [63]陈钟祥,刘慈群.双重孔隙介质中两相驱替理论[J].力学学报, 1980, 12(2): 109-119.
    [64]刘慈群.在双重孔隙介质中有限导流垂直裂缝井的非牛顿流体试井分析方法[J].石油学报, 1990, 11(4): 61-67.
    [65]刘慈群,王晓冬.双重孔隙介质中水平井试井分析方法[J].试采技术, 1991, 112(2): 1-6.
    [66]刘慈群.双重孔隙介质中水平井两相渗流[J].水动力学研究与进展: A辑, 1994, 9(5): 588-592.
    [67]姚军,刘英才.求解双重孔隙介质油藏压力的一种新方法[J].石油大学学报(自然科学版), 1999, 23(4): 42-44.
    [68]邓英尔,刘慈群.各向异性双重介质垂直裂缝井两相流体渗流[J].力学学报, 2000, 32(6): 698-706.
    [69]同登科,张鸿庆.双重介质分形油藏渗流问题[J].应用数学与力学, 2001, 22(10): 1009-1016.
    [70]袁士义,宋新民,冉启全.裂缝性油藏开发技术[M].北京:石油工业出版社, 2004.
    [71]王恩志.裂隙网络地下水流模型的研究与应用[D].西安:西安地质学院, 1991.
    [72]杨栋,赵阳升,段康廉,等.广义双重介质岩体水力学模型及有限元模拟[J].岩石力学与工程学报, 2000 (2): 182-185.
    [73]戴卫华.多重介质油藏试井解释方法研究[D].东营:中国石油大学(华东), 2003.
    [74]吴玉树,葛家理.三重介质裂隙油藏中的渗流问题[J].力学学报, 1984, 14(1): 81-84.
    [75] Abdassah, D., Ershaghi, I. Triple-porosity systems for representing naturally fractured reservoirs[J]. SPE Formation Evaluation, 1986, 1(2): 113-127.
    [76] Camacho-Velazquez, R., Vasquez-Cruz, M., Castrejon-Aivar, R., et al. Pressure transient and decline-curve behavior in naturally fractured vuggy carbonate reservoirs[J]. SPE Reservoir Evaluation & Engineering, 2005, 8(2): 95-112.
    [77] Wu, Y., Qin, G., Ewing, R.E., et al. A multiple-continuum approach for modeling multiphase flow in naturally fractured vuggy petroleum reservoirs[C]. SPE-104173, presented at the 2006 SPE International oil & Gas Conference and Exhibition. Beijing, China: 2006.
    [78] Wu, Y., Economides, C.E., Qin, G., et al. A triple-continuum pressure-transient model for a naturally fractured vuggy reservoir[C]. SPE Annual Technical Conference and Exhibition. Anaheim, California, U.S.A.: 2007.
    [79]张德志,姚军,王子胜,等.三重介质油藏试井解释模型及压力特征[J].新疆石油地质, 2008, 29(2): 222-226.
    [80] Noorishad, J., Mehran, M. An upstream finite element method for solution of transient transport equation in fractured porous media[J]. Water Resour Research, 1982, 18(3): 588-596.
    [81] Baca, R., Arnett, R., Langford, D. Modeling fluid flow in fractured porous rock masses by finite element techniques[J]. International Journal for Numerical Methods in Fluids, 1984, 4(4): 337-348.
    [82]姚军,王子胜,张允等.天然裂缝性油藏的离散裂缝网络数值模拟方法[J].石油学报, 2010, 31(2): 91-95.
    [83] Tsang, Y.W., Tsang, C.F. Channel model of flow through fractured media[J]. Water resources research, 1987, 23(3): 467-479.
    [84] Tsang, Y.W., Tsang, C.F. Flow channeling in a single fracture as a two-dimensional strongly heterogeneous permeability medium[J]. Water Resources Research, 1989, 10(3): 2076-2080.
    [85] Yao, J., Huang, Z., Li, Y., et al. Discrete fracture-vug network model for modelling fluid flow in fractured vuggy porous media[C]. Paper SPE 130287, presented at the CPS/SPE International Oil & Gas Conference and Exhibition. Beijing, China: 2010.
    [86]姚军,黄朝琴,王子胜,等.缝洞型油藏的离散缝洞网络流动数学模型[J].石油学报, 2010, 31(5): 815-819.
    [87] Louis, C., Wittke, W. Experimental study of water flow in jointed rock massif[J]. Tachien Project Formosa Géotechnique, 1971, 21(1): 29-36.
    [88] Wilson, C.R., Witherspoon, P.A. Steady state flow in rigid networks of fractures[J]. Water Resources Research, 1974, 10(2): 328-339.
    [89]张允.裂缝性油藏离散裂缝网络模型数值模拟研究[D].东营:中国石油大学, 2008.
    [90] Huang, Z., Yao, J., Li, Y., et al. Permeability analysis of fractured vuggy porous media based on homogenization theory[J]. SCIENCE CHINA Technological Sciences, 2010, 53(3): 839-847.
    [91] Van Golf-Racht T. D.裂缝油藏工程基础[M].北京:石油工业出版社, 1989.
    [92] Harris, J.F., Taylor, G.L., Walper, J.L. Relation of deformational fractures in sedimentary rocks to regional and local structure[J]. AAPG Bulletin, 1960, 44(12): 1853-1873.
    [93]万晓龙,高春宁,王永康,等.人工裂缝与天然裂缝耦合关系及其开发意义[J].地质力学学报, 2009, 15(3): 245-252.
    [94]牛虎林,田作基,胡欣,等.成像测井解释模式在基岩油气藏裂缝性储层的应用研究[J].地球物理学进展, 2008, 23(5): 1544-1549.
    [95]甘利灯,姚逢昌,郑晓东,等.非常规储集层地震横向预测的一种方法[J].石油勘探与开发, 2000, 27(2): 65-68.
    [96] Tamagawa, T., Matsuura, T., Anraku, T., et al. Construction of fracture network model using static and dynamic data[C]. SPE Annual Technical Conference and Exhibition. San Antonio, Texas: Society of Petroleum Engineers Inc., 2002.
    [97]邢玉忠.裂缝性潜山油藏裂缝网络模型及其应用[D].北京:中国地质大学, 2007.
    [98] Coats, K.H. Implicit compositional simulation of single-porosity and dual-porosity reservoirs[C]. The SPE Symposium on Reservoir Simulation. Houston, Texas: Society of Petroleum Engineers, 1989.
    [99] Tran, N.H. Characterization and modeling of naturally fractured reservoirs[D]. Australia: University of New South Wales, 2004.
    [100]艾合买提江,钟建华.塔河油田奥陶系碳酸盐岩裂缝成因研究[J].特种油气藏, 2009, 16(4): 21-24.
    [101] Romm, E.S. Flow characteristics of fractured rocks[M]. Moscow: Nedra, 1966.
    [102]刘才华,陈从新,付少兰.剪应力作用下岩体裂隙渗流特性研究[J].岩石力学与工程学报, 2003, 22(10): 1651-1655.
    [103]荣冠,周创兵,王恩志.裂隙岩体渗透张量计算及其表征单元体积初步研究[J].岩石力学与工程学报, 2007, 26(4): 740-746.
    [104] Durlofsky, L.J. Numerical calculation of equivalent grid block permeability tensors for heterogeneous porous media[J]. Water Resources Research, 1991, 27(5): 699-708.
    [105]秦积舜,李爱芬.油层物理学[M].东营:中国石油大学出版社, 2004.
    [106]杨德全,赵忠生.边界元理论及应用[M].北京:北京理工大学出版社, 2002.
    [107] Long, J.C.S., Remer, J.S., Wilson, C.R., et al. Porous media equivalents for networks of discontinuous fractures[J]. Water Resour Research, 1982, 18(3): 645-658.
    [108] Fanchi, J.R. Directional permeability[J]. SPE Reservoir Evaluation & Engineering, 2008, 11(3): 565-568.
    [109]张希明,杨坚,杨秋来,等.塔河缝洞型碳酸盐岩油藏描述及储量评估技术[J].石油学报, 2004, 25(1): 13-18.
    [110]杨辉廷,江同文,颜其彬,等.缝洞型碳酸盐岩储层三维地质建模方法初探[J].大庆石油地质与开发, 2004, 23(4): 11-13.
    [111]郭春华,杨宇,莫振敏,等.缝洞型碳酸盐岩油藏流动单元概念和研究方法探讨[J].石油地质与工程, 2006, 10(6): 34-37.
    [112]张淑品,陈福利,金勇.塔河油田奥陶系缝洞型碳酸盐岩储集层三维地质建模[J].石油勘探与开发, 2007, 34(2): 175-180.
    [113]郑松青,李阳,张宏方.碳酸盐岩缝洞型油藏网络模型[J].中国石油大学学报(自然科学版), 2010, 34(3): 2010.
    [114] Badea, L., Discacciati, M., Quarteroni, A. Numerical analysis of the Navier-Stokes/Darcy coupling[J]. Numerische Mathematik, 2010, 115(2): 195-227.
    [115]陈平,张天有.裂隙岩体渗流与应力耦合分析[J].岩石力学与工程学报, 1994, 13(4): 299-308.
    [116] Donea, J., Huerta, A. Finite element methods for flow problems[M]. London: John Wiley & Sons Ltd, 2003.
    [117] Hutton, D.V. Fundamentals of finite element analysis[M]. New York: McGraw-Hill, 2003.
    [118]罗焕炎,陈孙雨.地下水运动的数值模拟[M].北京:中国建筑工业出版社, 1988.
    [119]杨曜根.流体力学有限元[M].哈尔滨:哈尔滨工程大学出版社, 1995.
    [120]署恒木,仝兴华.工程有限单元法[M].东营:石油大学出版社, 2003.
    [121]罗振东.混合有限单元法基础及其应用[M].北京:科学出版社, 2006.
    [122] Discacciati, M., Miglio, E., Quarteroni, A. Mathematical and numerical models for coupling surface and groundwater flows[J]. Applied Numerical Mathematics, 2002, 43(2): 57-74.
    [123] Streltsova, T.D. Well testing in heterogeneous formations[M]. New York: Wiley, 1988.
    [124] Nayagum, D., Sch?fer, G., Mosé, R. Modelling two-phase incompressible flow in porous media using mixed hybrid and discontinuous finite elements[J]. Computational Geosciences, 2004, 8(1): 49-73.
    [125] Durlofsky, L.J. A triangle based mixed finite element-finite volume technique for modeling two phase flow through porous media[J]. Journal of Computational Physics, 1993, 105(2): 252-266.
    [126] Matringea, S.F., Juanesb, R., Tchelepia, H.A. Robust streamline tracing for the simulation of porous media flow on general triangular and quadrilateral grids[J]. Journal of Computational Physics, 2006, 219(2): 992-1012.
    [127]王汉富.渗透率张量是对称张量的证明[J].江汉石油学院学报, 1983(2): 90-96.
    [128]钟启明,陈建生,陈亮.裂隙岩体渗透张量的对称性证明及主渗透性推导[J].岩石力学与工程学报, 2006, 25(S1): 2997-3002.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700