用户名: 密码: 验证码:
工作艇收放装置关键技术及控制策略研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
工作艇收放装置是一种应用于船舶上的特种起重机械,主要功能是在母船上降放和回收工作艇。它可以在复杂的海况下,母船摇摆运动中进行工作艇的收放操作,有着普通吊艇架无法比拟的优势。它对于海军夺岛作战、舰船补给、人员救护、海军的巡逻护航等具有重要意义,应用前景十分广阔。由于高海况下收放装置工作环境的复杂性,要求收放装置必须安全收放,这就要解决工作艇处于水中起升准备阶段的摇摆、起升到空中剧烈摆动等技术问题。因此本文根据收放装置波浪运动补偿及减摆控制技术的需要,通过对波浪运动补偿系统和工作艇减摆控制系统的控制策略研究、性能仿真分析和相关试验研究,研制能在高海况下安全收放的收放装置不仅对于收放装置的波浪运动补偿、工作艇姿态减摆控制等技术的理论水平有着重要的促进作用,而且对于提升我国海洋装备的技术水平、维护海洋权益以及满足军事需求都具有重要的现实意义。
     本文在查阅大量国内外资料的基础上,综述了工作艇收放装置的工作原理和高海况收放的关键技术,并对其国内外研究现状进行了分析,确定了本文的研究内容和方向。按照工作艇的不同收放过程,分析了收放过程中船舶运动对工作艇姿态的影响以及运动补偿系统的作用。建立船舶运动非线性模型,为波浪运动补偿系统的分析建立了基础。根据波浪运动补偿系统的原理,建立了波浪补偿状态下工作艇的横摇、垂荡数学模型和波浪运动补偿系统的数学模型,为波浪运动补偿系统的仿真分析奠定基础。根据工作艇减摆阻尼控制系统的工作原理,分别建立了粘滞阻尼装置的数学模型和减摆控制系统的动力学模型,为工作艇减摆控制系统的控制策略研究打下了基础。
     为了控制工作艇在水面时的姿态,设计了张力耗散补偿的波浪运动补偿绞车液压系统,建立了波浪运动补偿系统的动力学模型。基于母船及工作艇相对运动的分析,提出了波浪运动补偿系统最大设计速度的分析方法,研究了波浪运动补偿系统的速度特性;分析了波浪运动补偿系统的结构参数对系统性能的影响,并利用粒子群优化算法,对波浪运动补偿系统的参数进行了优化,并通过仿真分析证明了优化后结构参数的合理性。
     根据减摆控制系统的工作原理及结构建立了被动式阻尼减摆控制系统的数学模型,基于振动分析理论设计了粘滞阻尼的减摆控制系统,据此构造了评价系统减摆控制的性能指标。基于系统工作状况的分析,研究了阻尼器对系统特性的影响、工作艇总重和收放装置吊点位置等参数对减摆控制系统性能的影响。仿真结果表明,根据船舶运动、工作艇重量和吊点位置等设计的阻尼器参数能够起到很好的减摆控制效果。
     由于被动式减摆控制系统的功能局限性,提出了主动式减摆控制方案,并建立系统的仿真数学模型;根据系统欠驱动的特性设计了主动式减摆控制器,并对主动式减摆控制进行了分析研究,为主动式工作艇收放装置的研制奠定了理论基础。
     利用收放装置的试验台架,构建收放装置的实验系统,并对收放装置的波浪运动补偿系统和减摆控制系统进行了实验研究,验证了波浪运动补偿系统的性能和减摆控制系统的控制策略的有效性。
The working boat davit is a special type of hoisting equipment on ships. Its function is tolaunch and recovery working boat on mother ship. The launch and recovery of the workingboat when the mother ship is rolling in complex sea states can be carried out safely with it,which is impossible for ordinary davits. The working boat davit is absolutely necessary forisland capture, supply on the sea, persons rescue, patrol and escort of the navy. It has broadapplication prospects. As the working environment of the davit is complex, the launch andrecovery of the boat must be safe. It means that the problem of attitude control when theworking boat is prepared to be lifted and the problem of violent swings reducing when theworking boat is in the air must be solved. To meet the requirements of wave motioncompensation technology and swing reducing technology, developing the davit that can beused safely in high sea state by studying control methods of wave motion compensationsystem and swing reducing system, simulating the performance and carrying out relevantexperiments is not only an important development in theories of wave motion compensationtechnology and swings reducing technology of the davit, but also of great significant to thetechnology developments of domestic marine equipments, the defence of maritime rights andinterests and it satisfies the needs in military.
     The paper summarizes the principle of the working boat davit and key technologies oflaunch and recovery the boat in high sea state, the present situations were analysed and thedirection and content of the paper was determined which based on consulting manydocuments that are domestic or abroad. The influences of the ship to attitude of the workingboat and the effects of the wave compensation system were analysed according to differentprocesses of launch and recovery. The nonlinear model of ship motion is built which providesthe foundation of the analysis of the wave motion compensation system. The mathematicalmodels of rolling and heave of the working boat with the wave motion compensation systemactive were built and the mathematical model of the wave motion compensation system wasbuilt, with provide the foundation of simulation of the system. The mathematical model ofviscous damping devise and the dynamic model of the swing reducing system were built onthe basis of the principle of the damping swing reducing system, which laid the foundation ofthe study of the damping swing reducing system.
     To control the attitude of the boat on the water, the hydraulic winch system of the wavemotion compensation system using tension dissipation compensation technology wasdeveloped, and the mathematical model of the wave motion compensation system was built. Based on the analysis of the relative motions between the boat and the mother ship, theanalytic method of the maximum design velocity of the wave compensation was proposed,and the velocity characteristic of the system was studied. The effects of the structureparameters were discussed and the parameters were optimized by using the particle swarmoptimization algorithm (PSO). The rationality of the parameters was corroborated bysimulation.
     The mathematical model of the passive damping swing reducing system was built on thebasis of its principle, and the viscous damping swing reducing system was designed based onvibration analysis, and the performance indexes of the swing reducing system were proposed.The effects of the damper, the weight of the boat and the position of the hoisting point werestudied based on the working condition analysis of the system. The simulations showed thatthe damper parameters designed by ship motion, the weight of the boat and the position of thehoisting point worded well.
     As the limitations of the passive swing reducing system, the active swing reducing systemwas proposed, and the mathematical models of the system ware built. As the system isunderactuated, the active swing reducing controller is designed and the control method wasstudied. What are mentioned above provide the foundation of the active swing reducingsystem.
     The experiments of wave compensation system and swing reducing system are carried outby using the ship motion simulation equipment. The indexes of compensation characteristicsare obtained, and the method that control the attitude of working boat by using wavecompensation technology and swing reducing technology proves to be effective.
引文
[1]孙松.我国海洋资源的合理开发与保护.中国科学院院刊,2013(3):20-24页
    [2] M. H. Patel,D. T. Brown, J. A. Witz. Operability analysis for a monohullcrane vessel. Transactions of the Royal Institution of Naval Architects,1987,129:103-113P
    [3] T. Vaughers. Joint logistics over the shore operation. Naval EngineersJoumal,1994,106(3):256-263P
    [4]宋金明.崛起的海洋资源开发.济南:山东科学技术出版社,1999
    [5]彭江丰.液压折臂式起重机的波浪运动补偿装置设计.船舶,2000(03):30-34页
    [6]李钦奉,吴彰松,李琼.单臂回转艇筏吊架托盘的有限元分析与优化设计.机械制造与自动化,2011(4),30-34页
    [7]李积德.船舶耐波性.哈尔滨:哈尔滨船舶工程学院出版社,1992
    [8] Gary G. Elvik. Frequency response analysis of T-ACS experimental data.Science in mechanical engineering, Naval Postgraduate Schoo1, Monterey,Canada,2000
    [9] B. R. Hunt, G. H. Yuan, C. Grebogi, et al. Design and control of shipboardcranes. Proceedings of the1997ASME Design Engineering TechnicalConference. Sacramento, CA,1997
    [10] Michael Todd, Sandeep Vohra, Chris Vandette, et al. Analysis of pendulatedload response and T-ACS/Lighter interaction in a1:24Scale Model JLOTSCargo Transfer Operation at the David Taylor Model Basin in1997.Washington, DC,1998
    [11] P. Ferdinand, S. Magne, V. Dewynter-Marty, et al. Applications of Bragggating sensors in Europe. Proc. Of the Optical Fiber Sensors Conf (OFS-12).Williamsburg, VA, USA,1997,14-19P
    [12] R. Bronnimann, Ph. M. Nellen, P. Anderegg, et al. Packaging of fiber opticalsensors for civil engineering appliations. Symposium DD, Reliability ofPhotonics Materials and Structures, San Francisco, USA,1998
    [13] R. Willsch. Application of optical fibre sensors: technical and markettrends. Proceedings of the SPIE/EOS SYMPOSIUM ON Applied Photonics,SPIE,2000(4074):24-31P
    [14] K. Ellermann, E. Kreuzer. Nonlinear dynamics in the motion of floatingcranes. Multibody System Dynamics,2003(9):377-387P
    [15] K. Tanizumi, T. Youshimura, Jun’ichi Hino. Modeling of dynamic behaviorand control of truck cranes. Transaction of the Japan Society of MechanicalEngineering Series,1994,60(572):1262-1269P
    [16] J. G. Beliveau, X. Zhao, Y. Beliveau, Semi-passive damping of swingingmotion of cranes. Proceedings of the Second Construction SpecialtyConference, Montreal,1997:127-133P
    [17] Y. Sakawa, Y. Shindo, Y. Hashimoto. Optimal control of rotary cranes.Journal of Optimization Theory and Application,1981,35(4):535-557P
    [18] K.Sato, Y.Sakawa. Modeling and control of a flexible rotrary crane.International Journal of Control,1988(48):2085-2105P
    [19] P. Hippe. New approaches to the numerical solution of optimal controlproblems. Optimal Control,1972,56(18):346-350P
    [20] M. Fliess, P. Rouchon,J. Levine. A simplified approach of crane controlvia a generalized state-space model. Proceedings of the30th Conferenceon Decision and Control,1991:736-741P
    [21] H. Lee. Modeling and control of a three-dimensional overhead crane. Journalof Dynamic Systems, Jounal of Dynamic Systems Measurement andControl-transactions of The Asme,1998(120):471-476P
    [22] J. Friebele, et al. Fibre Bragg grating strain sensors: present and futureapplications in smart structures. Optics and Photonics News,1998(9):33-36P
    [23] T. E. Hammon, A. D. Stokes. Optical fibre Bragg grating temperature sensormeasurements in an electrical power transformer using a temperaturecompensated fibre Bragg grating as a reference. Proceedings of the11International Conference on Optical Fibre Sensors, Sapporo, Japan,1996:566-569P
    [24] I. Iwasaki, K. Tanida, S. Kaji, et al. Development of an active mass damperfor stabilizing the load suspended on a floating crane. Proceedings of theASME Design Engineering Technical Conference, DETC97/VIB-3816,1997
    [25] R. Kral, E. Kreuzer, C. Wilmers. Nonlinear oscillations of a crane ship.Proceeing of the3td international conferenc on industrial and appliedmathematics1995, Berlin:Akademie Verlag,1996:5-8P
    [26] E. Kreuzer, U. Wilke. Dynamics of mooring systems in ocean engineering.Archive of Applied Mechanics,2003(73):270-281P
    [27] E. Kreuzer, U. Wilke. Mooring systems-a multibody dynamic approach.Multibody System Dynamics,2002(8):279-297P
    [28] Roland Kral, E. Kreuzer. Multibody systems and fluid-structureinteractions with application to floating structures. Multibody SystemDynamics,1999(3):65-83P
    [29] Z. N. Masoud, A. H. Nayfeh, D. T. Mook. Cargo pendulation reduction ofship-mounted cranes. Nonlinear Dynamics,2004,35(3):299-311P
    [30] Iwasaki, I. Tanida, K. Kaji, S. and Mutaguehi,M. Development of an activemass damper for stabilizing the load suspended on a floating crane.Proceedings of the DETC’97, California, USA,1997
    [31] M. Imazeki, M. Mutaguehi, I. Iwasaki,et al. Active mss damper forstabilizing the load suspended on a floating crane. IHI Engineering Review,Tokyo, Japan,1998,31(2):61-69P
    [32]刘贺等.上海造船,2008(2):25-35页
    [33]廖勇.波浪运动补偿起艇系统研究.大连理工大学硕士学位论文,2010
    [34]陈爱国.新型舰船过驳波浪补偿系统关键性技术研究.华南理工大学博士学位论文,2011
    [35]张晓华,贾智勇.基于输入整形策略的船上回转吊车防摆控制.控制工程,2008(3):3-38页
    [36]王金诺,程文明,张质文等.集装箱起重机刚性减摇系统的动态仿真.铁道学报,1995,17(1):34-40P
    [37]崔东坡.吊艇架被动式抗摆技术研究.哈尔滨工程大学硕士学位论文,2010
    [38]刘绍兴,周江涛,杨清璞.船用液压起重机加装波浪运动补偿装置的研究.机电设备,1999(5):34-38页
    [39]彭江丰,液压折臂式起重机的波浪运动补偿装置设计.舰船,2000(3):39-41页
    [40]张兴强,刘国昌.模糊控制在波浪运动补偿起重机中的应用研究.电气技术与自动化,2006(6):173-17页
    [41]邵曼华,寇雄,赵鹏程.几种船用起重机波浪运动补偿装置.机械工程师,2004(2):14-16页
    [42]孙虹.杨清璞电液比例控制在波浪运动补偿起重机中的应用.液压与气动,2001(7):18-19页
    [43]徐小军,陈循,尚建忠.一种新型主动式波浪补偿系统的原理及数学建模.国防科技大学学报,2007(03):118-122页
    [44]金鸿章,姚绪梁.船舶控制原理.哈尔滨:哈尔滨工程大学出版社,2001
    [45]陶尧森.船舶耐波性.上海:上海交通大学出版社,1985
    [46] M. R. Mitchell, J.-G. Dessureault. A constant tension winch: design andtest of a simple passive system. Ocean Engineering,1992,19(5):489-496P
    [47] X. Zhao, R. Xu, C. Kwan. Ship-motion prediction: algorithms and simulationresults. ICASSP’04, Montreal, Canada,2004(5):V125-V128P
    [48] J. Kennedy, R. Eberhart. Particle swarm optimization. Proceedings of theIEEE International Conference on Neural Networks,1995(4):1942-1948
    [49] M. P. Spathopoulos, D. Fragopoulos. Pendulation control of an offshorecrane. Mechanical and Aerospace Engineering,2004(77):654-670P
    [50]马博军.欠驱动非线性桥式吊车自动控制系统研究.南开大学博士学位论文,2009
    [51]马博军,方勇纯,刘先恩,王鹏程.三维桥式吊车建模与仿真平台设计.系统仿真学报,2009,21(12):3798-3803页
    [52]高丙团,陈宏钧,张晓华.龙门吊车系统的动力学建模.计算机仿真,2006,23(2):50-52页
    [53]高丙团.一类欠驱动机械系统的非线性控制研究.哈尔滨工业大学博士学位论文,2001
    [54] M. R. Mitchell, J.-G. Dessureault. A constant tension winch: design andtest of a simple passive system. Ocean Engineering,1992,19(5):489-496P
    [55]蒋余良,眭国忠.高海况下小艇收放装置的技术与发展探讨.江苏船舶,2008(6):25-28页
    [56]元良誠三.船体運動力学.東京:日本船舶海洋工学会,2005
    [57]王福军.计算流体动力学分析-CFD软件原理与应用.北京:清华大学出版社,2006
    [58] Kim C H, Dalzell J F. Analysis of the quadratic frequency response forlateral drifting force and moment. Journal of Ship Research,1981,25(2):117-129P
    [59] Morawski L, Vinh N C. Control of ship motion at low speed-experimentswith a physical tanker model. ASME, Haifa, Israel,2009
    [60] Yamamoto C, Inoue M, Nagatomi O, et al. Study on dynamics of submarine cableduring laying and recovery. ASME, Yokohama, Japan,1997
    [61]李永强,朱大巍,李锋.一类强非线性受迫振动系统的解析近似.机械工程学报,2009(12):129-134页
    [62]王海波.水下拖曳升沉补偿液压系统及其控制研究.浙江大学博士学位论文,2009
    [63]李伟,胡相捧.桥式起重机吊重摆动的参变振动模型.振动与冲击,2009(5):56-59页
    [64]钟斌,程文明,吴晓等.桥门式起重机吊重防摇状态反馈控制系统设计.电机与控制学报,2007(5):156-159页
    [65] Fang M C, Kim C H. An analysis of water shipping between two floatingplatforms in the beam waves. Journal of Offshore Mechanics and ArcticEngineering,1987(109):179-185P
    [66]钟斌,程文明,吴晓等.桥门式起重机吊重防摇状态反馈控制系统设计.电机与控制学报,2007(5):69-73页
    [67] Schaub H. Rate-based ship-mounted crane payload pendulation control system.Control Engineering Practice,2008(16):132-145P
    [68] Prat, Laurent, De Vries, Leo, Vredeveldt, Alex W. Khattab, OmarMaisonneuve, Jean Jacques. Performance assessment of davit-launchedlifeboat. Proceedings of the International Conference on OffshoreMechanics and Arctic Engineering-OMAE,2008:681-697P
    [69] Crissey Dana, Goodwin Tip, Young Jeff. Investigating and mitigatingfatigue failures of electric transmission line davit arms due to conductordynamics. Electrical Transmission Line and Substation Structures:Structural Reliability in a Changing World-Proceedings of the2006Electrical Transmission Conference,2006(218):47-58P
    [70]杨毅.自适应控制在波浪运动补偿系统中的应用研究.武汉理工大学博士学位论文,2007
    [71]张兴茂.主动式波浪运动补偿系统时滞行为控制技术研究.国防科学技术大学博士学位论文,2010
    [72] Bright David A, Williams, Robert M, McLaren, Alfred S. Comparativephotometric analysis of structural degradation on the bow of RMS Titanic.Proceedings of MTS/IEEE OCEANS,2005
    [73] Scott Richard. US coast guard begins MEP refit programme. Jane's NavyInternational, n AUG.,2005
    [74] Nelson James K, Regan Nancy B, Khandpur Rajiv, Landsburg AlexanderC, Markle Robert L. Implementation of free-fall lifeboats on ships. MarineTechnology,1994,31(4):269-277P
    [75] Weimer Frank. DAViT: a software engineering environment for distributedprograms. IFIP Transactions A: Computer Science and Technology, n A-48,1994:95-104P
    [76] Christison S.Grant. Constant-tension winch system for handling rescueboats. Marine Technology,1988,25(3):220-228P
    [77] Purcell M J, Ned C.Forrester. Bobbing crane heave compensation for the deeptowed fiber optic survey system. Society of Naval Architects and MarineEngineers, New England Section,1994:1-16P
    [78] J. Wang, J. B. Yang, P. Sen, T. Ruxton. Safety based design and maintenanceoptimization of large marine engineering systems. Applied Ocean Research,1996(18):13-27P
    [79] G. G. Cox, A. R. Lloyd. Hydrodynamic design basis for navy ship roll motionstabilization. SNAME Transactions,1977(85):51-93P
    [80] J. E. Conolly. Rolling and its stabilization by active fins. Transactionsof the Royal Institution of Naval Architects,1968(111):21-48P
    [81] Do K D, PanJ. Nonlinear control of an active heave compensation system.Ocean Engineering,2008,35(5-6):558―571P
    [82] PMurakami, Hiroaki(Toshiba Corp), Yano Naoka. Multiplier-accumulatormacro for a45MIPS embedded RISC processor. IEEE Journal of Solid-StateCircuits,1996(7):1067-1071P
    [83] T. Vauthers. Joint Logistics over the Shore operation in rough seas. NavalEngineers Journal,1994(106):256-263P
    [84] T. Vauthers, M. Mardiros. Joint Logistics over the shore operation in roughseas. Naval Engineers Journal,1997(109):385-393P
    [85] Tanizumi, k., Youshimura T., Hino Jnichi. Modeling of dynamic behavior andcontrol of truck cranes. Journal of Electrical and Electronics Engineering,1994,14(2):75-84P
    [86] Beliveau J.G, Zhao X. Semi-passive damping of swinging motion of conferencecranes. Proceedings of the Second Construction Specialty Conference,Montreal, Canada,1997:127-133P
    [87] Hippe P. New approaches to the numerical solution of optimal controlproblems. Optimal Control,1972,56(18):346-350P
    [88] M.Fliess, P.Rouchon. A simplified approach of crane control via ageneralized state-space model. Proceedings of the30th Conference onDecision and Control,1991:736-741P
    [89] L.Y. Sakawa, A.Nakazumi. Optimal control of rotary cranes. Journal ofOptimization Theory and Application,1981,35(4):535-557P
    [90] Alsop. K., Sakawa. Y. Modeling and control of a flexible rotrary crane.International Journal of Control,48(5):2085-2105P.
    [91] Lee. H. Modeling and control of a three-dimensional overhead crane. Journalof Dynamic Systems, Measure-ment and Control,1998,(120):471-476P
    [92] Nayfeh, A. H and Masoud, Z. N. A supersmart controller for commercial cranes.Newsletter,International Association for Strual Control,2002,6(2):4-6P
    [93]唐友刚,田凯强,张泽盛.船舶参数激励非线性横摇运动方程.船舶工程,1998(6):16-18页
    [94] Bahram. K., Abdollah Homaifar. M. Feedback and feed-forward control lawfor a ship crane. Maryland Rigging System Proceedings of the AmericanControl Conference, Maryland, USA,2000(6):1047-1053P
    [95]刘应中,邹国平.船舶在波浪上的运动理论.上海:上海交通大学出版社,1986
    [96] M. mazeki, M. Mutaguchi. Active mass damper for stabilizing the loadsuspended on a floating crane. IHI Engineering Review,1998,31(2):61-69P
    [97] Yao G. Z, Meng G. Parameter estimation and damping performance ofelectro-heological damper. Journal of Sound and Vibration,1997,204(4):575-584P
    [98]冯铁成.船舶摇摆与操纵.北京:国防工业出版社,1980
    [99]国振喜.工程微分方程的解法与实例.北京:机械工业出版社,2004
    [100]贾智勇.船上回转式吊车防摆控制系统研究.哈尔滨工业大学硕士论文,2007
    [101]董明晓,刘伟民.船用起重机动力学模型及时滞控制研究.应用基础与工程科学学报,2005(增刊):70-75页
    [102]X. F. Zhu, D. E. Seborg. Nonlinear predictive control based on Hammersteinmodels. Control Theory Application,1994,11(6):564-575P
    [103]D. B. Cang, L. S. Yuan, X. Y. Geng. Stability analysis of generalizedpredictive control with input nonlinearity based-on popov theorem. ACTAAUTOMATICA SINICA,2003,29(4):582-588P
    [104]丁宝苍.预测控制的理论与方法.北京:机械工业出版社,2001
    [105]W. Lin, C. I. Byrnes. Passivity and absolute stabilization of a class ofdiscrete-time nonlinear systems. Automatica,1995,31(2):263-267P.
    [106]K. H. Chan,J. Bao. Model predictive control of Hammerstein systems withmultivariable nonlinearities. Industrial&Engineering Chemistry Research,2007(46):168-180P
    [107]T. Perez, G. C. Goodwin. Constrained control to prevent dynamic stall inship fin stabilizers. Sixth IFAC conference on manoeuvering and controlof marine craft MCMC’03,173-178P
    [108]赵希人.随机过程应用.哈尔滨:哈尔滨工程大学出版社,2003
    [109]丛玉良,王宏志.数字信号处理原理及其MATLAB实现.北京:电子工业出版社,2005
    [110]J. Nocedal, S. J. Wright. Numerical Optimization. Springer,1999
    [111]S. Boyd, L. Vandenberghe. Convex Optimization. Cambridge University Press,2004
    [112]徐士良.数值方法与计算机实现.北京:清华大学出版社,2006
    [113]W. D. Chang. Robust adaptive single neural control for a class of uncertainnonlinear systems with input nonlinearity. Information sciences,2005(171):261-271P
    [114]C. T. Chen, W. D. Chang. A feedforward neural network with function shapeautotuning. Neural networks,1996,9(4):627-641P
    [115]W. D. Chang, R. C. Hwang, J. G. Hsieh. A multivariable on-line adaptivePID controller using auto-tuning neurons. Engineering Applications ofArtificial Intelligence,2003(16):57-63P
    [116]T. Perez, G. C. Goodwin. On constrained control of fin, rudder or combinedfin-rudder stabilizers: a quasi-adaptive control strategy. IFAC ControlApplications in Marine Systems, Italy,2004
    [117]H. Tanguy, G. Lebret. A gain scheduled control law for fin/rudder rollstabilisation of ships. IFAC Control Applications in Marine Systems,2004
    [118]邓自立.自校正滤波理论及其应用——现代时间序列分析方法.哈尔滨:哈尔滨工业大学出版社,2003
    [119]王永德,王军.随机信号分析基础.北京:电子工业出版社,2009
    [120]W. Wang. Generalized predictive control of nonlinear systems of theHammerstein form. Control Theory Application,1994,11(6):672-680P.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700