用户名: 密码: 验证码:
一维自旋链系统中量子纠缠的理论研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来的量子力学新进展为信息科学的发展提供了新的原理和方法,诞生了量子力学与信息科学相结合的新兴交叉学科一量子信息学,并已成为人们研究的热点领域。同时量子纠缠态作为量子力学最显著的奇妙特性之一,被认为是实现量子信息的基本资源,已被广泛的应用于量子隐形传态、稠密编码,量子密钥分配以及量子计算当中。因此对量子纠缠的深入研究,无论是对量子信息的基本理论还是未来的潜在应用都是非常有意义的。另一方面,真实的物理系统不可避免的与环境发生相互作用,结果导致系统的退相干及纠缠的退化,从而给纠缠的物理实现带来困难,所以研究量子退相干对纠缠演化的影响也是非常必要的。在本文中,基于自旋链系统中量子态的纠缠特性,我们理论上研究了一维自旋链系统中的量子纠缠及其演化。本论文分为五章,其中第二章至第五章为本人的工作,内容具体安排如下:
     第一章首先介绍了量子信息学的历史背景及基本理论,然后对量子纠缠的定义及应用、量子退相干和一维自旋链模型进行了简单介绍。
     第二章我们首先研究了(1/2,1)混合自旋系统中的热纠缠。与自旋1/2系统相比较,我们发现(1/2,1)混合自旋系统在热纠缠的产生方面更具有优越性。接着我们讨论了不同类型的海森堡模型中的热纠缠以及以热纠缠态为量子信道的隐形传态,给出了不同海森堡模型本身的性质和外部条件对热纠缠以及隐形传态保真度的影响。我们发现通过控制不同海森堡模型的各向异性参数,外加磁场,Dzyaloshinsky-Moriya (DM)相互作用等,可以提高热纠缠的值和优化隐形传态的效果。
     第三章我们主要研究了纠缠sudden death现象。对于Tavis - Cummings模型中的两原子间的纠缠演化,我们发现初态为混合态中的双激发态是产生纠缠sudden death现象的主要原因,且纠缠sudden death的出现与选择的初态的形式有关。除此之外,我们还研究了四比特海森堡XX自旋链中的成对纠缠演化,结果表明周期性边界条件和外加非均匀磁场能有效地抑制纠缠sudden death对纠缠演化的影响。
     第四章中我们研究了内在退相干下,不同海森堡模型中的纠缠演化及隐形传态。我们发现内在退相干对纠缠演化及隐形传态保真度的影响取决于选择的初态。通过控制自旋链本身及外界条件,如外加磁场,包括均匀磁场和非均匀磁场,以及DM相互作用,在纠缠演化过程中,可以产生和增强不随时间变化的稳定纠缠态,从而在很大程度上抑制内在退相干对纠缠演化及隐形传态的破坏影响。
     第五章我们首先研究了热力学极限下,与处于有限温度的自旋环境相耦合的三比特自旋系统的纠缠演化和退相干。结果表明,成对纠缠演化与描述系统和环境的外界参数有关。通过调节两比特间的耦合常数和外磁场,以及系统和环境的耦合常数,可以有效地控制纠缠sudden death对纠缠演化的影响。此外,我们还讨论了有限温度下,与含DM相互作用的XY自旋链耦合的中心二体自旋系统的纠缠演化。我们发现DM相互作用不会影响XY自旋链由横场导致的量子相变的临界行为,不会引入新的临界点。其次,在纠缠演化过程中,DM相互作用可以减弱和增强纠缠,这取决于其本身的取值和横场强度以及自旋链环境的温度。
     论文的最后,给出了全文的总结和展望。
The recent development in quantum mechanics provides new methods and principles for information science. As one of the most important applications, quantum information is a new combination of quantum mechanics and information science and has developed into a popular research field. Meanwhile, quantum entanglement is one of the most striking features of quantum mechanics and is regarded as a fundamental resource for quantum information processing. It has been widely used in quantum teleportation, superdense coding, quantum cryptographic key distribution, quantum computation and so on. So a further study on entanglement is very important for basic quantum information theory and future potential applications. On the other hand, a real quantum system will unavoidably interacts with the surrounding environment and thus leads to decoherence and disentanglement. This is a fundamental obstacle to the realization of quantum entanglement. Therefore, taking into account the effect of decoherence on entanglement dynamics is indispensable. In this thesis, based on the character of quantum state of spin chain system, the quantum entanglement and its evolution in one-dimensional spin chain system are investigated theoretically. The thesis is dived into five chapters, with our work included in chapters 2 through 5.
     In chapter 1, the background and basic theory of quantum information are introduced, as well as the quantum entangled state and its application are briefly described, and then the concept of quantum decoherence and one-dimensional spin chain are given at the end of this chapter.
     In chapter 2, the thermal entanglement in the (1/2,1) mixed-spin Heisenberg model is investigated firstly. Through comparison with the spin-half system, the (1/2,1) mixed-spin is superior in generation of thermal entanglement. And then the thermal entanglement in different Heisenberg models and quantum teleportation in the thermally entangled channel are studied. Here the effects of the intrinsic properties and external conditions of the Heisenberg model on the thermal entanglement and the teleportation fidelity are concerned. It is shown that the thermal entanglement and the quality of teleportation can be enhanced by adjusting the values of the anisotropy parameter, external magnetic field and Dzyaloshinsky-Moriya (DM) interaction.
     In chapter 3, the phenomenon of entanglement sudden death is studied. As to the entanglement evolution between two Tavis-Cummings atoms, the results show that the initial portion of the double excited state in the initial states is responsible for the sudden death of entanglement, and the degree of this effect also depends on the form of the initial state。In addition, the dynamic evolution of pairwise entanglement in a four-qubit Heisenberg XX spin chain is also studied. It is shown that the entanglement sudden death effect can be weakened when the periodic boundary condition and the magnetic impurity are introduced.
     In chapter 4, the entanglement evolution and teleportation in the different Heisenberg spin chains with intrinsic decoherence taken into account are investigated. The results show that the effects of intrinsic decoherence on the entanglement evolution and teleportation fidelity rely strongly on the initial state. Controlling the uniform or inhomogeneous magnetic fields and DM interaction can not only generate stationary entanglement, but also enhance the value of stationary entanglement. So the destructive effect of intrinsic decoherence on the entanglement evolution and teleportation can be moderated in this way.
     In chapter 5, the entanglement dynamics and decoherence of a three-qubit system under a quantum spin environment at a finite temperature in the thermodynamical limit are studied firstly. It is shown that the evolution of pairwise entanglement depends on the parameters related to the system and the spin environment. In addition, an undesirable entanglement sudden death occurs in the process of entanglement evolution, and this effect can be controlled by the coupling constant between two qubits, external magnetic field, and the interaction between the system and the environment. In addition, the entanglement dynamics between two central spins coupled to an XY spin chain at finite temperature with the DM interaction is also investigated. By studying the entanglement decay of the central spins, the results suggest that the DM interaction does not affect the behavior of quantum phase transition induced by the external magnetic field and does not induce new critical regions in the XY model. Moreover, the DM interaction can efficiently enhance or suppress the entanglement between the central spins which depends on the values of the DM interaction, the magnetic intensity and the temperature of the environmental spin chain.
     Finally, the results are summarized and suggestions for future research work are given.
引文
[1]曾谨言,裴寿铺,龙桂鲁,量子力学新进展(第二辑),北京:北京大学出版社,2001.
    [2]宋鹤山,量子力学,大连:大连理工大学出版社,2004.
    [3]Einstein A, Podolsky B, Rosen N, Can Quantum-Mechanical Description of Physical Reality Be Considered Complete? Phys. Rev.,1935,47:777-780.
    [4]Bohm D, A suggested interpertation of the quantum theory in terms of'hiden'variables, Phys. Rev., 1952,85:166-179.
    [5]Bell J, On the Einstein-Podolsky-Rosen Paradox, Physics,1964,1:195-200
    [6]Aspect A, Grangier P, Roger G, ExPerimental test of Bell's inequalities using time varying analyzers, Phy. Rev. Lett.,1982,49:1804-1807.
    [7]AspectA, Bell's inequality test:more ideal than ever, Nature,1999,398:189-190.
    [8]Weihs G, Jennewein T, Simon C, Weinfurter H, Zeilinger A, Violation of Bell's Inequality under Strict Einstein Locality Conditions, Rev. Rev. Lett.,1998,81:5039-5043.
    [9]Shih Y H, Alley C O, New type of Einstein-Podolsky-Rosen-Bohm Experiment Using Pairs of Light Quanta Produced by Optical Parametric Down Conversion, Rev. Rev. Lett.,1988,61:2921-2924.
    [10]Ou Z Y, Mandel L, Violation of Bell's Inequality and Classical Probability in a Two-Photon Cor-relation Experiment, Rev. Rev. Lett.,1988,61:50-53.
    [11]Werner R F, Quantum states with Einstein-Podolsky-Rosen correlations admitting a hidden-variable model, Phy. Rev. A,1989,40:4277-4281.
    [12]Bennett C H, Brassard G, Popescu S, Schumacher B, Smolin J A, Wootters W K, Purification of Noisy Entanglement and Faithful Teleportation via Noisy Channels, Phy. Rev. Lett.,1996,76: 722-725.
    [13]Wootters W K, Zurek W H, A single quantum cannot be cloned, Nature,1982,299:802-803.
    [14]张永德.量子信息物理原理.北京:科学出版社,2005.
    [15]Duan L M, Guo G C, A Probabilistic cloning machine for replicating two nonorthogonal states, Phy. Lett. A,1998,243:261-264,
    [16]Duan L M, Guo G C, Probabilistic Cloning and Identificating of Linearly Indepedent quantum states, Phy. Rev. Lett.,1998,80:4999-5002.
    [17]Schumacher B, Quantum coding, Phys. Rev. A,1995,51:2738-2747.
    [18]Jozsa R, Fidelity for mixed quantum states, J. Mod. Opt.,1994,41:2315-2323.
    [19]Duan L M, Guo G C, Perturbative expansions for the fidelities and spatially correlated dissipation of quantum bits, Phys. Rev. A,1997,56:4466-4470.
    [20]Wang X B, OH C H, Kwek L C, Bures fidelity of displaced squeezed thermal states, Phys. Rev. A,1998,58:4186-4190.
    [21]咯兴林.高等量子力学.北京:科学出版社,2005.
    [22]李承祖,黄明秋,陈平形等,量子通讯和量子计算.湖南长沙:国防科技大学出版社,2000.
    [23]Bennett C H, Divincenzo D, Smolin J A, Wootters W K, Mixed-state entanglement and quantum error correction, Phy. Rev. A,1996,54:3824-3851.
    [24]Vidal G, Werner R F, Computable measure of entanglement, Phy. Rev. A,2002,65:032314-1-11.
    [25]Wootters W K, Entanglement of formation of an arbitrary State of two qubits, Phy. Rev. Lett., 1998,80:2245-2248.
    [26]Horodecki R, Horodecki M, Information-theoretic aspects of inseparability of mixed states, Phy. Rev. A,1996,54:1838-1843.
    [27]Horodecki P, Separability criterion and inseparable mixed states with positve partial transposition, Phy. Lett. A,1997,232:333-339.
    [28]Bennett C H. Wiesner S J, Communication via one-and two-particle operators on Einstein-Podolsky-Rosen states, Phy. Rev. Lett.,1992,69:2881-2884.
    [29]Bennett C H, Brassard G, Crepeau C, Jozsa R, Peres A, William K. Wootters W K. Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels, Phy. Rev. Lett., 1993,70:1895-1899.
    [30]Davidovich L, Zagury N, Brune M, Raimond J M, Haroche S, Teleportation of an atomic state between two cavities using nonlocal microwave fields, Phys. Rev. A,1994,50:R895-R898.
    [31]Braunstein S L, Mann A, Measurement of the Bell operator and quantum teleportation, Phys. Rev. A,1995,51:R1727-R1730.
    [32]Vaidman L, Teleportation of quantum states, Phys. Rev. A,1994,49:1473-1476.
    [33]Cirac J I, Zollcr P, Quantum Computations with Cold Trapped Ions, Phys. Rev. Lett.,1994,50: R4441-R4444.
    [34]Zheng S B, Guo G C, Teleportation of an unknown atomic state through the Raman atom-cavity field interaction, Phys. Lett. A.1997,232:171-174.
    [35]Zheng S B, Guo G C, Teleportation of superpositions of macroscopic states of a cavity field., Phys Lett. A,1997,236:180-182.
    [36]Zheng S B, Guo G C, Teleportation of atomic states within cavities in thermal states, Phys. Rev. A,2001,63:044302-1-4.
    [37]Li W L, Li C F, Guo G C, Teleportation of atomic states within cavities in thermal states, Phys Rev. A,2000,61:034301-1-3.
    [38]Bouwmeester D, Pan J W, Mattle K, Eible M, Weinfurte H, Zeilinger A, Nature (London),1997, 390:575-579.
    [39]Furusawa A, Sorensen J L, Braunstein S L, et al. Unconditionnal quantum teleportation, Science, 1998,282:706-709.
    [40]Nielsen M A, Knill E, Laflamme R, Complete quantum teleportation using nuclear magnetic reso-nance. Nature,1998,396:52-55.
    [41]Zukowski M, Zeilinger A, Horne M A, Ekert A, "Event-ready-detectors''Bell experiment via entanglement swapping, Phys. Rev. Lett.,1993,71:4287-4290.
    [42]Briegel H J, Diir W, Cirac J I, Zoller P, Quantum Repeaters:The Role of Imperfect Local Opera-tions in Quantum Communication, Phys. Rev. Lett.,1998,81:5932-5935
    [43]Pan J W, Bouwmeester D, Weinfurter H, Zeilinger A, Experimental Entanglement Swapping:En-tangling Photons That Never Interacted, Phys. Rev. Lett.,1998,80:3891-3894.
    [44]Feynman, Simulating Physics with Computers, Int. J. Theor. Phys.,1982,21:467-488.
    [45]P W Shor, Algorithms for Quantum Computation:Diserete Logarithms and Factoring,35th Annual Symposium on Foundations of Computer Science, Nov.1994, IEE Press.
    [46]Grover L K, Quantum Mechanices Helps in Searching for a Needle in a Haystack, Phys. Rev. Lett., 1997,79:325-328.
    [47]Priskill J, Quantum Information and Quantum Computation, Califormia Institude of Technology, 1998.
    [48]P W Shor, Scheme for reducing decoherence in quantum computer memory, Phys. Rev. A,1995, 52:R249-R2496.
    [49]Steane A M, Error Correcting Codes in Quantum Theory, Phys. Rev. Lett.,1995,77:793-797.
    [50]Zurek W H, Decoherence, einselection, and the quantum origins of the classical, Phys. Mod. Phys., 2003,75:715-775
    [51]Zurek W H, Environment-induced superselection rules, Phys. Rev. D,1982,26:1862-1880.
    [52]Kubo R, Note on the stochastic theory of resonance absorption, J. Phys. Soe. Jap,1954,9:935-944.
    [53]Milburn G J, Intrinsic decoherence in quantum mechanics, Phys. Rev. A,1991,44:5401-5406.
    [54]Liang X T, Non-Markovian dynamics and phonon decoherence of a double quantum dot charge qubit, Phys. Rev. B,2005,72:245328-1-5.
    [55]Moller D, Madsen L B, Molmer K, Geometric phases in open tripod systems, Phys. Rev. A,2008, 77:022306-1-9.
    [56]Fiete G A, Heller E J, Semiclassical theory of coherence and decoherence, Phys. Rev. A,2003,68: 022112-1-10.
    [57]Imamoglu A, Awschalom D D, Burkard G, Divincenzo D P, Loss D, Sherwin M, Small A, Quantum Information Processing Using Quantum Dot Spins and Cavity QED, Phys. Rev. Lett.,1999,83: 4204-4207.
    [58]Wang X G, Entanglement in the quantum Heisenberg XY model, Phys. Rev. A,2001,64:012313-1-7.
    [59]Kurtsiefer C, et.al., Nature,2002,419:450-450.
    [60]Avellino M, Fisher A J, Bose S, Quantum communication in spin systems with long-range interac-tions, Phys. Rev. A,2001,74:012321-1-7.
    [61]Zhou X X, Zhou Z W, Guo G C, Feldman M J, Phys. Rev. Lett.2002,89:197903-197907.
    [62]Arnesen M C, Bose S, Vedral V, Natural thermal and magnetic entanglement in the ID Heisenberg model, Phys. Rev. Lett.,2001,87:017901-1-4.
    [63]Loss D, Divincenzo D P, Quantum computation with quantum dots, Phys. Rev. A,1998,57:120-126.
    [64]Kane B E, A silicon-based nuclear spin quantum computer, Nature,1998,393:133-137.
    [65]Vrijen R, Yablonovitch E, Wang K, Jiang H W, Balandin A, Roychowdhury V, Mor T, Divincenzo D, Electron-spin-resonance transistors for quantum computing in silicon-germanium heterostructures, Phys. Rev. A,2000,62:012306-1-10.
    [66]Sorensen A, Molmer K, Spin-Spin Interaction and Spin Squeezing in an Optical Lattice, Phys. Rev. Lett.,1999,83:2274-2277.
    [67]Lidar D A, Bacon D, Whaley K B, Concatenating Decoherence-Free Subspaces with Quantum Error Correcting Codes, Phys. Rev. Lett.,1999,82:4556-4559.
    [68]Nielsen M A, Ph.D. Thesis, University of New Mexico,1998.
    [69]Kamta G L, Starace A F, Anisotropy and Magnetic Field Effects on the Entanglement of a Two Qubit Heisenberg XY Chain, Phys. Rev. Lett.,2002,88:107901-1-4.
    [70]Zhou L, Song H S, Guo Y Q, Li C, Enhanced thermal entanglement in an anisotropic Heisenberg XYZ chain, Phys. Rev. A,2003,68:024301-1-4.
    [71]Wang X G, Entanglement in the quantum Heisenberg XY model, Phys. Rev. A,2001,64:012313-1-7.
    [72]Wang X G, Effeets of anisotropy on thermal entanglement, Phys. Lett. A,2001,281:101-104.
    [73]Wang X G, Fu H C, Solomon A I, Thermal entanglement in three-qubit Heisenberg models, J. Phys. A:Math.Gen.,2001,34:11307-11320.
    [74]Wang X G, Thermal and ground-state entanglement in Heisenberg XX qubit rings, Phys. Rev. A, 2002,66:034302-1-4.
    [75]Sun Y, Chen Y G, Chen H, Thermal lentanglement in the two-qubit Heisenberg XY model under a nonuniform external magnetic field, Phys. Rev. A,2003,68:044301-1-4.
    [76]Zhang G F, Li S S, Thermal entanglement in a two-qubit Heisenberg XXZ spin chain under an inhomogeneous magnetic field, Phys. Rev. A,2005,71:022308-1-6.
    [77]Wang X G, Wang Z D, Thermal entanglement in the ferrimagnetic magnetic chains, Phys. Rev. A, 2006,73:064302-1-3.
    [78]Sun Z, Wang X G, Hu A Z, Li Y Q, Entanglement properties in (1/2,1) mixed-spin Heisenberg systems, Physica A,2006,370:483-500.
    [79]Boshi D, Braca S, Demartini F, Hardy L, Popescu S, Experimental Realization of Teleporting an Unknown Pure Quantum State via Dual Classical and Einstein-Podolsky-Rosen Channels, Phys. Rev. Lett.,1998,80:1121-1125.
    [80]Nielsen M A, Knill E, Laflamme R, Complete quantum teleportation using nuclear magnetic reso-nance, Nature,1998,396:52-55.
    [81]Kim Y H, Kulik S P, Shih Y H, Quantum Teleportation of a Polarization State with a Complete Bell State Measurement, Phys. Rev. Lett.,2001,86:1370-1373.
    [82]Lombardi E, Sciarrino F, Popescu S, Demartini F, Teleportation of a Vacuum-One-Photon Qubit, Phys. Rev. Lett.,2002,88:070402-1-4.
    [83]Huang Y F, Ren X F, Zhang Y S, Duan L M, Guo G C, Experimental Teleportation of a Quantum Controlled-not Gate, Phys. Rev. Lett.,2004,93:240501-1-4.
    [84]Jia X J, Su X L, Pan Q, Gao J R, Xie C D, Peng K C, Experimental Demonstration of Unconditional Entanglement Swapping for Continuous Variables, Phys. Rev. Lett.,2004,93:250503-1-4.
    [85]Horodecki M, Horodecki P, Horodecki R, General teleportation channel, singlet fraction, and qua-sidistillation, Phys. Rev. A,1999,60:1888-1898.
    [86]Bowen G, Bose S, Teleportation as a Depolarizing Quantum Channel, Relative Entropy, and Clas-sical Capacity, Phys. Rev. Lett.,2001,87:267901-1-4.
    [87]Yeo Y, Entanglement TelePortation via Thermally Entangled States of two-qubit Heisenberg XY chain. phys. Lett.A,2003,309:215-217.
    [88]Yeo Y, TelePortation via Thermally Entangled States of a two-qubitHeisenberg XX Chain, Phys. Rev. A,2002,66:062132-1-3.
    [89]Yeo Y, Studying the Thermally Entangled State of a Three-qubit Heisenberg XX ring via Quantum TelePortation, Phys. Rev. A,2003,68:022316-1-8.
    [90]Gisin N, Nonlocality criteria for quantum teleportation, Phys. Lett. A,1996,210:157-159.
    [91]Karlsson A, Bourennane M, Quantum teleportation using three-particle entanglement, Phys. Rev. A,1998,58:4394-4400.
    [92]Gorbachev V N, Trubilko A I, Quantum teleportation of an Einstein-Podolsky-Rosen pair using an entangled three-particle state, JETP,2000,91:894.
    [93]Hao J C, Li C F, Guo G C, Controlled dense coding using the Greenberger-Horne-Zeilinger state, Phys. Rev. A,2001,63:054301-1-3.
    [94]Bruss D, Divincenzo D P, Ekert A, Fuchs C A, Macchiavello C, Smolin J A, Optimal universal and state-dependent quantum cloning, Phys. Rev. A,1998,57:2368-2378.
    [95]Li C X, Wang C Z, Guo G C, Entanglement and teleportation through thermal equilibrium state of spins in the XXZ model, Opt. Commun,2006,260:741-748.
    [96]Fu H C, Solomon A I, Wang X G, Pairwise entanglement in the XX model with a magnetic impurity, J. Phys. A,2002,35:4293-4300.
    [97]Barnum H, Caves C M, Fuchs C A, Jozsa R, Schumacher B, Efficient Scheme for Two-Atom Entanglement and Quantum Information Processing in Cavity QED, Phys. Rev. Lett.,2000,85: 2392-2395.
    [98]Dieks D, Communication by EPR devices, Phys. Lett. A,1982,92:271-272.
    [99]Dzyaloshinskii I, A thermodynamic theory of "weak" ferromagnetism of antiferromagnetics, J. Phys. Chem. Solid,1958,4:241-255.
    [100]T Moriya, New mechanism of anisotropic superexchange interaction, Phys. Rev. Lett.,1960,4: 228-230.
    [101]Zhang G F, Thermal entanglement and teleportation in a two-qubit Heisenberg chain with Dzyaloshinski-Moriya anisotropic antisymmetric interaction, Phys. Rev. A,2007,75:034304-1-4.
    [102]Li D C, Wang X P, Cao Z L, Thermal entanglement in the anisotropic Heisenberg XXZ model with the Dzyaloshinskii-Moriya interaction, J. Phys.:Condens Matter,2008,20:325229-1-5.
    [103]Albeverio S, Fei S M, Yang W L, Optimal teleportation based on bell measurements, Phys. Rev. A,2002,66:012301-1-4.
    [104]Grondalski J, Etlinger D M, James D F V, Phys. Lett.A,2002,300:573-580.
    [105]于鹏飞,Heisenberg XYZ模型的纠缠及应用的理论研究:(硕士学位论文),上海:华东师范大学,2008.
    [106]曾谨言,量子力学卷Ⅱ,科学出版社,1993.
    [107]Yu T, Eberly J H, Finite-time disentanglement via spontaneous emis-sion, Phys. Rev. Lett.,2004, 93:140404-140407.
    [108]Almeida M P, de Melo F d, Hor-Meyll M, Salles A, Walborn S P, Souto Ribeiro P H, Davidovich L, Experimental observation of environment-induced sudden death of entanglement, arXiv:quant-ph/0701184.
    [109]Jakobczyk L, Jamroz A, Noise-induced finite-time disentanglement in two-atomic system, Phys. Lett. A,2004,333:35-45.
    [110]Ficek Z, Tanaos R, Dark periods and revival of entanglement in a two-qubit system, Phys. Rev. A,2006,74:024304-1-4.
    [111]Roszak K, Mochnikowski P, Complete disentanglement by partial pure de-phaseing, Phys. Rev. A,2006,73:022313-1-6.
    [112]Liu R F, Chen C C, Role of the Bell singlet state in the suppres-sion of disentanglement, Phys. Rev. A,2006,74:024102-1-4.
    [113]Yonae M, Yu T, Eberly J H, Sudden death of entanglement of two Jaynes-Cummings atom, J. Phys. B:At. Mol. Opt. Phys.,2006,39:S621-S625.
    [114]Yonag M, Yu T, Eberly J H, Pairwise concurrence dynamics:a four qubit model, J. Phys. B:At. Mol. Opt. Phys.,2007,40:S45-S59.
    [115]Zhang G F, Chen Z Y, The entanglement character between atoms in the non-degenerate two photons Tavis-Cummings model, Optics. Communications,2007,275:274-277.
    [116]Cui H T, Li K, Yi X X, A study on the sudden death of entanglement, Phys. Lett. A,2007,365: 44-48.
    [117]Su X Q, Wang A M, Ma X S, Qiu L, Entanglement sudden death in a spin channel, J. Phys. A: Math. Theor.,2007,40:11385-11393.
    [118]Tavis M, Cummings F W, Exact Solution for an N-Molecule-Radiation-Field Hamiltonian, Phys Rev.,1968,170:379-384.
    [119]Moya-Cessa H, Buzek V, Kim M S, Intrinsic decoherence in the atcm-field interaction, Phys. Rev. A,1993,48:3900-3905.
    [120]Li S B, Xu J B, Stationary state entanglement of interacting system of the qubit and thermal field with phase decoherence, Phys. Lett. A,2003,313:175-181.
    [121]Li S B, Xu J B, Quantum entanglement of two atom inside an optical cavity, Chin. Phys. Lett., 2003,20:985-987.
    [122]Li S B, Xu J B, Entanglement, Bell violation, and phase decoherence of two atoms inside an optical cavity, Phys. Rev. A,2005,72:022332-1-4.
    [123]Xu J B, Li S B, Entanglement and Bell violation with phase decoherence or dissipation, Eur. Phys. J. D,2005,35:553-560
    [124]Sharma S Shelly, Sharma N K, Intrinsic decoherence effects on tripartite GHZ state generation using a trapped ion coupled to an optical cavity, J. Opt. B:Quantum Semiclass,2005,7:7230-233.
    [125]Cai J F, Wang X W, Zou J, Commun. Theor. Phys.,2006,45:421-424.
    [126]Qiu L, Wang A M, Ma X S, Commun. Theor. Phys.2008,49:516-520.
    [127]Werner R F, Quantum states with Einstein-Podolsky-Rosen correlations admitting a hidden-variable model, Phys. Rev. A,1989,40:4277-4281.
    [128]Zurek W H, Decoherence, einselection, and the quantum origins of the classical, Rev. Mod. Phys., 2003,75:715-775.
    [129]Melikidze A, Dobrovitski V V, De Raedt H A, Katsnelson M I and Harmon B N, Parity effects in spin decoherence, Phys. Rev. B,2004,70:014435-1-5.
    [130]Prokof'er N V, Stamp P C E, Theory of the spin bath, Rep. Prog. Phys.63 (2000) 669-726.
    [131]Schliemann J, Khaetskii, Loss D, Electron spin dynamics in quantum dots and related nanostruc-tures due to hyperfine interaction with nuclei, J. Phys.:Condense. Matter,2003,15:R1809-R1833.
    [132]Breuer H P, Exact quantum jump approach to open systems in bosonic and spin baths, Phys. Rev. A,2004,69:022115-1-8.
    [133]Breuer H P, Burgarth D, Petruccione F, Non-Markovian dynamics in a spin star system:Exact solution and approximation techniques, Phys. Rev. B,2004,70:045323-1-10.
    [134]Hamdouni Y, Fannes M, Petruccione F, Exact dynamics of a two-qubit system in a spin star environment, Phys. Rev. B,2006,73:245323-1-12.
    [135]Paganelli S, Pasquale F de, Giampaolo S M, Decoherence slowing down in a symmetry-broken environment, Phys. Rev. A,2002,66:052317-1-6.
    [136]Lucamarini M, Paganelli S, Mancini S, Two-qubit entanglement dynamics in a symmetry-broken environment, Phys. Rev. A,2004,69:062308-1-8.
    [137]Mao X S, Wang A M, Yang X D, You H, Entanglement dynamics and decoherence of three-qubit system in a fermionic environment, J. Phys. A:math. Theor.,2005,38:2761-2772.
    [138]Yuan X Z, Goan H S, Zhu K D, Non-Markovian reduced dynamics and entanglement evolution of two coupled spins in a quantum spin environment, Phys. Rev. B,2007,75:045331-1-8.
    [139]Quan H T, Song Z, Liu X F, Zanardi P, Sun C P, Decay of Loschmidt Echo Enhanced by Quantum Criticality, Phys Rev. Lett.,2006,96:140604-1-4.
    [140]Sun Z, Wang X G, Sun C P, Disentanglement in a quantum-critical environment, Phys Rev. A, 2007,75:062312-1-7
    [141]Ma X S, Wang A M, Cao Y, Entanglement evolution of three-qubit states in a quantum-critical environment, Phys Rev. B,2007,76:155327-1-9.
    [142]Yi X X, Cui H T, Wang L C, Entanglement induced in spin-1/2 particles by a spin chain near its critical points, Phys Rev. A,2006,74:054102-1-4.
    [143]Ou Y C, Fan H, Decoherence of a central quantum system coupled to an XY spin chain, J. Phys. A:math. Theor.,2007,40:2455-2461.
    [144]Yuan Z G, Zhang P, Li S S, Loschmidt echo and Berry phase of a quantum system coupled to an XY spin chain:Proximity to a quantum phase transition, Phys Rev. A,2007,75:012102-1-7.
    [145]Yuan Z G, Zhang P, Li S S, Disentanglement of two qubits coupled to an XY spin chain:Role of quantum phase transition, Phys Rev. A,2007,76:042118-1-7.
    [146]Ma X S, Cong H S, Zhang J Y, Wang A M, Entanglement dynamics of three-qubit states under an XY spin-chain environment, Eur. Phys. J. D,2008,48:285-292.
    [147]Zhu S L, Scaling of Geometric Phases Close to the Quantum Phase Transition in the XY Spin Chain, Phys Rev. Lett.,2006,96:077206-1-4.
    [148]Zanardi P, Paunkovic N, Ground state overlap and quantum phase transitions, Phys. Rev. E,2006, 74:031123-1-6.
    [149]Zanardi P, Quan H T, Wang X G, Sun C P, Mixed-state fidelity and quantum criticality at finite temperature, Phys. Rev. A,2007,75:032109-1-7.
    [150]Wang L C, Huang X L, Yi X X, Decoherence induced in spin-1/2 particles by apin chain environ-ment at finite temperature, Phys. Lett. A,2007,368:362-365.
    [151]Cheng W W, Liu J M, Decoherence from spin environment:Role of the Dzyaloshinsky-Moriya interaction, Phys. Rev. A,2009,79:052320-1-7.
    [152]H P.Breuer, D Burgarth, F Petruccione, Non-Markovian dynamics in a spin star system:Exact solution and approximation techniques, Phys. Rev. B,2004,70:045323-1-10.
    [153]Frasca M,1/N-Expansion for the Dicke model and the decoherence program, Ann. Phys.,2004, 313:26-36.
    [154]Paganelli S, Pasquale F de, Giampaolo S M, Decoherence slowing down in a symmetry-broken environment, Phys. Rev. A,2002,66:052317-1-6.
    [155]Lucamarini M, Paganelli S, Mancini S, Two-qubit entanglement dynamics in a symmetry-broken environment, Phys. Rev. A,2004,69:062308-1-8
    [156]Holstein T, Primakoff H, Field Dependence of the Intrinsic Domain Magnetization of a Ferromag-net, Phys. Rev.,1949,58:1098-1113.
    [157]Ficek Z, Tanas R, Delayed sudden birth of entanglement, Phys. Rev. A,2008,77:054301-1-4.
    [158]Derzhko O, Verkholyak T, Krokhmalskii T, Bttner H, Dynamic probes of quantum spin chains with the Dzyaloshinskii-Moriya interaction, Phys. Rev. B,2006,73:214407-1-14.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700