用户名: 密码: 验证码:
海洋环境综合数据时空建模与可视化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着我国海洋资源开发和利用的不断深入,海洋环境监测已经成为海洋及环境保护领域重要的研究课题。长期以来海洋环境调查研究积累了大量的多源、异构、多维、动态、海量的海洋环境综合数据,特别是随着空间探测技术的飞速发展,这些数据更是以几何级数般速度增长。利用先进的地理空间信息技术对海洋环境综合数据进行管理和共享已经成为近几年的趋势。论文分析了目前GIS技术在海洋领域的应用中存在的不足,并针对其中的关键问题——海洋环境综合数据时空建模方法与可视化技术进行了研究。指出了现有的GIS数据模型在表达海洋环境数据上的不足,探索适合海洋时空数据的建模机制。在可视化表达上,引入科学可视化、虚拟现实仿真、体绘制、网格计算等计算机可视化领域的最新技术,结合海洋环境监测可视化系统的实际需求,提出了几种可行性强的基于GIS的可视化方法和技术路线,并将研究结果进行了实践和应用。具体的研究内容如下:
     1、分析了现有GIS数据模型在海洋环境领域应用中的不足,提出了以场模型为主,基于场和对象联合建模的海洋环境数据概念模型,针对海洋时空数据的格网特性,提出了基于基态修正的快照格网模型,并设计了集成场和特征的面向对象的GIS时空数据模型。
     2、讨论了GIS可视化的部分关键理论和技术,包括:科学计算可视化、地学可视化、虚拟现实仿真、虚拟GIS、三维图形原理、计算机图形开发技术、空间数据库引擎、分布式GIS、网格计算等,指出目前GIS可视化面临的难题及其在表达海洋环境数据上的不足,并提出了基于GIS的可视化技术集成框架。
     3、分析了GIS空间数据库在可视化系统中的重要性,采用大型对象-关系型数据库Oracle对海洋环境数据进行一体化管理,针对海洋环境监测系统的实时性要求,给出了数据实时入库和分发的方法。为了实现海量数据的快速显示,采用基于多分辨率瓦片金字塔技术、海量数据索引技术和基于线程的实时调度等技术,达到了可视化实际应用的要求。
     4、研究了海洋虚拟环境建模方法,提出了海空、海面、海体、海底的自然环境和非自然实体建模方法。针对真实感海浪的模拟,提出了用海洋波谱函数来对随机的海洋波面进行构造,这种基于二维空间的模拟方法,通过对给定能量谱的正弦分量进行多重求和,简单易行,并在视觉上获得较好的效果。
     5、研究基于虚拟GIS的海洋环境虚拟可视化。分析了虚拟现实技术与GIS的结合方式,提出了构建虚拟GIS的两种开发策略,指出了虚拟现实和GIS的松散数据结合是较好的集成应用方式。为了更加逼真形象地描述虚拟海洋环境,提高程序的效率和质量,简化仿真建模过程,本文提出了基于三维图形引擎的松散式集成的设计方法,并设计开发了支持海洋虚拟环境的三维图形引擎OE3DGE。
     6、根据海洋环境领域的应用特点提出了海洋多维动态数据的时空可视化方法,全面、详细和准确地表现和描述多维对象的空间特征和变化趋势。为海洋科研和工作人员提供一种可视化表达和分析工具,来直观的表达和揭示海洋现象和构造特征,提供海洋现象的动态变化、历史回溯和未来演变的可视化。
     7、为了动态地显示海洋环境三维数据场的整体变化情况,提出了基于体绘制和面绘制的数据场三维动态可视化方法,在ArcGIS平台上给出了基于先进的可视化工具集VTK的可视化扩展解决方案,实现大规模数据场实时动态可视,为直观准确地了解海洋环境的状况提供指导。
     8、针对海洋环境数据可视化中的数据量大、计算密集、效率低、分布式等特点,提出了面向网格计算可视化方法,通过动态的资源组织满足可视化应用的计算和数据存储需求,设计了面向海洋环境数据可视化的多层网格系统架构,讨论了面向网格的可视化流程,并以海洋环境数据的三维体绘制为例,对系统做了初步测试。
As the development of China's marine resources utilization, the marine environment monitoring has become an important research topic. During the long-term marine survey and research, prodigious amounts of complex marine environment data featured as multi-source, heterogeneous, multi-dimensional, dynamic in structure and temporal are accumulated. Especially with the development of remote sensing technology, such data has been generated rapidly. It has become a trend to utilize the spatial information technology in the management and sharing of the marine environment comprehensive data in recent years. By analyzing the problems existed in the marine GIS, this paper does research on the key technology of modeling and visualization of marine environment comprehensive data. Pointed out that the current GIS software's deficiency in expressing the marine data, introduced of the latest technology of computer visualization such as scientific visualization, virtual reality simulation, volume rendering and grid computing, to meet the marine environment monitoring visualization application requirements, put forward several practical visualization methods and techniques routes based on GIS, and make application of the technology in practice. Specific study as follows:
     1. Analyzed the existing GIS data model's deficiency in applying to the marine environment field, put forward a field-based model, a joint model based on the field model and the object model, and snapshot grid model for marine temporal and spatial data. Designed the object-oriented data model which integrated field and feature.
     2. Discussed the key theories and technologies of the GIS visualization, including: scientific computing visualization, Geo-Visualization, virtual reality simulation, virtual GIS, 3D graphics theory, computer graphics technology, spatial database engine, distributed GIS and grid computing, pointed out the challenges in the expression of marine environment data, and designed a GIS-based visualization technology integration framework.
     3. Analyzed the importance of the spatial database in a visual system, used the object-relational database Oracle to store marine environment data. Designed the data real time storage and assigning method to meet marine environment monitoring system's requirements. Used the multi-resolution tile pyramid technology, massive data indexing technology, threads-based of real-time scheduling, and other technologies to reach the quickly display requirement of actual application.
     4. Studied the modeling methods of marine virtual sense, proposed the marine natural environment and artificial entity modeling methods. In order to simulation the 3D marine wave, proposed use of marine spectrum function to structure the random marine wave. Such 2d-based simulation, through to multiple summation of the sine component given by energy spectrum, is easy and feasible, and obtains the good effect in the vision.
     5. Researched virtual visualization of marine environment based on virtual GIS. Analyzed the integration of virtual reality technology and GIS, proposed two development strategies of virtual GIS, and pointed out that the loose data combined of virtual reality and GIS is the better integration method. In order to enhance the efficiency and the quality of procedures, simplify the process of modeling and simulation, this article has proposed the loosely-integrated design method based 3D graphics engine, and developed the marine environment 3D graphics engine OE3DGE.
     6. According to the characteristics of the marine environment application, proposed marine multidimensional dynamic data visualization method. Describe the multi-dimensional characteristics of the space object and its change trend comprehensively, detailed and accurately. Providing marine scientific researcher a visual expression and analysis tools, intuitive expression and to reveal the marine phenomena and structural characteristics, providing the dynamic changes in ocean phenomena, historical retrospective and the visualization of future evolution.
     7. In order to dynamically display marine environment 3D data in the overall change, proposed the visualization methods of 3D field data based on volume rendering. The scalable solutions based on ArcGIS platform using advanced visualization tool sets VTK of is given, to achieve large-scale real-time dynamic field data visualization, intuitive accurate understanding of the situation of the marine environment.
     8. For the visualization of marine environmental data in large, compute-intensive, low efficiency, distributed, and other characteristics, proposed the grid-enabled visualization methods. Through the dynamic organization of resources to meet the visual computing applications and data storage needs, designed the multi-grid system architecture for the marine environment data visualization, and discussed the process of the grid-enabled visualization. Taken the volume rendering of marine environment data's as an example, has made the preliminary test of the system.
引文
陈戈,方朝阳.遥感和GIS技术在全球海面风速分析中的应用[J].遥感学报,2002,6(2):123-128.
    陈静.分布式虚拟GIS关键技术研究[D]:[博士学位论文].武汉:武汉大学,2004.
    陈静姝,王庆官,张凡,迟学斌.基于网格计算环境的可视化系统设计与实现[J].计算机应用研究,2007,24(8):248-250.
    陈军.Voronoi 动态空间数据模型[M].北京:测绘出版社,2002.
    陈述彭.信息流与地图学[M].北京:中国地图出版社,1991.
    陈述彭,李国胜,周成虎等.海岸带研究[M].北京:中科院地理所,1997.
    陈勇,陈戈,张淑军.近岸海浪实时仿真[J].系统仿真学报,2008,20(3):741-745.
    池天河,张新,王雷,王钦敏.海洋立体监测信息网络服务体系[J].华侨大学学报:自然科学版,2003,24(4):439-442.
    樊宁.网格体系结构概述.http://tech.51cto.com/art/200611/35461.htm,2006-11-29.
    方金云,何建邦.网格 GIS 体系结构及其实现技术[J].地球信息科学,2002(4):36-42.
    冯杭建.面向网络的海量空间数据库引擎研究与开发[D]:[硕士学位论文].杭州:浙江大学,2004.
    冯士笮,李凤歧,李少青.海洋科学导论[M].北京:高等教育出版社,1999.
    高锡章.基于大型数据库的海洋 GIS 设计与自主开发研究[D]:[博士学位论文].杭州:浙江大学,2004.
    公剑,徐炜民.基于网格的虚拟数据源的设计与实现[J].计算机应用与软件,2006,23(10):43-46.
    龚建华,林珲.虚拟地理环境-在线虚拟现实的地理学透视[M].北京:高等教育出版社,2001.
    龚建华.地学可视化-理论、技术及其应用,博士后研究工作报告.1997.
    龚健雅.空间数据库管理系统的概念与发展趋势[J].测绘科学,2001,26(3):4-9.
    候军.WEBGIS 技术在海洋监测信息集成中的应用研究[J].海洋技术,2005,24(4):18-22.
    季民.海洋渔业GIS时空数据组织与分析[D]:[博士学位论文].泰安:山东科技大学,2004.
    江斌,黄波,陆锋.GIS 环境下的空间分析和地学视觉化[M].北京:高等教育出版社,2002.
    姜永发,闾国年.网格计算与 GRID GIS 体系结构与关键技术探讨[J].测绘科学, 2005,30(4):16-19.
    蒋捷,陈军.基于事件的时空数据库若干思考[J].测绘学报,2002,29(1):64-70.
    金宝轩,边馥苓.基于 OGSA-DAI 的空间数据访问和集成研究[J].测绘信息与工程,2005,30(3):20-22.
    康雨,闫相国,郑崇勋,陈杰.医学可视化网格平台的设计与实现[J].西安交通大学学报,2007,41(8):1000-1002.
    李安虎,周玉斌,刘海行,卢铭.基于WebGIS的海洋科学数据共享平台的分析与设计[J].海洋科学进展,2004,22(1):85-90.
    李德华,王乘.基于网格的“数字城市”应用服务平台框架[J].华中科技大学学报(城市科学版),2005,22(1):19-22.
    李德仁,朱欣焰,龚健雅.从数字地图到空间信息网格-空间信息多级网格思考[J].武汉大学学报(信息科学版),2003,28(6):642-650.
    李晖,郭晨,李晓方.基于 Matlab 的不规则海浪三维仿真[J].系统仿真学报,2003,15(7):1057-1059.
    李军.海量影像数据库的研究、设计与实现[D]:[博士学位论文].武汉:中国地质大学,2000.
    李润洲,方明,孙友仓.网格环境中的多维数据信息集成访问研究[J].计算机工程,2006,32(17):280-282.
    李苏军,杨冰,吴玲达.海浪建模与绘制技术综述[J].计算机应用研究,2008b,25(3):666-669.
    李苏军,杨冰,吴玲达.基于 Gerstner-Rankine 模型的真实感海洋场景建模与绘制[J].工程图学学报,2008a(2):77-82.
    李伟.协同 GIS 理论模型与技术研究[D]:[博士学位论文].杭州:浙江大学,2005.
    李蔚清.分布式仿真系统中的虚拟环境生成技术研究[D]:[博士学位论文].南京:南京理工大学,2007.
    李新,程国栋,卢玲.空间插值方法比较[J].地球科学进展,2000(6):260-265.
    李真,艾波,陶华学.基于 GIS 的海洋水文数据可视化方法研究[J].海洋信息,2007(4):1-3.
    梁忠,林乔木,姚忠山.GIS 在海洋气象服务中的应用[J].海洋技术,2007,26(4):102-105.
    林珲,闾国年,宋志尧.东中国海潮波系统与海岸演变模拟研究[M].北京:科学出版社,2000.
    林宁,章任群.基于 WebGIS 技术的海洋资源环境信息共享研究[J].海洋信息,2004(3):1-3.
    林宁.海洋三维地理信息系统数据模型研究[J].海洋信息,2002(3):11-14.
    刘南,刘仁义.Web GIS 原理及其应用[M].北京:科学出版社,2002a.
    刘南,刘仁义.地理信息系统[M].北京:高等教育出版社,2002b.
    刘仁义,刘南.动态土地信息系统时空过程及时空数据存储[J].中国图象图形学报,2002,7(4):387-393.
    骆剑承,周成虎,蔡少华.基于中间件技术的网格 GIS 体系结构[J].地球信息科学,2002(3):17-25.
    马劲松,朱大奎.海岸海洋潮流模拟可视化与虚拟现实建模[J].测绘学报,2002,31(1):49-53.
    孟令奎,邓世军,吴沉寒,林志勇.基于网格的三维可视化技术及其在水利信息化中的应用[J].中国水利,2005(7):50-54.
    孟令奎,史文中,张鹏林.网络地理信息系统原理与技术[M].北京:科学出版社,2005.
    钮晓鹏,刘仁义,刘南.ARGO 遥感数据结构分析及快速读取方法[J].计算机应用研究,2005,22(1):120.
    裴相斌,赵冬至.基于GIS-SD的大连湾水污染时空模拟与调控策略研究[J].遥感学报,2000,4(2):118-124.
    彭延军,石教英.基于边界体素的 Shear—warp Splatting 体绘制算法[J].计算机工程与应用,2002,13-16.
    皮学贤,杨旭东,李思昆,宋君强.近岸水域的波浪与水面仿真[J].计算机学报,2007,30(2):234-239.
    钱自立,张鹰.海洋技术中的 GIS 应用[J].海洋工程,2001,19(3):108-112.
    任建武.GRID GIS 关键技术研究[D]:[博士学位论文].南京:南京师范大学,2003.
    芮小平,余志伟,王志勇.浅论 GIS 的新进展[J].四川测绘,2001,24(3):105-107.
    萨师煊,王珊.数据库系统概论[M].北京:高等教育出版社,2000.
    邵全琴,周成虎,沈新强.海洋渔业遥感地理信息系统应用服务技术和方法[J].遥感学报,2003,7(3):194-200.
    邵全琴.海洋 GIS 时空数据表达研究[D]:[博士学位论文].北京:中科院地理科学与资源研究所,2001a.
    邵全琴.海洋渔业地理信息系统研究与应用[M].北京:科学出版社,2001b.
    邵全琴.海洋渔业数据建模的 E-R 方法研究[J].地理研究(增刊),1999,17:108-115.
    沈占锋,骆剑承,蔡少华.网格 GIS 的应用架构及关键技术[J].地球信息科学,2003(4):57-62.
    石贱弟,姜昱明.基于 OpenGL 的三维浅水海浪可视化仿真[J].微电子学与计算机,2006,23(2):137-140.
    石教英,赵友兵,仇应俊,陈为.面向网格的可视化系统研究[J].计算机研究与发展,2004,41(12):2231-2236.
    苏奋振,周成虎,刘宝银.基于海洋要素时空配置的渔场形成机制发现模型和应 用[J].海洋学报,2002,24(5):46-56.
    苏奋振,周成虎,杨晓梅.海洋地理信息系统-原理、技术与应用[M].北京:海洋出版社,2006.
    苏奋振.海洋地理信息系统时空过程研究[D]:[博士学位论文].北京:中国科学院遥感应用研究所,2003.
    苏奋振.海洋渔业资源时空动态研究[D]:[博士学位论文].北京:中科院地理科学与资源研究所,2001.
    苏天赟,刘保华,梁瑞才,郑彦鹏,周文生,王勇,张政民.GIS 技术在海洋工程地质勘探中的应用[J].高技术通讯,2004,14(11):98-101.孙庆辉,骆剑承,李宏伟.网格 GIS 及其关键技术[J].测绘学院学报,2004,21(3):200-204.
    唐泽圣等.三维数据场可视化[M].北京:清华大学出版社,1999.
    滕骏华,黄韦艮,孙美仙.基于网络 GIS 的海洋功能区划管理信息系统[J].海洋学研究,2005,23(2):56-63.
    王衡,姬红兵,高新波.基于方向重建滤波核的 Splatting 新算法[J].西安电子科技大学学报,2005,32(4):532-537.
    王慧,申家双,陈冬阳.一种高性能的大区域遥感影像管理模型[J].海洋测绘,2006,26(3):71-74.
    王文宇,邵全琴,薛允传,仉天宇.西北太平洋柔鱼资源与海洋环境的 GIS 空间分析[J].地球信息科学,2003,5(1):39-44.
    王英杰,袁勘省,余卓渊.多维动态地学信息可视化[M].北京:科学出版社,2003.
    王跃山.数据同化-它的缘起、含义和主要方法[J].海洋预报,1999,16(1):12-15.
    危拥军,吉国杰,侯溯源.三维符号的设计与建模[J].测绘通报,2005(9):21-23.
    邬伦,张毅.分布式多空间数据库系统的集成技术[J].地理学与国土研究,2002,18(1):6-10.
    夏登文.数字海洋基础数据及业务流程建模方法及相关技术研究[D]:[博士学位论文].沈阳:东北大学,2006.
    谢传节,周成虎,林晖.基于 XML 和 CORBA 的网络虚拟 GIS 设计[J].测绘学报,2002.
    谢传节.虚拟地理信息系统数据模型研究[D]:[博士学位论文].北京:中国科学院地理科学与资源研究所,2000.
    谢炯,刘仁义,刘南,尹劲峰.国际海洋环境资源信息采集(ARGO) 及处理系统[J].浙江大学学报:理学版,2005,32(4):459-463,470.
    谢炯,刘仁义,刘南.国际海洋环境资源信息采集(ARGO)及处理系统[J].浙江大学学报:理学版,2005,32(4):459-463.
    谢炯.无缝时空的多域集成时空数据模型研究[D]:[博士学位论文].杭州:浙江大学,2005.
    徐波,翁焕新,董成松.基于 GIS 的海洋环境信息数据库在海洋环境信息可视化分析中的应用[J].浙江大学学报:理学版,2004,31(4):471-475.
    徐德伦,于定勇.随机海浪理论[M].北京:高等教育出版社,2001.
    许建平,朱伯康.ARGO 全球海洋观测网与我国海洋监测技术的发展[J].海洋技术,2001,20(2):15-17.
    鄢来斌,李思昆,张秀山.虚拟海战场景中的海浪实时建模与绘制技术研究[J].计算机研究与发展,2001,38(5):568-573.
    严志民.基于网格技术的分布式 GIS 新技术研究[D]:[博士学位论文].杭州:浙江大学,2004.
    杨春国,金翔龙,高金耀.利用 ArcGIS 管理和分析海底探测数据[J].海洋测绘,2007,27(4):74-77.
    杨冠杰,耿震,孙菁.散乱体数据可视化:海洋水团分析的新途径[J].海洋通报,2000(2):66-71.
    杨怀平,孙家广.基于海浪谱的波浪模拟[J].系统仿真学报,2002,14(9):1175-1178.
    余志文,张利田,邬永宏.基态修正时空数据模型的进一步扩展[J].中山大学学报(自然科学版),2003,42(1):100-103.
    俞聿修.随机波浪及其工程应用[M].大连:大连理工大学出版社,1992.
    袁业立,陈显尧.ARGO 计划的最新研究进展[J].海洋技术,2001,20(4):1-4.
    张丰.面向网格的海量时空数据访问、集成与互操作研究[D]:[博士学位论文].杭州:浙江大学,2007.
    张建兵.基于网格的空间信息服务关键技术研究[D]:[博士学位论文].北京:中国科学院遥感应用研究所,2006.
    张建勋,孙济洲,韩逢庆,张加万.基于相邻层间相似性的加速 Splarting 算法[J].系统仿真学报,2005,17(2):421-428.
    张祖勋,黄明智.时态 GIS 数据结构的研讨[J].测绘通报,1996(1):19-21.
    仉天宇.海洋 GIS 场模型研究[D]:[博士学位论文].北京:中科院地理科学与资源研究所,2002.
    赵友兵.面向网格基于 Java 的交互式可视化系统 GVis 研究与实现[D]:[博士学位论文].杭州:浙江大学,2005.
    朱欣焰,陈能成,王密.面向网络的海量影像空间数据在线分发技术[J].武汉大学学报:信息科学版,2003,28(3):290-292.
    Aeschlimann M,Dinda P,Kallivokas L,et al.Preliminary Report on the Design of a Framework for Distributed Visualization[C].Conference on Parallel and Distributed Processing Techniques and Applications,Las Vegas USA,1999.
    Andrew U F. Spatial Concepts, Geometric Data Models, and Geometric Data Structures[J]. Computer and Geosciences, 1992(4): 409-417.
    Apel M. From 3d geomodeling systems towards 3d geosciences information systems: data model, query functionality, and data management[J] . Computer and Geosciences, 2006(32): 222-229.
    Armstrong M P. Temporality in spatial databases[C]. Proceedings of GIS/LIS '88, Texas: San Antonio, 1988, 880-889.
    Arzu C . Virtual reality as an interface to GIS-focus WWW[EB/OL]. http://www.cs.uu.nl/docs/vakken/gia/icc2003.pdf, 2003.
    Baumann J. GIS software monitors non-point coastal pollution[J]. Water and Wastewater International, 2002, 17(6): 49.
    Beard K, Deese H, Pettigrew N R. A framework for visualization and exploration of events[J]. Information Visualization, 2008, 7(2): 133-151.
    Belloum A S Z, Groep D L, HendrikseZW, et al. VLAM-G:A Grid-Based Virtual Laboratory [J]. Future Generation Computer Systems, 2003, 19(2): 209-217.
    Bendix J, Berthmann F, Reudenbach C. NOAA-AVHRR and 4D GIS - towards a more realistic view of fog clearance[J]. International Geoscience and Remote Sensing Symposium (IGARSS), 1999, 42235-2237.
    Cabral B, Foran N C J . Accelerated Volume Rendering and Tomographic Reconstruction Using Texture Mapping Hardware[C]. Proceeding of Workshop on Volume Visualization, Washington,DC, 1994, 91-98.
    Claes J. Real-Time water rendering[D]: [博士学位论文]. Lund, Sweden: Lund University, 2004.
    Coors V. 3D-GIS in Networking Environments[J]. Computer, Environment and Urban Systems, 2003, 27(4): 345-357.
    Couclelis H. People manipulate objects (but cultivate fields): beyond the raster-vector debate in GIS[C] . Theories and Methods of Spatio-temporal Reasoning in Geographic Space, Lecture Notes in Computer Science 639, Berlin, 1992,183-196.
    Delarue A, Smith S, An E. AUV data processing and visualization using GIS and internet techniques[J]. Oceans Conference Record (IEEE), 1999, 2738-742.
    Derby F W , Kumar M . Marine information system: Suggested improvements[C]. Institute of Electrical and Electronics Engineers Computer Society, Piscataway, NJ 08855-1331, United States, 2005. 1640131.
    Dimmestol T, Lucas. Integrating GIS with ocean models to simulate and visualize spills[C]. 4th Scandinavian research conference on GIS, Helsinki, Finland, 1992, 1-17.
    Dubrov I S. Visualizatiom albedo using data from cosmix observations[C]. International Society for Optical Engineering, Bellingham WA, WA 98227-0010, United States, 2006. 61600.
    
    Elisa F A. Combined 3D visualization of volume data and polygonal models using a Shear-Warp algorithm[J]. Computer Graphics, 2000, 24583-601.
    Eran Sadek Said B. Md Sadek, Sayed Jamaludin B. S. Ali, Kadzim M R B M. The Design and Development of a Virtual 3D City Model[EB/OL]. http://www.hitl.washington.edu/people/bdc/virtualcities.pdf, 2004. ESRI. 2006, ArcSDE Developer Help.
    Faust N. The Virtual Reality of GIS[J]. Environment and Planning B: Planning and Design, 1995, 22257-268.
    Foster N, Metaxas D. Realistic animation of liquids[J]. Graphical Models and Image Processing, 1996, 58(5): 471-483.
    Foster N, Metaxas D. Modeling water for computer animation[J]. Commum ACM, 2000, 43(7): 60-67.
    Fournier A, Reeves W T. A simple model of ocean waves [J]. Computer Graphics, 1986, 20(4): 75-84.
    Gold C M, Condal A R. A spatial data structure integrating GIS and simulation in marine environment[J]. Marince geodesy, 1995(18): 213-228.
    Graham S B, Wallace A R, Connor G. Geographical information system (GIS) techniques applied to network integration of marine energy[C]. Technological Educational Institute, Iraklio, 71100, Greece, 2003. 678-681.
    Guo J, Tian Z, Cheng F. The key techniques of 3D visualization of oceanic temperature field[C]. SPIE, Bellingham WA, WA 98227-0010, United States, 2007. 675314.
    Haigang S, Xiaorong G, Li H, et al. New maritime information browsing and service system based on 3D virtual earth[C]. SPIE, Bellingham WA, WA 98227-0010, United States, 2007. 67901.
    Ivanov A Y, Zatyagalova V V. A GIS approach to mapping oil spills in the marine environment[C]. European Space Agency, Noordwijk, 2200 AG, Netherlands, 2007. 6.
    
    Johnson L E. GIS visualization techniques in surface water resource planning[C]. Publ by ASCE, New York, NY, USA, 1991. 955-960.
    Kass R, Rapid M G. Stable fluid dynamics for computer graphics[J]. Computer Graphics, 1990, 24(4): 49-57.
    Katterfeld C , Sester M . Desktop virtual reality in e-learning environments[EB/OL]. http://www.ikg.uni-hannover.de/publikationen/public-atione n/2004/istanbul_Katterfeld.pdf, 2006.
    Keller C P, Gowan R F, Dolling A. Marine spatio-temporal GIS[C]. Canadian conference on GIS'91 proceedings, Ottawa, Canada, 1991, 345-358.
    Kim J-K, Kim J-H. Optimal mapping for artificial reef facility using remote sensing and GIS[C]. International Society of Offshore and Polar Engineers, Cupertino, CA 95015-0189, United States, 2005. 314-319.
    Knosp B, Wang S, Ni J. Grid-based volume rendering[C]. The 2002 ACM/IEEE Conference on Supercomputing, Baltimore, 2002.
    Knudsen T. Busstop - an integrated system for handling, analysis and visualization of ocean data[J]. Physics and Chemistry of the Earth Part A: Solid Earth and Geodesy, 1999, 24(4): 411-414.
    Kucera H A, Sondheim M. SAIF-conquering space and time[C]. GIS 92 Symposium, Canada, Vancouver, 1992.
    Langran G. Object-Oriented modeling of coastal environmental inforamtion[J]. Marine Geodesy, 1995, 18: 183-193.
    Langran G , Chrisman N R . A framework for temporal geographic information[J]. Cartographica, 1988, 25(3): 1-14.
    Lawrence M L . An open programming architecture for modeling ocean waves[C]. Proceeding of IMAGE 2007 Conference, Scottsdale, Arizona, 2007, 426-438.
    Leung Y , Sak L K . A generic concept-based geographical information system[J]. Geographcal Information Science, 1999, 13(5): 475-498.
    Lorensen W E, Cline H E. Marching Cubes: A High Resolution 3D Surface Construction Algorithm[J]. Computer Graphics, 1987, 21(4): 163-169.
    Lu J, Zhang J, Chang Y. Information system project of marine resource and environment based on MAPGIS[C]. Science Press USA Inc., Monmouth Junction, NJ 08852, United States, 2004. 610-614.
    MacDonald I R, Best S E, Lee C S. Biogeochemical processes at natural oil seeps in the Gulf of Mexico: Field-trials of a small-area benthic imaging system (SABIS)[C]. First thematic conference on remote sensing for marine and coastal environments, New Orleans, Louisiana, 1992, 1-7.
    Malzbender T. Fourier Volume Rendering[J]. ACM Transactions on Graphics, 1993, 12(3): 233-250.
    Manley T O, Tallet J A. volumetric visualization: An effective use of GIS technology in the field of oceanography [J]. Oceanography, 1990(3): 23-29.
    Max N. Optical models for direct volume rendering[C]. IEEE Visualization and Computer Graphics, 1995, 99-108.
    
    McCormick B H , DeFanti T A, Brown M D. Visualization in Scientific Computing[J]. Computer Graphics, 1987, 21(6): 1-14.
    Mitchell J L. Real-time synthesis and rendering of ocean water, Report, ATI Research Technical Report. 2005.
    
    MolenaarM. A topology for 3D vector maps[J]. ITC Journal, 1992(1): 25-33.
    Morris K, Hill D, Moore A. Mapping the environment through three-dimensional space and time[J]. Computers, Environment and Urban Systems, 2000, 24(5): 435-450.
    Mueller K, Crawfis R. Eliminating Popping Artifacts in Sheet Buffer-Based Splatting[C]. Proceedings of IEEE Conference on Visualization, 1998, 239-245.
    Mueller K, Moller T. Splatting without the Blur[C]. Proceedings of IEEE Conference on Visualization'99, Phoenix, Arizona, USA, 1999, 363-371.
    Murray C . Oracle Spatial GeoRaster, 10g Release 1 (10.1)[EB/OL]. http://www.oracle.com.
    Murray C . Oracle Spatial User's Guide and Reference, 10g Release 1 (10.1 )[EB/OL]. http://www.oracle.com.
    Nakata K, Takei M, Nakane T, et al. Dissolved oxygen depletion analysis and visualisation in Ise Bay, Japan, using a GIS approach[C]. WIT Press, Southampton, SO40 7AA, United Kingdom, 2000. 463-470.
    Opishinski T B. WAVEMAP: a geographic information system for wave modelling in coastal areas[C]. IEEE, Piscataway, NJ, USA, 1994. 872-877.
    Peachey D. Modeling waves and surf[J]. Computer Graphics, 1986, 20(4): 65-74.
    Peuquet D J. It's about time: a conceptual framework for the representation of temporal dynamics in geographic information systems[J]. Annals of the Association of American Geographers, 1994, 84(3): 441-461.
    Peuquet D J, Duan N. An event-based spatiotemporal data model (ESTDM) for temporal analysis of geographical data[J]. IJGIS, 1995(9): 7-24.
    Peuquet D J, Smith B, Brogaard B. An Introduction to Ontology[C]. The Ontology of Fields, Santa Barbara, 1999.
    Pilout M, Tempfil K, Molenaar M. A tetrahedron-based on 3D vector data model for geoinformation[C]. Advanced geographic data modeling, Delft, Netherlands, 1994, 129-140.
    Pinho J L S, Pereira Vieira J M, Antunes Do Carmo J S. Hydroinformatic environment for coastal waters hydrodynamics and water quality modelling[J]. Advances in Engineering Software, 2004, 35(3-4): 205-222.
    Pozzer C T, Roberto S, Pellegrino M. Procedural solid-space techniques for modeling and animating waves [J]. Computer Graphics, 2002, 26(6): 877-885.
    Premoze S, Ashikhmin M. Rendering natural waters[J]. Computer Graphics Forum, 2001, 20(4): 189-200.
    Ramachandran B, MacLeod F, S D. Modeling temporal changes in a GIS using an object-oriented approach[C] . Sixth International Symposium on Spaital Data handling, Edinburgh, Scotland, 1994, 518-537.
    Raper J F, Maguite D J. Design Models and Functionality in GIS[J]. Computer and Geosciences, 1992, 18(4): 387-394.
    Reeves W T. Particle Systems - A technique for modeling a class of fuzzy objects[C]. ACM Computer Graphice(SIGGRAPH83), 1983, 359-376.
    Rieker J D, Labadie J W. GIS visualization and analysis of river operations impacts on endangered species habit[J]. Journal of Water Resources Planning and Management, 2006, 132(3): 153-163.
    Riolo F. A geographic information system for fisheries management in American Samoa[J]. Environmental Modelling and Software, 2006, 21(7): 1025-1041.
    Robinson G R. The UK digital marine atlas project: An evolutionary approach towards a marine information system[J]. international hydrographic review, 1991, 68: 39-51.
    Roshannejad A A, W K. Handling identities in spatio-temporal databases[C]. Technical papers of the 1995 ACSM/ASPRS Annual Convention & Exposition, Charlotte, North Carolina, 1995, 119-126.
    Ross R M, Scott E J. Three-dimensional Reconstruction and Modeling of Complexly olded Surfaces Using Mathematica[J]. Computer and Geosciences, 2001(27): 401-418.
    Schroeder W J, Avila L S, Hoffman W. Visualizing with VTK: a tutorial [J]. Computer Graphics and Applications, 2000, 20(5): 20-27.
    Scott D J, Miller P D, Loewenstein F C, et al. ECDIS: A shipboard navigation system[J]. Microstation Manager, 1993, 12: 40-43.
    Segal M, Akeley K. The OpenGL Graphics System: A Specification. 2006.
    Sisson G M, Chen M, Oh J-H, et al. The use of GIS in 3D hydrodynamic model pre-and post-processing[C]. American Society of Civil Engineers, 2001. 56-70.
    Suryanarayana A, Amit V S. GIS analysis for the marine environmental data off Karnataka coast[J]. Environment International, 2006, 32(2): 180-190.
    Swan J E. Object-Order Rendering of Discrete Objects[D]: [博士学位论文]. Ohio: The Ohio State University, 1998.
    Tessendorf J. Simulation ocean water[EB/OL]. http://home.gte.net/tssndrf/index.html, 2001.
    Thomas J C, Goodchild M F. Extending geographical representation to include fields of spatial objects[J]. Geographical information science, 2002, 16(6): 509-532.
    Vance TC, Moore C W, Merati N. Integration of Java/Java3D-based oceanographic analysis tools with GIS[C] . American Meteorological Society, Boston, MA 02108-3693, United States, 2005. 597-600.
    Web3D Symposiuim . Engineering Virtual Environments with X3D[EB/OL]. http://www.hpv.informatics.bangor.ac.uk/s2005/tutorials.html, 2005.
    Westover L. Footprint evaluation for volume rendering[J]. Computer Graphics, 1990, 24(4): 367-376.
    Worboys M F. A unified model for spatial and temporal information[J]. The Computer Journal, 1994, 37: 26-33.
    
    Worboys M F. GIS: a computing perspective[M]. London: Taylor & Francis, 1995.
    X3D GeoSpatial Workgroup . X3D at the GML And Geo-Spatial Web Services[EB/OL]. http://www.gmldays.com/papers/quak.html, 2004

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700