用户名: 密码: 验证码:
台湾海峡西侧近岸沉积及主要河流贡献研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
基于2005~2009年间在台湾海峡西侧近岸进行的海洋地质地球物理调查获取了大量的底质、浅地层剖面和侧扫声纳数据,通过数据处理和分析,结合台湾海峡西侧近岸收集的~(14)C、~(210)Pb测年等数据,分析了台湾海峡西侧近岸表层沉积物的分布特征,浅部地层的沉积层序,并估算了海峡西侧近岸的沉积通量对海峡西侧主要河流的沉积层序和沉积分布进行研究,探讨了西侧河流对台湾海峡的沉积贡献并与海峡东侧的河流进行了比对研究。
     台湾海峡位于亚洲大陆东南,是我国最大的海峡,也是南海和东海进行物质能量交换的主要通道。在气候上受西太平洋高压与亚洲季风主导;在海洋上有北太平洋黑潮流经台湾东西两岸,并伴随南海暖流和东海环流等多种水系的影响,发育上升流、海洋锋等多种海洋过程,众多山溪性河流从海峡东西两侧注入海洋;在地质上是海陆两大板块的缝合带,因此,使得这块区域成为西太平洋与东亚地球科学系统的重要枢纽,在大气圈、水圈、地圈的地球系统科学研究中提供一个独具特色的自然研究平台。
     台湾海峡西侧近岸沉积物的分布以海坛岛为界,其北侧由北往南颗粒物的粒径增大,其南侧由岸向海颗粒物变粗。其上发育有多种多样的沙波微地貌特征,可进一步细分为挠曲状沙波、线型沙波、鱼鳞状波痕、细沙波纹等微地貌类型,常伴随沙脊分布。
     台湾海峡西侧近岸浅部沉积层序可分为QT_0和QT_1界面,局部可见QT_0~1和QT_0~2等次一级反射界面,进一步可划分为Ⅰ_1、Ⅰ_2和Ⅰ_3等亚层组,分别对应全新世的早期、中期和晚期。
     台湾海峡西侧近岸的全新统沉积厚度南北存在差异特征,以海坛岛为界,北部的全新统沉积一般大于10m,以南北向的带状分布特征为主,由北往南有变薄趋势,而海坛岛南侧的全新统界面埋深有从岸向海递增的趋势。本次研究揭示台湾海峡西侧近岸在全新世的沉积通量为14.3~11.7Mt/y,与海峡西侧3条主要河流闽江(7.5Mt/y)、九龙江(3Mt/y)、晋江(2.5Mt/y)等的现今入海通量估算的总和约13Mt/y相当。但长江来源物质和海峡西侧近岸河流推移质输沙通量大小等因素对本区域的影响需进一步研究。
     闽江、九龙江等的古河道均可见南北两支,但南侧河流的密度和宽度往往大于北侧分支,可能是当时的入海主通道。此外,在闽江、九龙江均可见显著的水下三角洲沉积特征,与黄慧珍揭示的现代长江水下三角洲层序的地震反射波特征类似。闽江揭示的水下三角洲呈北宽南窄的斧头状,九龙江揭示的水下三角洲呈哑铃状。
     在不考虑河流推移质物质输沙量的前提下,闽江和九龙江每年的入海通量约有一半沉积于水下三角洲以内的河口附近,其余越过水下三角洲输入台湾海峡。若将水下三角洲前缘区域作为主要的悬移物质落淤区进行估计,闽江水下三角洲沉积的悬移质物质通量约为0.5Mt/y,而九龙江水下三角洲沉积仅0.17Mt/y,与现今闽江7.5Mt/y、九龙江3Mt/y的年输沙通量相差较远,推测可能大量的悬移质颗粒进入了台湾海峡。
     虽然从流域输沙量和单位面积输沙量考虑,海峡西侧的河流比海峡东侧的主要河流低很多,如总输沙量仅相当于海峡东侧河流的约1/10。但值得注意的是可能很多从台湾岛上河流来的物质通过黑潮或南海暖流及台湾东北方向的冷涡诱导而输离了台湾海峡,而南侧河流则大多通过海底峡谷进入了南海东北部;与之相反,海峡西侧的河流沉积物大部分堆积于海峡之内,所以,其长期的总贡献可能并不比海峡东侧的河流少。
A lot of sediment, sub-bottom profile and side-scan sonar data have been acquired in thewestern nearshore of the Taiwan Strait, during the marine geophysics and geology investigation in2005~2009. Through data processing and analysis, combining with the~(14)C,~(210)Pb data have beenpublished in the Taiwan Strait, the distribution of surface sediments, shallow strata of sedimentarysequences, and sediment flux buried in the west side nearshore of the Taiwan Strait are studied.Especially, the flux and fate of the largest rivers derived sediment into the west side of the TaiwanStrait is estimated, and the river sediment contribution to the Taiwan Strait are compared betweenwest side and the east side of the Strait.
     The Taiwan Strait in the Southeast Asia continent is the largest Strait in China, and is themain material and energy exchange channel between the South China Sea and East China Sea.Which dominant by West Pacific high and the Asian monsoon on the climate; the Kuroshioflows via both sides of the Taiwan Strait Island which originated from the North PacificOcean, associated with the effects of South China Sea Warm Current and the East China Seacirculation, development of upwelling, ocean front and other oceanographic processes, andmany mountain rivers delivered into the Strait from east and west side; the Taiwan Strait isalso the suture zone of continental plate and oceanic plate in geology. These charactersmaking this area are an important hub for Earth System Science between the Western Pacificand East Asia, providing a unique platform for nature study in the atmosphere, hydrosphereand geosphere.
     Sediment types in the west side nearshor of the Taiwan Straits are bounded by the HaitanIsland, particles size increases from north to south in the northern, the same with the southernfrom coastal to sea. A variety of sand wave developed in this area, and can be classifiedthrough shape,like deflection ripples, linear ripples, scaly ripples, and other micro-landformtypes, associated with the distribution of sand ridges.
     Two acoustic reflection interface are identified with QT_0and QT_1in the seismic profiles, further QT_0~1、QT_0~2reflection interface can be recognition locally, and divided into Ⅰ_1、Ⅰ_2andⅠ_3acoustic units, corresponding to late holocene, middle Holocene and early Holocene.
     sedimentary thickness of Holocene in the western side nearshore of the Taiwan Strait isdifferences, bounded by Hai Tan Island, northern of Holocene deposition is generally greaterthan10m, there is a trend from north to south thinner, like a shape of strip in south-northdirection; while the thickness of Holocene sediment in the south of Hai Tan Island has anincreasing trend from the shore to sea. The west side nearshore sediment flux of the TaiwanStrait revealed by this study is14.3~11.7Mt/y, a figure not too different from the threemajor rivers in the west of the Strait,as Minjiang River (7.5Mt/y), Jiulong river(3Mt/y),Jinjiang river(2.5Mt/y) and so the estimated total flux from river delivered into the sea about13Mt/y. But the flux from Yangtze River transport to this area as well as bed load flux fromLocal River is not consideration.
     Ancient channel can be divided into two branch in Min river, Jiulong river and Jinjiangriver adjacent region, such as north and south branch, but south channel of the river is oftengreater density and width than the the north branch, may be the main channel into the sea atthe time. In addition, the Minjiang River, Jiulong River can be seen a significant sedimentarycharacteristic of subaqueous delta, similar with the modern Yangtze subaqueous deltasequence by Huang Huizhen revealed. The morphology of Minjiang River and Jiulong Riversubaqueous Delta is different, the former is a narrow-south and north-width like axe, and thelatter is dumbbell-shaped.
     Minjiang River and Jiulong River may capture about half of the river delivered fluxwithin the estuary and subaqueous delta, the rest entered into the Taiwan Strait. However, thisestimation doesn’t consider the river bed-load material sediment discharge. Assumption thesubaqueous delta front is the main area capture of suspended load matter from Minjiang Riverand Jiulong River, then suspended sediment mass flux is estimated of about0.5Mt/y, whilethe Jiulong River delta sediments is only0.17Mt/y, far underestimate the current flux in Minriver(7.5Mt/y)and Jiulong river(3Mt/y) respectively, likely to represent a large number ofsuspended sediment particles into the Taiwan Strait.The amount of river delivered sediment from the watershed and sediment discharge per unitarea is larger in the east side of Taiwan Strait than in the west side, ex the total sediment discharge in western of Taiwan Strait is about1/10of eastern. But it is worth noting that theflux from Taiwanese river may be escape from the Taiwan Strait. A lot part of them transportto the north through the South China Sea Warm Current and Kuroshio, with the conduct of thecold eddy in the northeast of Taiwan Island; and the flux from the river of south side inTaiwan Island transport into the east-north of South China Sea through canyon and adjacentchannels. However, the majority flux from the western side river delivered sediment of theTaiwan Strait is accumulation in the strait, so its total contribution to the long-term may notbe less than the river’s west of the Strait.
引文
[1]. Ashley G M. Classification of largescale subaqueous bedforms:A new look at an oldproblem[J]. Journal of Sedimentary Petrology,1990,60(1):160-172.
    [2]. Bianchi, T.S., Allison M.A. Large-River Delta-Front Estuaries as Natural “Recorders” ofGlobal Environmental Change[J]. Proceedings of the National Academy of Science,2009,106(20):8085-8092.
    [3]. Boggs W, Wang Huaqing, Chen Ruqin. Structure and composition of sediment model inthe continental shelf of Taiwan[J]. Acta Oceanographica Taiwanica,1974,4:13-561.
    [4]. Cai A Z, Zhu X N, Li Y M, et al. Sedimentary environment in Taiwan Shoal [J].Chinese Journal of Oceanology and Limnology,1992,10(4):331–339.
    [5]. Callaway J C,Delaune K D,Patrick W H. Chernobyl Cs-137used to determinesediment accretion rates at selected north European coastal wetlands[J].Limnology andOceanogrphy,1996,41(3):444-450.
    [6]. Chamard P,Velasco R H, Belli M,et al.Caesium-137and strontium-90distribution in asoil profile[J].Science of the Total Environment,1993,136:251-258.
    [7]. Chen J S, Wang F Y, Li X D, et al. Geographical variations of trace elements of themajor rivers in eastern China[J]. Environment Geology,2000,39(12):1334-1340.
    [8]. Chen W.R., Lan D.Z., Chen C.H.,et al.Environmental changes since late pleistocene inestuarine plain of Jiulong river, Fujian Province[J]. Chinese Geographical Science,1997,7(4):375-382.
    [9]. Chen, H., Hawkins, A. B. Relationship between earthquake disturbance, tropicalrainstorms and debris movement: an overview from Taiwan, Bull[J]. EngineeringGeology&Environment,2009,68:161-186.
    [10]. Chiang C S, Yu H S.Sedimentary erosive processes and sediment dispersal in Kaopingsubmarine canyon[J]. Science China Earth Sciences,2011,54:259-271.
    [11]. Chung C H, You C F, Chu H Y. Weathering Sources in the Gaoping (Kaoping) RiverCatchments, Southwestern Taiwan: Insights from Major Elements, Sr Isotopes, and RareEarth Elements[J]. Journal of Marine Systems,2009,76(4):433-443.
    [12]. Dadson S J, Hovius N, Chen H, et al. Earthquake-triggered increase in sediment deliveryfrom an active mountain belt[J]. Geology,2004.32(8):733-736.
    [13]. Dadson S, Hovius N, Pegg S, et al. Hyperpycnal river flows from an active mountainbelt[J]. Journal of Geophysical Research,,2005,110((F4016).
    [14]. David N E, Klump J V,Robbins J A, et al. Sedimentation rates, residence timesand radionuclide inventories in Lake Baikal from137Cs and210Pb in sedimentcores[J]. Nature,1991,350:601-604.
    [15]. Dronkers J, Miltenburg A G. Fine sediment deposits in shelf seas[J].Journal of MarineSystems,1996,7:119-131.
    [16]. Fang M D, Chang W K, Lee C L, et al. The Use of Polycyclic Aromatic Hydrocarbonsas a Particulate Tracer in the Water Column of Gaoping (Kaoping) Submarine Canyon[J].Journal of Marine Systems,2009,76(4):457-467.
    [17]. Geyer,W.R., Hill, P.S., Kineke, G.C..The transport, transformation and dispersal ofsediment by buoyant coastal flows[J]. Continental Shelf Research,,200424,927-949.
    [18]. Harms J C,Southard J B.Spearing D R.et al. Depositional environments as interpretedfrom primary sedimentary structures and stratificanon sequences [C].Tusla:SEPM ShortCourse No.2.1975:161.
    [19]. Henningsa I, Lurina B, Vernemmenb C,et al.On the behaviour of tidal current directionsdue to the presence of submarine sand waves[J]. MarineGeology,2000,169(1-2):57-68.
    [20]. Holeman J.N. The sediment yield of major rivers of the world[J]. Water ResourcesResearch,1968,4(4):737-747.
    [21]. Hong H S, Zhang C Y,Shang S L,et al. Interannual variability of summer coastalupwelling in the Taiwan strait[J]. Continental Shelf Research,,2009,29(2):479-484.
    [22]. Horng C S, Huh C A, Chen K H, et al. Air Pollution History Elucidated fromAnthropogenic Spherules and Their Magnetic Signatures in Marine Sediments offshoreof Southwestern Taiwan[J]. Journal of Marine Systems,2009,76(4):468-478.
    [23]. Horng, C.S. and Huh C.A. Magnetic properties as tracers for source-to-sink dispersal ofsediments: A case study in theTaiwan Strait[J]. Earth and Planetary ScienceLetters,2011,309,141-152.
    [24]. Huang BS, Chen KC, Huang WG, et al.Characteristics of strong ground motion across athrust fault tip from the September21,1999,Chi-Chi, Taiwan earthquake[J].Geophysical Research Letters,2000,27:2729-2732.
    [25]. Huh C A, Lin H L, Lin S W, et al. Modern Accumulation Rates and a Budget ofSediment off the Gaoping (Kaoping) River, SW Taiwan: A Tidal and Flood DominatedDepositional Environment around a Submarine Canyon[J]. Journal of Marine Systems,2009,76(4):405-416.
    [26]. Huh, C A,Chen, W F,Hsu, F H,et al. Modern (100years) sedimentation in the TaiwanStrait rates and source-to-sink pathways elucidated from radionuclides and particle sizedistribution[J]. Continental Shelf Research,2011,31(1):47-63.
    [27]. Hung J J, Lu C T, Huh C A,et al. Geochemical controls on distributions and speciationof As and Hg in sediments along the Gaoping (Kaoping) Estuary-Canyon system offsouthwestern Taiwan[J]. Journal of Marine Systems,2009,76(4):479-495.
    [28]. Jan CD, Shi eh CL, Tsang YC, Chen JC.Debris flow hazard zone mapping in Taiwan.International Workshop on Hazard Zone Mapping of Hillslope, Taiwan,2004:7-1–7-4.
    [29]. Jha S K,Chavan S B,Pandit G G,et al. Geochronology of Pb and Hg pollution in acoastal marine environment using global fallout137Cs[J].Journal of EnvironmentalRadioactivity,2003,69:145-157.
    [30]. Jolivert, L., Huchon, P., and Rangin, C. Tectonic setting of western Pacific marginalbasins[J]. Tectonophysics,1990,160,23-47.
    [31]. Kao S J, Milliman J D. Water and Sediment Discharge from Small Mountainous Rivers,Taiwan: The Roles of Lithology, Episodic Events and Human Activities[J]. The Journalof Geology,2008.116(5):431-448.
    [32]. Kao, S. J. and K. K. Liu.Estimating the suspended sediment load by using the historicalhydrometric record from the Lanyang-Hsi watershed[J]. Terrestrial Atmospheric andOceanic sciences,2001,12,401-414.
    [33]. Kao, S. J., T. Y. Lee, and J. D. Milliman. Calculating highly fluctuated suspendedsediment fluxes from mountainous rivers in Taiwan[J]. Terrestrial Atmospheric andOceanic sciences,2005,16,653-675.
    [34]. Kao, S.J., Jan, S., Hsu, S.C., et al. Sediment budget in the Taiwan Strait with high fluvialsediment input from mountainous rivers: New observations and synthesis[J]. TerrestrialAtmospheric and Oceanic sciences,2008,19(5),525-546.
    [35]. KnaapenM A F and Hulscher S JM H, Regeneration of sand waves afterdredging[J].Coastal Engineering,2002,46(4):277-289.
    [36]. Ko, D. S., R. H. Preller, G. A. Jacobs, T. Y. Tang, and S. F. Lin. Transport reversals atTaiwan Strait during October and November1999[J]. Journal of Geophysical Research,2003,108(C11),3370.
    [37]. Lee I H, Lien R C, Liu J T, et al, Turbulent Mixing and Internal Tides in Gaoping(Kaoping) Submarine Canyon, Taiwan[J]. Journal of Marine Systems,2009,76(4):383-396.
    [38]. Lee I H, Wang Y H, Liu J T, et al. Internal Tidal Currents in the Gaoping (Kaoping)Submarine Canyon[J]. Journal of Marine Systems,2009,76(4):397-404.
    [39]. Lee, H. J. and S. Y. Chao.Aclimatological description of circulation in and around theEast China Sea[J]. Deep Sea Research Part. II,2003,50,1065-1084.
    [40]. Lee, T., You C.F., Liu, T.K. Model-dependent10Be sedimentation rates for the TaiwanStrait and their tectonic significance[J]. Geology,1993,21,423-426.
    [41]. Li G.H., Cao Z.M., Lan D.Z.,et al. Spatial variations in grain size distribution andselected metal contents in the Xiamen Bay, China[J]. EnvironmentalGeology,2007,52(8):1559-1567.
    [42]. Liao H R, Yu H S, Su C C. Morphology and sedimentation of sand bodies in the tidalshelf sea of eastern Taiwan Strait[J]. Marine Geology,2008,248(3-4):161-178.
    [43]. Liao H R, Yu H S. Morphology, hydrodynamics and sediment characteristics of theChangyun Sand Ridge offshore western Taiwan[J]. Terrestrial Atmospheric and Oceanicsciences,2005,16(3):621-640.
    [44]. Libby W F. Radiocarbon Dating [M].Chicaga University of Chicaga Press,1955,2nd Ed.
    [45]. Lin, M.C., Juang, W.J., Tsay, T.K..Applications of the Mild-Slope Equation to TidalComputations in the Taiwan Strait[J]. Journal of Oceanography,2000,56:625-642.
    [46]. Liu C C, Chang C H, Wen C G, et al. Using Satellite Observations of Ocean Color toCategorize the Dispersal Patterns of River-Borne Substances in the Gaoping (Kaoping)River, Shelf and Canyon System[J]. Journal of Marine Systems,2009,76(4):496-510.
    [47]. Liu J P, Liu C S,Xu K H,et al. Flux and fate of small mountainous rivers derivedsediments into the Taiwan Strait[J]. Marine Geology,2008,256(1-4):65-76.
    [48]. Liu J.T, Hung J. J., Lin H. L., et al. From Suspended Particles to Strata: The Fate ofTerrestrial Substances in the Gaoping (Kaoping) Submarine Canyon[J].Journal ofMarine Systems,2009,76(4):417-432.
    [49]. Liu, J.T., Wang, Y.-H., Lee, I.-H.et al. Tidal sigatures of the benthic nepheloid layer inGaoping Submarine Canyon in southern Taiwan[J].Marine Geology,2010,271(1~2):119-130.
    [50]. Liu Z X, Xia D X, Berné,et al. Tidal deposition systems of China's continental shelf,with special reference to the eastern Bohai Sea[J].Marine Geology,1998,145(3-4):225-253.
    [51]. Liu Zhifei, Tuo Shouting, Colin C,et al.Detrital fine-grained sediment contribution fromTaiwan to the northern South China Sea and its relation to regional ocean circulation[J].Marine Geology,2008,255(3-4):149-155.
    [52]. Liu, J.P., Xu, K.H.,Li,A.C., et al. Flux and fate of Yangtze river sediment delivered tothe East China Sea[J]. Geomorphology,2007,85(3-4),208-224.
    [53]. Liu, J.T., Liu, K.J., Huang, J.-C.. The influence of a submarine canyon on river sedimentdispersal and inner shelf sediment movements: a perspective from grain-sizedistributions[J]. Marine Geology,2002,181(4),357-386.
    [54]. Liu, Z., Tuo, S., Colin, C.et al. Detrital fine-grained sediment contribution in the tidalshelf sea of eastern Taiwan Strait[J]. Marine Geology,2008,248(3-4):161-178.
    [55]. MARGINS Office. NSF MARGINS Program Science Plans2004[M]. ColumbiaUniversity, New York,2003.
    [56]. McCave, I.N.,. Transport and escape of fine-grained sediment from shelf areas. In:Swift,D.J.P., Duane, D., Pilkey, O.H.(Eds.).Shelf Sediment Transport. Dowden Hutchinsonand Ross, Stroudsburg, PA,1972,225-248.
    [57]. McKee B.A., Aller R.C., Allison M.A.,et al. Transport and transformation of dissolvedand particulate materials on continental margins influenced by major rivers: benthicboundary layer and seabed processes[J].Continental ShelfResearch,2004,24(7-8):899-926
    [58]. McManus J.Grain size determ ination and interp retation [A]. In:TuckerM(ed.)Techniques in Sedimento logy [C]. Backwell,Oxfo rd,1988.63-85.
    [59]. Meybeck, M., Durr, H.H., Vorosmarty, C.J. Global coastal segmentation and its rivercatchment contributors: a new look at land-ocean linkage[J].Global BiogeochemicalCycles,2006,20,GB1S90.
    [60]. Milliman J. D., Kao S. J. Hyperpycnal discharge of fluvial sediment to the ocean: impactof super-typhoon Herb (1996) on Taiwanese Rivers[J]. TheJournal of Geology,2005.113(5):503-516.
    [61]. Milliman, J D, Syvitski J P M. Geomorphic/tectonic control of sediment discharge to theocean: the importance of small mountainous rivers[J]. The Journal of Geology,1992,100(5):525-544.
    [62]. Milliman, J.D., Lin, S.W., Kao, S.J.,et al. Short-Term Changes in Seafloor CharacterDue to Flood-Derived Hyperpycnal Discharge:Typhoon Mindulle, Taiwan, July2004[J].Geology,2007,35,779-782.
    [63]. Milliman, J.D., Meade, R.H.World-wide delivery of sediment to the oceans[J].Journal ofGeology,1983,91(1),1-21.
    [64]. Milliman, J.D., S H T, Y Z S,et al. Transport and deposition of river sediment in theChangjiang estuary and adjacent continental shelf[J]. Continental Shelf Research,1985,4(1–2),37-45.
    [65]. Milliman, J.D., Syvitski, J.P.M. Geomorphic/tectonic control of sediment discharge tothe ocean: the importance of small mountainous rivers[J]. TheJournal of Geology,1992,100(5):525-544.
    [66]. Orton, G.J., Reading, H.G.Variability of deltaic processes in terms of sediment supply,with particular emphasis on grain size[J]. Sedimentology,1993,40:475-512.
    [67]. Pinet, P., Souriau, M.. Continental erosion and large-scale relief[J]. Tectonics,1988,7:563-582.
    [68]. Renfrew C. The tree-ring calibration of radiocarbon an archaeological evaluation[J].Proceedings of the Prehistoric Socierty,1970,36,280-311.
    [69]. Ritchie J C, McHenry,J R.Application of radioactive fallout cesium-137for measuringsoil erosion and sediment accumulation rates and patterns:A review[J].Journal ofEnvironmental Quality,1990,19:215-233.
    [70]. Simons D B,Richardson E V. Resistance to flow in alluvial channels [C].//Reineck HE.Singh L B. Depositional Sedimentary Environments with reference to terrigeonousclastics. Berlin:spring-Verlag.1973:927-953.
    [71]. Stuiver M, Polach H A. D iscussion: reporting of14C data [J]. Radiocarbon,1977,19(3):355-363.
    [72]. Summerfield, M.A., Hulton, N.J.Natural controls of fluvial denudation rates in majorworld drainage basins[J].Journal of Geophysical Research. B Solid Earth Planets,1994,99,13871-13883.
    [73]. Swift, D.J.P., Thorne, J.A. Sedimentation on continental margins: I. A general model forshelf sedimentation. In: Swift, D.J.P., Tillman, R.W., Oertel, G.F., Thorne, J.A.(Eds.),Shelf Sand and Sandstone Bodies, Geometry, Facies and Sequence Stratigraphy:International Association of Sedimentologists Special Publication,1991.,4:3-31.
    [74]. Syvitski JPM, Saito Y. Morphodynamics of Deltas Under the Influence of Humans[J].Global and Planetary Change ge,2007,57(3–4):261-282.
    [75]. Syvitski JPM, Peckham SD, Hilberman R,et al.Predicting the terrestrial flux ofsediment to the global ocean: a planetary perspective[J].SedimentaryGeology,2003,162:5-24.
    [76]. Syvitski JPM, V r smarty CJ, Kettner AJ, et al. Impact of humans on the flux ofterrestrial sediment to the global coastal ocean[J]. Science2005,308-376.
    [77]. Teng, L.S. Extensional collapse of the northern Taiwan mountain belt[J].Geology,1996,24,20,949-952.
    [78]. Thomas, H., Y. Bozec, K. Elkalay, and H. K.W. Baar.Enhanced open ocean storage ofCO2from shelf sea pumping[J].Science,2004,304,1005-1008.
    [79]. Tseng, R. S. and Shen Y. T. Lagrangian observations of surface flow pattern in thevicinity of Taiwan[J]. Deep Sea Research Part. II,2003,50,1107-1115..
    [80]. Vail P.R.1988.应用层序地层学进行地震地层学解释[J].国外油气勘探,1990,2(5):12-25.
    [81]. Viers J., Dupré, B., Gaillardet, J. Chemical composition of suspended sediments inWorld Rivers: New insights from a new database[J]. Science of the Total Environment,2009,407(2):853-868.
    [82]. Walsh, J.P., Nittrouer, C.A. Contrasting styles of off-shelf sediment accumulation inNew Guinea[J]. Marine Geology,2003,196(3–4),105-125.
    [83]. Walsh, J.P., Nittrouer, C.A.Understanding fine-grained river-sediment dispersal oncontinental margins[J]. Marine Geology,2009,263,34-45.
    [84]. Wang R M, You C F, Chu H Y,et al. Seasonal Variability of Dissolved Major and TraceElements in the Gaoping (Kaoping) River Estuary, Southwestern Taiwan[J]. Journal ofMarine Systems,2009,76(4):444-456.
    [85]. Wang Y H, Jan S, Wang D P. Transports and tidal current estimates in the Taiwan Straitfrom shipboard ADCP observations (1999–2001)[J]. Estuarine, Coastal and ShelfScience,2003,57(1–2):193-199.
    [86]. Weight L D, Coleman J M, Missisappi river mouth processes: Effluent dynamics andmorphalcgic developanent[J]. The Journal of Geology,1974,82(6):751-778.
    [87]. Xiao J,Xu Q,Nakamura T et aL. Holocene vegetation variaton in the DaihaiLakeregion of North-central China: A direct indication of the Asian monsoon climatichistory[J].Quatemary Science Reviews.2004,23:1669-1679.
    [88]. Xu, K.H., Milliman, J.D., Li, A.C., Liu, J. P., Kao, S.J. and Wan, S.M..Yangtze-andTaiwan-Derived Sediments in the Inner Shelf of East China Sea[J].Continental ShelfResearch,2009,29,2240-2256.
    [89]. Yu H S, Chiang C S, Shen S M. Tectonically Active Sediment Dispersal System in SWTaiwan Margin with Emphasis on the Gaoping (Kaoping) Submarine Canyon[J]. Journalof Marine Systems,2009,76(4):369-382.
    [90]. Yu SB, Chen HY, Kuo LC.Velocity field of GPS stations in the Taiwan area[J].Tectonophysics,1997,274:41-59.
    [91]. Yu, H., Huang, C., Ku, J. Morphology and possible origin of Kaoping submarine canyonhead off southwest Taiwan[J]. Acta Oceanographica Taiwanica,1991,27,40-50.
    [92]. Zhang, Wen-Zhou, Hong, Hua-Sheng, Shang, Shao-Ping,et al.Strong southwardtransport events due to typhoons in the Taiwan Strait[J]. Journal of GeophysicalResearch.2009,114(C11),C11013.
    [93].边淑华,夏东兴,陈义兰,赵月霞.胶州湾口海底沙波的类型、特征及发育影响因素[J].中国海洋大学学报.2006,36(2):327-330.
    [94].蔡爱智,蔡月娥,朱孝宁,等.福建九龙江口入海泥沙的扩散和河口湾的现代沉积[J].海洋地质与第四纪地质,1991,11(1):57-67.
    [95].蔡保全.“东山陆桥”与台湾最早人类[J].漳州师院学报,1997,3:31-36.
    [96].蔡锋,黄敏芬,苏贤泽,等.九龙江河口湾泥沙运移特点与沉积动力机制[J].台湾海峡,1999,18(4):418-424.
    [97].蔡月娥,陈维杰,蔡爱智.厦门湾的沉积环境.海洋地质与第四纪地质[J]1987,7(1):27-38.
    [98].曾成开,朱永其,王秀昌.台湾海峡的底质类型与沉积分区[J].台湾海峡,1982,1(1):54–61.
    [99].曾文义,程汉良,曾宪章,等.厦门港的淤积现状及防淤建议[J].海洋通报,1991,10(1):45-49.
    [100].陈峰,王海鹏,郑志风,等.闽江口水下三角洲的形成与演变Ⅰ:水下三角洲形成的环境因子与地貌发育[J].台湾海峡,1998,17(4):376-401.
    [101].陈峰,王海鹏,郑志凤,等.闽江口水下三角洲的形成与演变Ⅲ_三角洲前缘与前三角洲[J].台湾海峡,1999,18(2):140-146.
    [102].陈峰,张培辉,王海鹏,等.闽江口水下三角洲的形成与演变Ⅱ:水下三角洲平原[J].台湾海峡,1999.18(11):1-5.
    [103].陈华胃,郭永谋,杨顺良.九龙江入海口重矿物的迁移及其对厦门西港南部淤积的影响[J].热带海洋,1994,13(1),39-46.
    [104].陈金泉,傅子琅,何发祥,等.厦门湾潮、余流及其对泥沙污染物质迁移的影响[J].台湾海峡,1985,4(1):16-20.
    [105].陈金泉,付子琅,李法西.关于闽南一台湾浅滩渔场上升流的研究[J].台湾海峡,1982,1(2):5-12.
    [106].陈进兴.利用210Pb测定沉积速率和沉积物的年龄[J].海洋湖沼通报,1983,3:33-37.
    [107].陈进兴.用210Pb法测定沉积速率时有关补偿值扣除的研究[J].海洋湖沼通报,1984,3:27-33.
    [108].陈胜晶.福建省登陆台风与暴雨洪水关系分析[J].海峡科学,2010,10:173-176.
    [109].陈祥锋,马淑燕,刘苍宇.闽江口动力沉积特征的探讨[J].海洋通报,1998,17(6):40-47.
    [110].陈耀泰.珠江口现代沉积速率与沉积环境[J].中山大学学报(自然科学版),1992,31(2):100-107.4
    [111].陈玉仁,丁祥焕,吴维灿,等.晋江下游平原一泉州湾的形成机制与地震活动[J]华南地震.1982,2(2):16-37.
    [112].戴民汉,翟惟东,鲁中明等.中国区域碳循环研究进展与展望[J],地球科学进展2004,19(1):120-129.
    [113].丁祥焕.福建东南沿海活动断裂与地震[M].福建:福建科学技术出版社,1999,184-187.
    [114].杜晓琴,李炎,高抒.台湾浅滩大型沙波、潮流结构和推移质输运特征[J].海洋学报,2008,30(5):520-631.
    [115].范德江,杨作升,郭志刚.中国陆架210Pb测年应用现状与思考[J].地球科学进展,2000,15(3):297-302.
    [116].范开国,黄韦艮,贺明霞,等.SAR浅海水下地形遥感研究进展[J].遥感技术与应用,2008,23(4):479-485.
    [117].范时清.海洋地质科学[M].海洋出版社,2004,38-39.
    [118].方建勇,陈坚,李云海,等.厦门湾现代沉积环境特征研究[J].沉积学报,2010,28(2):356-364.
    [119].福建海洋研究所.台湾海峡中、北部海洋综合调查报告[M].北京:科学出版社,1988.138-187.
    [120].高抒,方国洪,于克俭,等.沉积物输运对砂质海底稳定性影响的评估方法及应用实例[M].海洋科学集刊,2001,43:25-37.
    [121].高抒.全球变化中的浅海沉积作用与物理环境演化:以渤、黄、东海区域为例[J].地学前缘,2002,9(2),329-335.
    [122].葛全胜,王芳,陈泮勤,等.全球变化研究进展和趋势[J].地球科学进展,2007,22(4):417-427.
    [123].耿秀山.中国东部陆架的海底古河系[J].海洋科学,1981,2,21-26.
    [124].龚香宜,祁士华,吕春玲等.福建省泉州湾表层沉积物中重金属的含量与分布[J].环境科学与技术,2007,30(1):27-29.
    [125].郭允谋,郑承忠,潘亚明.台湾海峡的现代沉积环境[C]∥.台湾海峡及邻近海域海洋科学讨论会论文集,北京,海洋出版社,1995,145-153.
    [126].国家海洋局科技情报研究所.台湾海峡及邻近海区的水文概况[J].台湾海峡,1982,1(1):8-10.
    [127].洪华生,阮五崎,洪港船,等.闽南一台湾浅滩渔场上升流区生态系研究(C).北京:科学出版社,1991.75-157.
    [128].洪辉亮,陈峰.九龙江口一岩心的重矿物组合[J].台湾海峡,2003,22(1),65-78.
    [129].洪辉亮.厦门港重矿物研究[J].海洋学报,1993,15(3):49-62.
    [130].胡毅,陈坚,黄财宾.秋初台湾浅滩周边海域悬浮物质浊度和叶绿素a荧光分布特征[J].中国海洋大学学报,2009,39(3)490-494.
    [131].胡毅,陈坚.夏季台湾浅滩周边海域悬浮物质浊度和叶绿素a荧光分布特征[J].台湾海峡,2007,26(3):334-341.
    [132].黄昭,王善雄.台湾海峡滨海断裂带的构造特征与活动性[J].大地测量与地球动力学,2006,26(3):16-22.
    [133].黄慧珍,沈邦培,胡强生.全新世长江水下三角洲浅层物探资料的地质意义[J].海洋地质与第四纪地质,1985,5(4):81-94.
    [134].黄文盛,黄月法.浙江省河口重矿物及其组合特征[J].浙江大学学报(自然科学版);1984,11(4):496-503.
    [135].金翔龙.东海海洋地质[M].北京,海洋出版社,1992,185-219.
    [136].蓝东兆,张维林,陈承惠,等.台湾浅滩中粗砂的时代与成因[J],台湾海峡,1991,10(2):156-161.
    [137].李朝新,刘炎光,刘振夏,等.泉州湾泥沙运移与冲淤变化[J].海洋科学进展,2008,26(1):26-34.
    [138].李朝新,刘振夏,胡泽建,等.泉州湾泥沙运移特征的初步研究[J].海洋通报,2004,23(2):25-31.
    [139].李春初.论河口体系及其自动调整作用—以华南河流为例[J].地理学报,1997.52(4):353-359.
    [140].李东义,陈坚,王爱军,等.闽江河口沉积动力学研究进展[J].海洋通报,2008,27(2):111-116.
    [141].李凤业,高抒,贾建军,等.黄、渤海泥质沉积区现代沉积速率[J].海洋与湖沼,2002,33(4):364-369.
    [142].李桂海,曹志敏,蓝东兆,等.厦门西港沉积环境变化及重金属的污染累积[J].地球科学:中国地质大学学报,2008,33(1):124-130.
    [143].李家洋,陈泮勤,葛全胜,等.全球变化与人类活动的相互作用—我国下阶段全球变化研究工作的重点[J],地球科学进展,2005,20(4):371-377.
    [144].李立,李达.台湾浅滩西侧水适夏季的水文特征与上升流[J].台湾海峡,1989,3(4):353-358.
    [145].李立,吴日升,郭小钢.台湾海峡南部的海洋锋[J].台湾海峡,2000,19(2):147-155.
    [146].李铁刚,曹奇原,李安春,等.从源到汇:大陆边缘的沉积作用[J].地球科学进展,2003,18(5):713-721.
    [147].李云海,陈坚,黄财宾,等.泉州湾沉积物重金属分布特征及环境质量评价[J].环境科学,2010,31(4):931-938.
    [148].林勇.闽江福州段河道演变分析与整治探讨[J].人民珠江,2004(6):25-26.
    [149].林雨良,廖康明.台湾海峡波浪研究[J].台湾海峡.1983,2(1):20-28.
    [150].刘苍宇,贾海林,陈祥锋.闽江河口沉积结构与沉积作用[J].海洋与湖沼,2001,32(2):177-184.
    [151].刘金芳,刘忠,顾翼炎,等.台湾海峡水文要素特征分析[J].海洋预报,2002,19(3):22-32.
    [152].刘维坤.台湾海峡的地形特征与地貌发育.台湾海峡及邻近海域海洋科学讨论会论文集,1995:106-110.
    [153].刘维坤,唐宗福,刘强池.厦门港湾海底地貌及其冲淤变化[J].台湾海峡,1984,3(2):179-188.
    [154].刘锡清,刘守全,王圣洁,等.南海灾害地质发育规律初探[J].中国地质灾害与防治学报,2002,13(1):12-16.
    [155].刘振夏,夏东兴,王揆洋.中国陆架潮流沉积体系模式[J].海洋与溯沼,1998,29(2):141-147.
    [156].刘振夏,夏东兴.中国近海潮流沉积沙体[M].北京:海洋出版社,2004:56-57,222.
    [157].刘振夏,夏东兴.潮流脊的初步研究[J];海洋与湖沼;1983,14(1):286-296.
    [158].刘忠臣,刘保华,黄振宗,等.中国近海及邻近海域地形地貌[M].2005,54-65,144-151.
    [159].陆凤山,廖康明,肖晖等.泉州湾波浪分布特征研究[J].台湾海峡,1998,17(1):1-8.
    [160].罗健,龚静怡,张行南.九龙江口及厦门湾悬沙分布和输移沉积的多时相遥感分析[J].水利水运科学研究,1999,12(4):368-376.
    [161].马道修,刘锡清.台湾浅滩构造台地的形成与发展[J],海洋地质动态,1994,7:4-6.
    [162].马宗晋,王乾盈,徐杰.台湾海峡两岸横向构造的对比研究[J].中国科学(D辑),2002,32(6):441-451.
    [163].秦蕴珊,等.东海地质[M].北京:科学出版社,1987,35-37.
    [164].秦蕴珊,郑铁民.东海大陆架沉积物分布特征的初步探讨[C]∥黄东海地质[M].北京:科学出版社,1982:39-51.
    [165].任明达,王乃梁.现代沉积环境概论[M].北京:科学出版社.1985,1-4.
    [166].邵恒方.福建三大河流沙量及其变化分析[J].亚热带水土保持,1991,1:42-46.
    [167].沈金瑞.台中—晋江横向构造带对福建现代地壳变形和地震的影响[J].莆田学院学报,2009,16(5).
    [168].沈金瑞,许世远,傅文杰.台湾海峡地区横向构造及其对东南沿海地震的作用[J].大地构造与成矿学,2009,32(4),535-541.
    [169].苏贤泽.福建近岸泥质沉积物泥沙来源区剖析.台湾海峡及邻近海域海洋科学讨论会论文集,海洋出版社,北京,1995:170-176.
    [170].孙千里,肖举乐.岱海沉积记录的季风/干旱过渡区全新世适宜期特征[J].第四纪研究.2006,26(5):781-790.
    [171].汤军健,余兴光,陈坚,等.闽江口入海悬沙输运的数值模拟[J].台湾海峡,2009,28(1):90-95.
    [172].万国江,Appleby P G.环境生态系统散落核素示踪研究新进展[J].地球科学进展,2000,15(2):172-177.
    [173].万国江,林义祝,黄荣贵,等.红枫湖沉积物137Cs垂直剖面的计年特征及侵蚀示踪[J].科学通报,1990,35(19):1487-1490.
    [174].万国江.现代沉积年分辨的137Cs计年一以云南洱海和贵州红枫湖为例[J].第四纪研究,1999,19(1):73-80.
    [175].汪小钦,王钦敏,邬群勇,等.遥感在悬浮物质浓度提取中的应用—以福建闽江口为例[J].遥感学报[J],2003,7(1):54-57.
    [176].汪亚平,高抒.胶州湾沉积速率多种分析方法的对比[J].第四纪研究,2007,27(5):787-796.
    [177].王爱军,高抒,陈坚.137Cs测年在海岸盐沼中的应用[J].海洋地质与第四纪地质,2006,26(5):85-90.
    [178].王海鹏,张培辉,陈峰,等.闽江口水下三角洲沉积特征及沉积环境Ⅱ晚更新一全新世沉积特征和沉积环境[J].台湾海峡,2000,19(2),112-140.
    [179].王海鹏,张培辉,陈峰,等.闽江口水下三角洲沉积特征及沉积环境I.现代沉积特征和沉积环境[J]台湾海峡,2000,19(1):113-118.
    [180].王宏,范昌福.环渤海海岸带14C数据集(Ⅱ)[J].第四纪研究,2005,25(2):141-156
    [181].王宏,李凤林,范昌福,等.环渤海海岸带14C数据集(Ⅰ)[J].第四纪研究,2004,24(6):601-613.
    [182].王文介.南海北部的潮波传播与海底沙脊和沙波发育[J].热带海洋,2000,19(1):1-7.
    [183].王永红,沈焕庭.河口海岸环境沉积速率研究方法[J].海洋地质与第四纪地质,2002,22(2):115-120.
    [184].王元领,陈坚,曾志,等.九龙江河口湾高浓度悬沙水体的分布与扩散特征[J].台湾海峡,2005,24(3),383-394.
    [185].吴培木,许永水,李燕初,等.台湾海峡台风暴潮非线性数值计算[J].海洋学报,1981,3(1):28-43.
    [186].吴艳宏,王苏民,周力平.岱海14C测年的现代碳库效应研究[J].第四纪研究,2007,27(4):507-510.
    [187].伍伯瑜.台湾海峡环流研究中的若干问题[J].台湾海峡,1982,1(1):1-6.
    [188].夏东兴,刘振夏.潮流脊的形成机制和发育条件[J].海洋学报,1984,6(3):361-367.
    [189].夏真;马胜中;石要红.伶仃洋海底浅层气的基本特征[J];第四纪研究;2006,26(3):456-461.
    [190].肖晖,蔡淑惠.台湾海峡西部海域温、盐度分布特征[J].台湾海峡,19887(3):228-233.
    [191].肖晖,郭小钢,吴日升.台湾海峡水文特征研究概述[J].台湾海峡,2002,21(1):126-138.
    [192].徐茂泉,陈友飞.海洋地质学[M].厦门:厦门大学出版社,1999.103.
    [193].徐茂泉,李超.九龙江口沉积物中重矿物组成及其分布特征[J].海洋通报,2003,22(4),32-40.
    [194].徐茂泉.九龙江口表层沉积中碎屑矿物的研究[J].厦门大学学报(自然科学版),1994,33(5):675-680.
    [195].徐勇航,陈坚.台湾海峡西岸闽江口和九龙江口沉积物中碎屑锆石铀-铅定年及物源意义[J].海洋学报,2010,32(4):110-117.
    [196].许爱玉,骆炳坤,陈松.泉州湾表层沉积物重金属的地球化学特征[J].台湾海峡,1989,8(4):383-388.
    [197].许志峰,王明亮,洪阿实,等.台湾海峡西部海域晚更新世以来沉积物年代和沉积速率[J].台湾海峡,1989,8(2):114-121.
    [198].许志峰.台湾海峡西部海域第四纪晚期沉积速率的变化[J].台湾海峡,1996,15(3):223-228.
    [199].杨顺良.闽南-台湾浅滩渔场地形地貌与上升流的关系[C]∥闽南-台湾浅滩渔场上升流区生态系研究[M],北京:科学出版社,1991:39-46.
    [200].杨顺良,骆惠仲,梁红星.东山岛以东近岸海域水下沙丘及其环境[J].台湾海峡,1996,15(4):324-331.
    [201].叶银灿,宋连清,陈锡土.东海海底不良工程地质现象分析[J].东海海洋,1984,2(3):30-35.
    [202].尹金辉,郑勇刚,刘粤霞.古地震14C年龄的日历年代校正[J].地震地质,2005,27(4):678-688.
    [203].于瑞莲,胡恭任.泉州湾沉积物重金属形态特征及生态风险[J].华侨大学学报(自然科学版),2008,29(3):419-423.
    [204].俞何兴,周颖蔚.台湾北部及西部陆架之地貌与地质特征[J].中国科学(D辑),2001,31(6):486–495.
    [205].恽才兴,等,利用卫星象片分析长江口入海悬浮泥沙扩散问题[J].海洋与湖沼,1981,12(5):395-400.
    [206].张国友,张绪东,俞慕耕.台湾海区的风浪特点及分布规律[J].海洋通报,2002,21(1):23-30.
    [207].张文舟,胡建宇,商少平,等.福建沿海风暴潮特征的分析[J].海洋通报,2004,23(3):12-19.
    [208].张学宏,俞慕耕,江伟,等.台湾周边海区的海浪特点[J].海洋预报,2000,17(1):75-83.
    [209].张燕,潘少明,彭补拙.用137Cs计年法确定湖泊沉积物沉积速率研究进展[J].地球科学进展,2005,20(6):671-678.
    [210].张燕,彭补拙,陈捷,等.借助137Cs估算滇池沉积量[J].地理学报,2005.60(1):71-78.
    [211].赵澄林,朱筱敏.沉积岩石学(第三版)(高教)[M],北京:石油工业出版社,2001:48-72.
    [212].赵今生,赵子丹,秦崇仁,等.海岸河口动力学[M].北京:海洋出版社.1993.504-507.
    [213].郑承忠.台湾海峡南部的残留沉积物.闽南一台湾浅滩渔场上升流区生态系研究(C).北京:科学出版社,1991:66-74.
    [214].郑铁民,张君元.台湾浅滩及其附近大陆架的地形和沉积特征的初步研究[C]∥黄东海地质[M],北京:科学出版社,1982:52-66.
    [215].郑文振,陈福年,陈新忠.台湾海峡的潮汐和潮流[J].台湾海峡,1982,1(2):1-4.
    [216].郑颖青,吴启树,林笑茹,等.近106a来登陆福建台风的统计分析[J].台湾海峡,2006,25(4):541-547.
    [217].郑重,李少菁,等.台湾海峡浮游挠足类的分布[J].台湾海峡,1982,1(1):71-72.
    [218].中国海湾志编纂委员会.中国海湾志:第十四分册[M].北京:海洋出版社,1998,712.
    [219].周定成.台湾海峡西岸海底沉积类型的展布及其控制因素[J].海洋学报,1987,9(1):64-68.
    [220].周定成孙全许志峰.台湾海峡西部海域晚更新世3次“海侵”依据的探讨[J].台湾海峡,2011,30(3):324-329
    [221].周建军,陈刚,胡成,等.闽江河口地区河道演变及其影响因素分析[J].海岸工程,2004,23(1):13-20.
    [222].祝永康.闽江口分汉河床的特征、类型及其成因[J].海洋学报,1991,13(3):363-370.
    [223].庄振业,林振宏,周江,等.陆架沙丘(波)形成发育的环境条件[J].海洋地质动态,2004,20(4):5-10.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700