用户名: 密码: 验证码:
铁蛋白在虾夷扇贝新品种“海大金贝”高抗逆性中的作用及机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
1“海大金贝”和普通虾夷扇贝的蛋白组学初步比较分析
     与外界环境、病害生物和敌害生物相比,遗传结构是影响扇贝存活率的最根本的因素。为了保证扇贝养殖业的持续健康发展,需改善和培育高抗逆性的扇贝。近年来,分子标记辅助育种工作已被全面开展,对抗逆性分子标记的筛查也越来越多。本文以富含类胡萝卜素且具高抗逆性的虾夷扇贝新品种“海大金贝”为材料,对其高抗性进行了分子机理的探索。本研究运用蛋白组学的方法对“海大金贝”和普通虾夷扇贝雄性性腺中的差异蛋白进行了分析比较,最终得到7个差异蛋白点,即proteasome subunit alpha type-1(PS),fructose-bisphosphate aldolase(FBA),peroxisomal3,2-trans-enoyl-CoA isomerase (PECI),chaperonin containingTCP1(CCT),ferritin (FTN),elongation factor1-beta (EF1B)和β-tubulin (TUBB)。同时,Real-time PCR分析表明其中四个基因(PS, FBA, PECI and CCT)的mRNA表达含量及其蛋白的含量在两种虾夷扇贝中是一致的。分析表明:1)这些差异基因参与了各种各样的生物过程,如脂类和糖类代谢过程、蛋白折叠和降解过程。2)类胡萝卜素累积可能影响了PPARs代谢通路,而使上述基因的表达发生了变化。3)铁蛋白FTN在先天免疫系统中的重要作用,可作为研究“海大金贝”高抗逆性的重要候选基因。本研究为海洋软体动物类胡萝卜素累积的研究开启了崭新的一页并奠定了一定的分子基础。
     2虾夷扇贝六种铁蛋白亚基的鉴定及特征分析
     作为一种重要的铁离子储存蛋白,铁蛋白在维系胞内铁离子平衡和先天防御过程中起着重要的作用。本研究中,成功克隆了6个虾夷扇贝铁蛋白亚基(PyFer1,PyFer2, PyFer3, PyFer4, PyFer5和PyFer6)的cDNA及DNA序列;其中,PyFer1、PyFer2、PyFer3和PyFer4均由4个外显子和3个内含子组成,PyFer5由7个外显子和6个内含子组成,PyFer6则由5个外显子和4个内含子组成。在PyFer4和PyFer6第二个内含子区域,存在小卫星序列。除了PyFer5和PyFer6外,其余4个虾夷扇贝铁蛋白5’-UTR区域都含有铁反应调控元件IRE。与此同时,在PyFer2、PyFer4和PyFer6的3’-UTR区域分别存在3、17和1个A+U mRNA不稳定原件(TATT或ATTTA)。6种铁蛋白亚基ORF长度分别为522、516、516、519、687和663bp,编码173、171、171、172、228和220个氨基酸。这些铁蛋白均含有典型的铁蛋白结构特征,即4个长α螺旋,1个短α螺旋,1个长环。生物信息学预测结果显示,PyFer1、PyFer2、PyFer3和PyFer4不但含有铁氧化酶作用中心(E Y E E H E Q),还含有铁水合作用位点(D E E),而PyFer5仅含有铁氧化酶作用中心,PyFer6并不含有完整的铁氧化酶作用中心。PyFer1、PyFer2、PyFer3和PyFer4理化性质较为相似,属于胞质型可溶蛋白;而PyFer5和PyFer6铁蛋白N端含有信号肽序列,属于分泌型可溶蛋白。定量PCR分析显示,6种铁蛋白亚基在虾夷扇贝D型幼虫期表达量均有显著的提升,在成体虾夷扇贝外套膜和肝胰腺中的表达量较高。虾夷扇贝受铁或者鳗弧菌胁迫后,6种铁蛋白的表达量均有了显著的变化。重组蛋白(rPyFer1、rPyFer2、rPyFer3和rPyFer4)展示了明显的铁氧化酶和抑菌活性。细胞定位显示,铁蛋白广泛分布在虾夷扇贝不同细胞类型中。以上结果表明这6种铁蛋白可能参与了虾夷扇贝多个基础生理活动,如免疫应答、铁离子平衡和贝壳形成过程。
     3铁蛋白在“海大金贝”高抗逆性中的作用
     作为一种重要的铁离子储存蛋白,铁蛋白参与了虾夷扇贝的免疫应答、铁离子平衡和贝壳形成等多个基础生理活动过程。本实验以普通虾夷扇贝和“海大金贝”为材料,对两者经过铁或鳗弧菌胁迫后6种铁蛋白的反应灵敏度进行了比较,发现与普通虾夷扇贝相比,“海大金贝”中的6种铁蛋白均表现出更敏感快捷的反应,表明铁蛋白可能在“海大金贝”的高抗逆性中起着重要的作用。
1Proteomic analysis identifies proteins related to stress resistance in Yessoscallop (Patinopecten yessoensis)
     Compared with outside environment, pathogens, protozoan, and predators, geneticstructure is a most fundamental factor to influence the survival rate of Yesso scallop.In order to keep sustainable development of breeding, it is urgent to improve andbreed a new variety with higher resistance. Most recently, based on molecular markers,like resistant genes, breeding has been promoted and got better results. A new variety,“Haida golden scallop”, with higher content of carotenoids and higher resistancecompared to the common Yesso scallop, has been developed successfully by ourgroup. To unravel the molecular mechanism of high stress resistance in “Haida goldenscallop”, a proteomic approach was applied in this study to explore the differencesbetween the new variety and common individuals. It resulted in7differentiallyexpressed proteins. Real-time PCR showed that four of the corresponding genes werealso significantly up-regulated at the mRNA level in the new variety. These resultsindicate that:1) Genes involved in various biological processes, such as lipid andglucose metabolism, protein-folding and degradation, were altered.2) Carotenoidsaccumulation may influence peroxisome proliferator-activated receptor (PPAR)signaling pathway, and PPARs may play a vital role in these above changes.3)Ferritin, as an important factor in innate immune is a good candidate for unravelingthe mechanism of high stress resistance in “Haida golden scallop”. This studyrepresents a starting point for future work concerning the genetic basis of carotenoid accumulation across all marine mollusks.
     2Identification and characterization of six ferritin subunits involved in immunedefense of the Yesso scallop (Patinopecten yessoensis)
     As a primary iron storage protein, ferritin plays a vital role in iron homeostasis andinnate immunity. In this study, the DNA and full-length cDNA sequences of sixferritin subunits (PyFer1, PyFer2, PyFer3, PyFer4, PyFer5, and PyFer6) were clonedfrom the Yesso scallop, Patinopecten yessoensis. PyFer1, PyFer2, PyFer3, andPyFer4consist of four exons and three introns;PyFer5is composed of seven exonsand six introns, and PyFer6has a five-exon/four-intron structure. Minisatellite DNAsare found in intron2of PyFer4and PyFer6. Except for PyFer5and PyFer6, the restfour ferritins (PyFer1, PyFer2, PyFer3, and PyFer4) contain putative iron-responseelements (IREs) in their5’ UTRs. Meanwhile, multiple A+U-destabilizing elements(TATT or ATTTA) are present in the3’ UTRs of PyFer2, PyFer4and PyFer6. Theopen reading frames (ORFs) of the six ferritins are522,516,516,687, and663bp inlength, encoding173,171,171,172,228, and220amino acids, respectively. Theseproteins have typical ferritin structures, with four long α-helices, one short α-helix andan L-loop. Four of the predicted proteins (PyFer1, PyFer2, PyFer3, and PyFer4)possess both the ferroxidase center of mammalian H ferritins (E Y E E H E Q) and theiron nucleation site of mammalian L ferritins (D E E), and the four recombinantproteins (rPyFer1, rPyFer2, rPyFer3, and rPyFer4) possess apparent ferroxidaseactivity. Moreover, PyFer5only contains the ferroxidase center, and PyFer6has anincomplete ferroxidase center. PyFer1, PyFer2, PyFer3, and PyFer4are likely tobelong to cytoplasmic ferritins, while both PyFer5and PyFer6possess signal peptides,suggesting that they are secreted ferritins, which is in accordance with the result ofphylogenetic analysis. Quantitative real-time PCR analysis revealed that theexpression of the six PyFers was significantly elevated at the D-shaped stage and wasrelatively high in the adult mantle and hepatopancreas. Furthermore, the six PyFerswere significantly up-regulated by iron or bacterial challenge, and all four purifiedrecombinant PyFers (rPyFer1, rPyFer2, rPyFer3, and rPyFer4) were able to inhibit the growth of the scallop pathogen Vibrio anguillarum. Immunohistochemical analysisshowed that ferritins were widely distributed in various cell types of Yesso scallop.These results suggest that these PyFers are likely to play important roles in manyfundamental biological processes in P. yessoensis, including immune defense, ironhomeostasis, and shell development.
     3Role of ferritin in the high sresistance of “Haida golden scallop”
     As primary iron storage proteins, the six ferritins have been demonstrated to playvital roles in the immune defense, iron homeostasis, and shell development of P.yessoensis. In this study, relative mRNA expressions of the six PyFers were evaluatedby iron or bacterial challenge between “Haida golden scallop” and the commonindividuals. Results showed that all six ferritin subunits from “Haida golden scallop”were more sensitive to the ferrous iron or V. anguillarum than those from the commonindividuals, indicating that ferritins might participate in the high resistance of “Haidagolden scallop”.
引文
[1]常亚青,王子臣。药物诱导虾夷扇贝四倍体的初步研究。海洋与湖沼,2002,33:105~12
    [2]常亚青,张国范。虾夷扇贝三倍体诱导与培育技术的研究。中国水产科学,2001,8:18~22
    [3]王子臣,毛连菊,陈来钊,常亚青,王世震,史宗元,李豫红。温度休克诱导栉孔扇贝和虾夷扇贝三倍体的初步研究。大连水产学报,5:1~6
    [4] Sun CS, Zhan AB, Hui M, Lu W, Hu XL, et al. Characterization of novel microsatellitemarkers from the Yesso scallop Mizuhopecten yessoensis. Molecular Ecology Notes,2007,7:106~8
    [5] Wang XL, Song B, Qiu XM, Meng XY. Development of EST-SSRs in scallop (Patinopectenyessoensis) from sequence database. Conservation Genetics,2009,10:1129~31
    [6] Xu KF, Li Q, Kong LF, Yu RH. A first-generation genetic map of the Japanese scallopPatinopecten yessoensis based AFLP and microsatellite markers. Aquaculture Research,2008,40:35~43
    [7] Liu WD, Bao XB, Song WT, Zhou ZC, He CB, et al. The construction of a preliminarygenetic linkage map in the Japanese scallop Mizuhopecten yessoensis. Yi Chuan,2009,31:629~37
    [8] Sarashina I, Endo K. The complete primary structure of molluscan shell protein1(MSP-1),an acidic glycoprotein in the shell matrix of the scallop Patinopecten yessoensis. MarBiotechnol,2001,3:362~9
    [9] Kim KS, Kim BK, Kim HJ, Yoo MS, Mykles DL, et al. Pancreatic lipase-related protein(PY-PLRP) highly expressed in the vitellogenic ovary of the scallop, Patinopecten yessoensis.Comp Biochem Physiol B Biochem Mol Biol,2008,151:52~8
    [10]李宁。虾夷扇贝橘红色闭壳肌产生的原因及其在育种中的应用:[博士学位论文]。山东:中国海洋大学,2009
    [11] Li N, Hu J, Wang S, Cheng J, Hu X, Lu Z, Lin Z, Zhu W, and Bao Z. Isolation andidentification of the main carotenoid pigment from the rare orange muscle of the Yessoscallop. Food Chemistry,2010,118:616~9.
    [12]任晓亮,侯睿,王珊,战渊超,黄晓婷,包振民。控制虾夷扇贝闭壳肌累积类胡萝卜素相关基因的筛查。中国海洋大学学报,2012,42:041~7。
    [13]项斌,高建荣。天然色素。北京:化学工业出版社,2004
    [14] Campbell SA, Mallams AK, Waight ES, Weedon BCL, Barbier M, Lederer E and Salaque A.Pectenoxanthin, cynthiaxanthin, and a new acetylenic carotenoid, pectenolone. ChemicalCommunications (London),1967,941~2
    [15] Hiraoka K, Matsuno T, Ito M, Tsukida K, Shichida, Y, and Yoshizawa T. AbsoluteConfiguration of Pectenolone. Bulletin of the Japanese Society of Scientific Fisheries,1982,48:215~7
    [16] Shahidi F, and Brown, JA. Carotenoid Pigments in Seafoods and Aquaculture. CriticalReviews in Food Science and Nutrition,1998,38:1~67
    [17] Bjerkeng B, Hertzberg S, and Liaaen-Jensen S. Carotenoids in food chain studies. V:Carotenoids of the bivalves Modiolus modiolus and Pecten maximus: structural, metabolicand food chain aspects. Comparative biochemistry and physiology. B. Comparativebiochemistry,1993,106:243~50
    [18] Tsushima M, Maoka T, Katsuyama M, Kozuka M, Matsuno T, Tokuda H, Nishino H, andIwashima A. Inhibitory effect of natural carotenoids on Epstein-Barr virus activation activityof a tumor promoter in Raji cells. A screening study for anti-tumor promoters. Biol PharmBull,1995,18:227~33
    [19] V lker O. The dependence of lipochrome-formation in birds on plant carotenoids.Proceedings of the8thInternational Orthinologists Congress,1938,425~6.
    [20] Matsuno T and Hirao S. Marine carotenoids in Marine Biogenic Lipids, Fats, and Oils,(Ackman, RG ed.). CRC Press, Boca Raton, Florida,1989,1:504
    [21]范立梅。类胡萝卜素的生物学功能。生物学通报,2001,36:10
    [22] Fox HM and Vevers G. The Nature of Animal Colours, SIDGWICK and JACKSON, LTD,London,1960
    [23] Gross J. Pigments in vegetables: chlorophylls and carotenoids. Van Nostrand Reinhold NewYork (USA),1991
    [24] Ikan R. Natural products: a laboratory guide. Academic Press New York,1991. IronBiochemistry in Biochemistry and Medicine II. Academic Press, London, pp.605~14
    [25] Latscha T. Carotenoids: Their Nature and Significance in Animal Feeds. F. Hoffmanla Roche,Animal Nutrition and Health,1990.
    [26] Miki W, Yamaguchi K, and Konosu S. Comparison of carotenoids in the ovaries of marinefish and shellfish. Comp Biochem Physiol B,1982,71:7~11
    [27] Goodwin TW. The Biochemistry of the Carotenoids, Chapman and Hall, London, Ed2, Vol.I.,1980,377
    [28] Mathews-Roth MM. Medical applications and uses of carotenoids. Carotenoid Chemistry andBiochemistry, G. Britton and TW Goodwin, eds. Peigamon Press, New York.1981,297~307
    [29] Dhar A, Mehta S, Banerjee S, Campbell DR, and Banerjee SK. Crocetin, a carotenoidcompound isolated from saffron, inhibits cell proliferation and tumor formation in pancreaticcancer. Faseb Journal,2006,20:A150
    [30] Silvera SAN, Jain M, Howe GR, Miller AB, and Rohan TE. Carotenoid, vitamin A, vitaminC, and vitamin E intake and risk of ovarian cancer: A prospective cohort study. CancerEpidemiology Biomarkers&Prevention,2006,15:395~7
    [31] Wang XD and King S. Effects of carotenoid supplementation on signal transductionpathways: Significance in lung cancer prevention. Nutrient Gene Interactions in Cancer,2006,113~28
    [32] Nishino H. Prevention of hepatocellular carcinoma in chronic viral hepatitis patients withcirrhosis by carotenoid mixture. Recent Results in Cancer Research,2007,67~71
    [33] Chalazonitis N. Light energy conversion in neurnal membranes. Photochemistry andPhotobiology,1964,3:539~59
    [34] Baur Jr PS. Lipochondria and the light response of Aplysia giant neurons. J Neurobiol,1977,8:19~42
    [35] Ueda K and Kawai K. Spectral characterization of the neuronal pigments of Aplysia juliana.Biochim Biophys Acta,1979,584:339~45
    [36] Nagy ZI. Cytosomes (Yellow Pigment Granules) of Mollusks as Cell Organelles of AnoxicEnergy Production. Int. Rev. Cytol,1977,49:331~7
    [37] Vershinin A. Carotenoids in Mollusca: approaching the functions. Comparative biochemistryand physiology. Part B. Biochemistry&molecular biology,1996,113:63~71
    [38] Goodwin TW. Carotenoid metabolism during development of lobster eggs. Nature,1951,449:559
    [39] Green J. Chemical embryology of the crustacea. Biological Reviews,1965,40:580~99
    [40] Cheesman DF. Ovorubin, a Chromoprotein from the Eggs of the Gastropod Mollusc Pomaceacanaliculata. Proceedings of the Royal Society of London. Series B, Biological Sciences(1934~1990),1958,149:571~87
    [41] Castillo R, Negre~Sadargues G, and Lenel R. General survey of the carotenoids in crustacea.Carotenoid Chemistry and Biochemistry,1982,211~24
    [42] Vershinin A and Lukyanova ON. Carotenoids in the developing embryos of sea urchinStrongylocentrotus intermedius. Comparative biochemistry and physiology. B. Comparativebiochemistry,1993,104:371~3
    [43] Hu X, Jandacek RJ, and White WS. Intestinalabsorption of beta-carotene ingested with ameal rich in sunflower oil or beef tallow: postprandial appearance in triacylglycerol-richlipoproteins in women. American Journal of Clinical Nutrition,2000,71:1170~80
    [44]周光宏,Tume R。离体牛小肠细胞对β—胡萝卜素和叶黄素吸收的研究。动物营养学报,1996,8:15~8
    [45] Hollander D. Beta-carotene intestinal absorption: bile, fatty acid, pH, and flow rate effects ontransport. American Journal of Physiology Gastrointestinal and Liver Physiology,1978,235:686~91
    [46]王庆成,寇宝增,刘永峰等。虾夷扇贝育苗适温问题的初步探讨。海洋科学,1986,10:49~50
    [47]隋锡林,王庆成。虾夷扇贝生产性育苗试验。水产科学,1990,9:1~5
    [48]刘忠颖,陈远,王志松。温度对虾夷扇贝幼体和稚贝生长、成活率的影响。水产科学,1999,3:17~20
    [49]张明明,赵文。我国虾夷扇贝死亡原因的探讨及控制对策。中国水产,2008,2:64~6
    [50]麦贤仕,蔡德华,蔡少炼。海洋环境污染对水产品质量的影响。水产科技,36~9
    [51]李君丰,常亚青,杨辉。三种重金属离子及EDTA二钠对虾夷扇贝幼虫急性毒性效应的研究。海洋环境科学,2011,3:346~8
    [52]王军。虾夷扇贝组织中重金属的蓄积及与环境相关性初探。中国海洋大学,2009。
    [53] Brnad AR, Roberts D. The cardiac responses of the scallop Pecten mxaimus (L.) torepsiratoyr srtess. Jounral of experimental marine biology and ecology,1973,13:29~43
    [54]萧云朴,陈舜,伍德瀛。海养殖密度对虾夷扇贝在浙江南麂海区生长的影响。南方水产,2009,5:1~7
    [55]刘美剑,常亚青,杨芸菲,刘艳萍,张婧,张伟杰。王轶南盐度渐变对虾夷扇贝(Patinopecten yessoensis)免疫指标的影响。中国农业科技导报,2011,3:129~35
    [56] Buller NB. Bacteria from fish and other aquatic animals. A practical identification manual,2004,2~43
    [57] Garland CD, Nash GV, Sumner CE, et al. Bacterial pathogens of oyster larvae (Crassostreagigas) in a Tasmanian hatchery Australian. Journal of marine and freshwater research,1983,34:483~87
    [58] Nelson EJ, Ghiorse WC. Isolation and identification of Pseudoalteran onaspiscicida strainCurad associated with diseased damselfish (Pamacentridae) eggs. Journal of fish diseases,1999,22:253~60
    [59]滕炜鸣,李文姬,张明,于佐安,李石磊,刘项峰,李华琳,付成东。虾夷扇贝脓胞病病原的分离、鉴定与致病性。水产学报,2012,6:937~43
    [60] Elston R, Ellio TTE, Colwell RR. Conchiolin infection and surface coating Vibrio shellfigility, growth depression and mortalities in cultured oysters and clams, Crassostreavirginica, Ostrea edulis and Mercenaria mercenaryia. J Fish dis,1982,5:265~84
    [61]梁玉波,杨波,王立俊等。辽宁黄海沿岸水域增养殖贝类病害发生机理和防治对策。海洋环境科学,2000,19:5~10
    [62]李国,闫茂仓,常维山,刘连生,马爱敏,林志华。我国海水养殖贝类弧菌病研究进展。浙江海洋学院学报,2008,27:327~33
    [63]于佐安,李文姬,张明,李华琳,刘项峰,李大成。大连市长海县虾夷扇贝养殖海区浮游病毒的丰度。水产学报,2011,35:911~7
    [64]王秀华,王崇明,李筠等。胶州湾栉孔扇贝大规模死亡的流行病学调查。水产学报,2002,26:149~55
    [65] Comps M, Duthoit JL. Inefctions virales associees aux epizooties des huiters du genreCrassostrea. Acad Sci Pairs,1976,283:1595~6
    [66] Hine PW, Wesney B, Hay BE. Herpesviurs assoeiated with mortalityes amonghatchery-reared larval Pacific oyster, Crassostrea gigas. Dis Aquat Org,1992,20:135~42
    [67]隋世峰。虾夷扇贝体内的一种寄生虫——帕金虫的培养与检测。水产养殖学,2008。
    [68]侯传宝。提高虾夷扇贝育苗成活率的关键措施。齐鲁渔业,2010,27:36~7
    [69] Shirin M, Sushmita S, Vivek K. Suppression subtractive hybridization coupled withmicroarray analysis to examine differential expression of genes in virus infected cells Biol.Proced Online,2004,6:94~104
    [70] Zhang ZZ, Ma ZQ. Suppression subtractive hybridization analysis of Ms2Nearisogenic linesof wheat reveals genes differentially expressed in Spikelets and Anthers. J Plant Physiol MolBiol,2005,31:175~182
    [71] Rebrikov DV, Desai SM, Siebert PD. Suppression subtractive hybridization. Methods MolBiol,2004,258:107~134
    [72] Zhang Q, Zhang ZW, Xin DQ. Suppression subtractive hybridization for identifyingdifferentially expressed genes in renal cell carcinoma. Chin Med J,2001,114:807~12
    [73] Brown M, Davies I M, Moffat C F, Craft J A. Application of SSH and a macroarray toinvestigate altered gene expression in Mytilus edulis in response to exposure to benzopyrene.Marine Environmental Research,2006,62: S128~S135
    [74] Boheler KR, Tarasov KV. SAGE analysis to identify embryonic stem cellpredominanttranscripts. Methods Mol Biol,2006,329:195~221
    [75] Richards M, Tan SP, Tan JH. The transcriptome profile of human embryonic stem cells asdefined by SAGE. Stem Cells,2004,22:51~64
    [76] Velculescu VE,Zhang L, Vogelstein B. Serial analysis of gene expression. Science,1995,270:484~7
    [77] Wang Z, Gerstein M, Snyder M. RNA-Seq: a revolutionary tool for transcriptomics. Nat RevGenet,2009,10:57~63
    [78] Guo Y, Xiao P, Lei S, Deng F, Xiao GG, Liu Y et al. How is mRNA expression predictive forprotein expression? A correlation study on human circulating monocytes. Acta BiochimBiophys Sin,2008,40:426~36
    [79] Shaw MM, Riederer BM. Sample preparation for two-dimensional gel electrophoresis.Proteomics,2003,3:1408~17
    [80] Curreem SO, Watt RM, Lau SK, Woo PC. Two-dimensional gel electrophoresis in bacterialproteomics. Protein Cell.2012,3:346~63
    [81] Singh OV, Tao YX. Two-dimensional gel electrophoresis: discovering neuropathicpain~associated synaptic biomarkers in spinal cord dorsal horn. Methods Mol Biol,2012,851:47~63
    [82] Baba H, Masuda Y, Sueyoshi N, Kameshita I. In-gel phosphatase assay using non-denaturingtwo-dimensional electrophoresis. J Biochem,2012,152:557~63
    [83] Kaur P, Rizk NM, Ibrahim S, Younes N, Uppal A, Dennis K et al. Correction toiTRAQ-based Quantitative Protein Expression Profiling and MRM Verification of Markers inType2Diabetes. J Proteome Res,2013,11:5527~37
    [84] Bao GY, Wang HZ, Shang YJ, Fan HJ, Gu ML, Xia R, Qin Q, Deng AM. Quantitativeproteomic study identified cathepsin B associated with doxorubicin-induced damage in H9c2cardiomyocytes. Biosci Trends,2012,6:283~7
    [85] Alves RM, Vitorino R, Padr o AI, Moreira-Gon alves D, Duarte JA, Ferreira RM, Amado F.iTRAQ-based quantitative proteomic analysis of submandibular glands from rats withSTZ-induced hyperglycemia. J Biochem,2012,153:209~20
    [86] Andrews NC. Disorder of iron metabolism. N. Engl. J. Med.,1999,341:1986~95
    [87] Sipe JC, Lee P, and Beutler E. Brain iron metabolism and neurodegenerative disorders. Dev.Neurosci.,2002,24:188~96
    [88] Berg D et al. Brain iron pathways and their relevance to Parkinson’s disease. J. Neurochem.,2001,79:225~36
    [89] Bishop G.M et al. Iron: a pathological mediator of Alzheimer disease? Dev. Neurosci.,2002,24:184~7
    [90] Medzhitov R, Janeway Jr CA. Innate immunity: impact on the adaptive immune response.Curr Opin Immunol,1997,9:4~9
    [91] Franc NC, White K. Innate recognition systems in insect immunity and development: newapproaches in Drosophila. Microb Infect,2000,2:243–50
    [92] Foukas LC, Katsoulas HL, Paraskevopoulou N, Metheniti A, Lambropoulou M, MarmarasVJ. Phagocytosis of Escherichia coli by insect hemocytes requires both activation of theRas/Mitogen-activated Protein Kinase signal transduction pathway for attachment and β3integrin for internalization. J Biol Chem,1998,273:14813~8
    [93] Iwanaga S, Kawabata S, Muta T. New types of clotting factors and defense molecules foundin horseshoe crab hemolymph: their structure and functions. J Biochem,1998,123:1~15
    [94] Hoffmann JA, Reichhart JM, Hetru C. Innate immunity in higher insects. Curr Opin Immunol,1996,8:8~13
    [95] Soderhall K, Cerenius L. Role of the prophenoloxidase-activating system in invertebrateimmunity. Curr Opin Immunol,1998,10:23~8
    [96] Fearson D, Locksley R. The instructive role of innate immunity in the acquired immuneresponse. Science,1996,272:50~3
    [97] Salzet M. Vertebrate innate immunity resembles a mosaic of invertebrate immune responses.Trends Immunol,2001,22:285~8
    [98] Wright S. Multiple receptors for endotoxin. Curr Opin Immunol,1991,3:83~90
    [99] Epstein J, Eichbaum Q, Sheriff S, Ezekowitz R. The collectins in innate immunity. Curr OpinImmunol,1996,8:29~35
    [100] Wright S, Ramos R, Tobias P, Ulevitch R, Mathison J. CD14, a receptor for complexes oflipopolysaccharide (LPS) and LPS binding proteins. Science,1990,249:1431~3
    [101] Beck G, Ellis TW, Habicht GS, Schluter SF, March-alonis JJ. Evolution of the acute phaseresponse: iron release by echinoderm (Asterias forbesi) coelomocytes, and cloning of anechinoderm ferritin molecule. Dev Comp Immunol,2002,26:11~26
    [102] Bullen JJ. The significance of iron in infection. Rev Infect Dis,1981,3:1127~38
    [103] Konijn A, Hershko C. Ferritin synthesis in inflamma~tion. I. Pathogenesis of impaired ironrelease. Br J Haematol,1977,37:7~19
    [104] Roeser H. Iron metabolism in inflammation and malignant disease. In: Jacobs, A., Worwood,M.(Eds.),1980.
    [105] Brock JJ. Iron-binding proteins. Acta Paediatr. Scand Suppl,1989,361:31–43
    [106] Lauffer RB. Iron and Human Disease. CRC Press, Inc,1992. Boca Raton, FL (pp.162~72,180~98)
    [107] Singh PK, Parsek MR, Greenberg EP, Welsh MJ. A component of innate immunity preventsbacterial biofilm development. Nature,2002,417:552~5
    [108] Arosio P, Ingrassia R, Cavadini P. Ferritins: A family of molecules for iron storage,antioxidation and more. Biochimi Biophys Acta (BBA): General Subjects,2009,1790:589~99
    [109] Theil E. Ferritin: structure, gene regulation, and cellular function in animals, plants, andmicroorganisms. Annual review of biochemistry,1987,56:289~315
    [110] Santambrogio P, Levi S, Cozzi A, Corsi B, Arosio P. Evidence that the specificity of ironincorporation into homopolymers of human ferritin L-and H-chains is conferred by thenucleation and ferroxidase centres. Biochem J,1996,314:139~44.
    [111] Charlesworth A, Georgieva T, Gospodov I, Law JH, Dunkov BC, Ralcheva N,Barillas-Mury C, Ralchev K, Kafatos FC. Isolation and properties of Drosophilamelanogaster ferritin—molecular cloning of a cDNA that encodes one subunit, andlocalization of the gene on the third chromosome. Eur.J.Biochem.,2005,247:470~5
    [112] Granier T, Langlois d'Estaintot B, Gallois B, Chevalier JM, Précigoux G, Santambrogio P,Arosio P. Structural description of the active sites of mouse L-chain ferritin at1.2Aresolution. J. Biol. Inorg. Chem.,2003,8:105~11
    [113] Dickey LF, Sreedharan S, Theil E, et al. Differences in the regulation of messenger RNA forhousekeeping and specialized-cell ferritin. A comparison of three distinct ferritincomplementary DNAs, the corresponding subunits, and identification of the first processed inamphibia. J Biol Chem,1987,262:7901
    [114] Andersen O, Dehli A, Standal H, et al. Two ferritin subunits of Atlantic salmon (Salmosalar): cloning of the liver cDNAs and antibody preparation. Mol Marine Biol Biotechnol,1995,4:164
    [115] Giorgi A, Mignogna G, Bellapadrona G, et al. The unusual co-assembly of H-and M-chainsin the ferritin molecule from the Antarctic teleosts Trematomus bernacchii and Trematomusnewnesi. Arch Biochem Biophys,2008,478:69~74
    [116] Li J, Li L, Zhang S, Li J, Zhang G. Three ferritin subunits involved in immune defense frombay scallop Argopecten irradians. Fish Shellfish Immunol,2012,32:368~72
    [117] Santambrogio P, Biasiotto G, Sanvito F, Olivieri S, Arosio P, Levi1S. Mitochondrial FerritinExpression in Adult Mouse Tissues. Journal of Histochemistry&Cytochemistry,2007,55:1129~37
    [118] Harrison PM, Arosio P. The ferritins: molecular properties, iron storage function and cellularregulation. Biochimica et Biophysica Acta,1996,1275:161~203
    [119] Nichol H, Law JH, Winzerling JJ. Iron metabolism in insects. Ann Rev Entomol,2002,47:535~59
    [120] Vaisman B, Fibach E, Konijn AM. Utilization of intracellular ferritin iron for hemoglobinsynthesis in developing human erythroid precursors. Blood,1997,90:831~8
    [121] Bou-Abdallah F, Santambrogio P, Levi S, et al. Unique iron binding and oxidationproperties of human mitochondrial ferritin: a comparative analysis with human H-chainferritin. J Mol Biol,2005,347:543~54
    [122] Theil EC. Iron regulatory elements (IREs): a family of mRNA non-coding sequences.Biochem J,1994,304:1~11
    [123] Rouault TA. The role of iron regulatory proteins in mammalian iron homeostasis and disease.Nat Chem Biol,2006,2:406~14
    [124] Rogers JT, Bridges KR, Durmowicz GP, Glass J, Auron PE, Munro HN. Translationalcontrol during the acute phase response. Ferritin synthesis in response to interleukin-1. J BiolChem,1990,9:14572~83
    [125] Huang TS, Melefors O, Lind M, Soderhall K. An atypical iron-responsive element (IRE)within crayfish ferritin mRNA and an iron regulatory protein1(IRP1)-like protein fromcrayfish hepatopancreas. Insect Biochem Mol Biol,1999,29:1~9
    [126] Surguladze N, Thompson KM, Beard JL, Connor JR, Fried MG. Interactions and reactionsof ferritin with DNA. J Biol Chem,2004,279:14694~702
    [127] Nichol H, Locke M. Secreted ferritin subunits are of two kinds in insects. Molecular cloningof cDNAs encoding two major subunits of secreted ferritin from Calpodes ethlius. InsectBiochem Mol Biol,1999,29:999~1013
    [128] Huang TS, Law JH, Soderhall K. Purification and cDNA cloning of ferritin from thehepatopancreas of the freshwater crayfish Pacifastacus leniusculus. Eur J Biol chem,1996,236:450~6
    [129] Jin C, Li C, Su X, Li T. Identification and characterization of a Tegillarca granosa ferritinregulated by iron ion exposure and thermal stress. Dev Comp Immunol,2011,35:745~51
    [130] Ruan YH, Kuo CM, Lo CF, Lee MH, Lian JL, Hsieh SL. Ferritin administration effectivelyenhances immunity, physiological responses, and survival of Pacific white shrimp(Litopenaeus vannamei) challenged with white spot syndrome virus. Fish Shellfish Immunol,2010,28:542~8
    [131] Ong D, Wang L, Zhu Y, Ho B, Ding J. The response of ferritin to LPS and acute phase ofPseudomonas infection. J Endotoxin Res,2005,11:267~80
    [132] Yang C, Zhang L, Wang L, Zhang H, Qiu L, Siva VS, Song L. The Gln32Lys polymorphismin HSP22of Zhikong Scallop Chlamys farreri is associated with heat tolerance. PLoS ONE,2011,6:p1
    [133] Rebelo MF, Pfeiffer WC, da Silva Jr H, Moraes MO. Cloning and detection ofmetallothionein mRNA by RT-PCR in mangrove oysters (Crassostrea rhizophorae). AquaticToxicology,2003,64:359~62
    [134] Zhang SH, Zhu DD, Chang MX, Zhao QP, Jiao R, Huang B, Fu JP, Liu ZX, Nie P. Threegoose-type lysozymes in the gastropod Oncomelania hupensis: cDNA sequences and lyticactivity of recombinant proteins. Developmental and Comparative Immunology,2012,36:241~6
    [135] Pan Z, Zeng Y, An J, Ye J, Xu Q, and Deng X. An integrative analysis of transcriptome andproteome provides new insights into carotenoid biosynthesis and regulation in sweet orangefruits. Journal of Proteomics,2012,75:2670~84
    [136] Ewen K, Baker M, Wilhelm D, Aitken RJ, Koopman P. Global survey of protein expressionduring gonadal sex determination in mice. Mol cell proteomics,2009,8:2624~41
    [137] Sun J, Zhang Y, Thiyagarajan V, Qian P, and Qiu J. Protein expression during the embryonicdevelopment of a gastropod. Proteomics,2010,10:2701~11
    [138] Ramagli LS and Rodriguez LV. Quantitation of microgram amounts of protein intwo-dimensional polyacrylamide gel electrophoresis sample buffer. Electrophoresis,1985,6:559~63
    [139] Hou R, Bao Z, Wang S, Su H, Li Y, Du H, Hu J, Wang S, and Hu X. Transcriptomesequencing and de novo analysis for Yesso scallop (Patinopecten yessoensis) using454GSFLX. PLoS ONE,2011,6:e21560
    [140] Hu X, Bao Z, Hu J, Shao M, Zhang L, Bi K, Zhan A, and Huang X. Cloning andcharacterization of tryptophan2,3-dioxygenase gene of Zhikong scallop Chlamys farreri(Jones and Preston1904). Aquaculture Research,2006,37:1187~94
    [141] Geisbrecht BV, Zhang D, Schulz H, and Gould SJ. Characterization of PECI, a novelmonofunctional Δ3,Δ2-Enoyl-CoA isomerase of mammalian peroxisomes. The Journal ofBiological Chemistry,1999,274:21797~803
    [142] Choi KH, Shi J, Hopkins CE, Tolan DR, and Allen KN. Snapshots of catalysis: the structureof fructose-1,6-(bis)phosphate aldolase covalently bound to the substrate dihydroxyacetonephosphate. Biochemistry,2001,40:13868~75
    [143] Breusing N and Grune T. Regulation of proteasome-mediated protein degradation duringoxidative stress and aging. Biological Chemistry,2008,389:203~9
    [144] Yokota SI, Yanagi H, Yura T, and Kubota H. Upregulation of cytosolic chaperonin CCTsubunits during recovery from chemical stress that causes accumulation of unfolded proteins.European Journal of Biochemistry,2000,267:1658~64
    [145] Anand M, Valente L, Carr-Schmid A, Munshi R, Olarewaju O, Ortiz PA, and Kinzy TG.Translation Elongation Factor1Functions in the Yeast Saccharomyces cerevisia. Cold SpringHarbor Symposia on Quantitative Biology,2001,66:439~48
    [146] Lundin VF, Leroux MR, and Stirling PC. Quality control of cytoskeletal proteins and humandisease. Trends in Biochemical Sciences,2010,35:288~97
    [147] Borel P, Moussa M, Reboul E, Lyan B, Defoort C, Vincent-Baudry S, Maillot M, Gastaldi M,Darmon M, Portugal H, Planells R, and Lairon D. Human plasma levels of vitamin E andcarotenoids are associated with genetic polymorphisms in genes involved in lipid metabolism.The Journal of Nutrition,2007,137:2653~9
    [148] Humbard MA, Reuter CJ, Zuobi-Hasona K, Zhou G., and Maupin-Furlow JA.Phosphorylation and methylation of proteasomal proteins of the haloarcheon Haloferaxvolcanii. Archaea,2010,1~10
    [149] Ren H, Vallanat B, Brown-Borg HM, Currie R, and Corton JC. Regulation of proteomemaintenance gene expression by activators of peroxisome proliferator~activated receptor α.PPAR Research,2010,1~14
    [150] Mandard S, Muller M, and Kersten S. Peroxisome proliferator-activated receptor alphatarget genes. Cellular and Molecular Life Sciences,2004,61:393~416
    [151] Lee CH, Kang K, Mehl IR, Nofsinger R, Alaynick WA, Chong LW, Rosenfeld JM, andEvans RM. Peroxisome proliferator-activated receptor delta promotes very low-densitylipoprotein-derived fatty acid catabolism in the macrophage. Proceedings of the NationalAcademy of Sciences of the United States of America,2006,103:2434~9
    [152] Roberts LD, Murray AJ, Menassa D, Ashmore T, Nicholls AW, and Griffin JL. Thecontrasting roles of PPARδ and PPARγ in regulating the metabolic switch between oxidationand storage of fats in white adipose tissue. Genome Biology,2011,12:R75
    [153] Mansour N, Lahnsteiner F, Berger B. Metabolism of intratesticular spermatozoa of a tropicalteleost fish (Clarias gariepinus). Comp Biochem Physiol B Biochem Mol Biol,2003,135:285~96
    [154] Maoka T. Carotenoids in Marine Animals. Marine Drugs,2011,9:278~93
    [155] Robbe CL, Jack SC, Patrick JF, Frederique M, Charles EM. Glucose metabolism indrug-sensitive and drug~resistant human breast cancer cells monitored by magneticresonance spectroscopy. Cancer research,1988,48:870~7
    [156] Loretto C, Alejandra M, Fanny G, Philippe P, Juan A C. Proteomic analysis andidentification of copper stress-regulated proteins in the marine alga Scytosiphon gracilis(Phaeophyceae). Aquatic Toxicology,2010,96:85~9
    [157] Huber-Keener KJ, Liu X, Wang Z, Wang Y, Freeman W, Wu S, Planas-Silva MD et al.Differential gene expression in tamoxifen-resistant breast cancer cells revealed by a newanalytical model of RNA-Seq data. PLoS ONE,2012,7:e41333
    [158] Rast JP, Smith LC, Loza-Coll M, Hibino T, Litman GW. Genomic insights into the immunesystem of the sea urchin. Science,2006,314:952~6
    [159] Philipp EER, Kraemer L, Melzner F, Poustka AJ, Thieme S, Findeisen U, et al. Massivelyparallel RNA sequencing identifies a complex immune gene repertoire in thelophotrochozoan Mytilus edulis. PLoS One,2012,7:e33091
    [160] Ong S, Ho J, Ho B, Ding J. Iron-withholding strategy in innate immunity. Immunobiology,2006,211:295~314
    [161] Weinberg E, Miklossy J. Iron withholding: a defense against disease. J Alzheimers Dis,2008,13:451~63
    [162] Kong P, Wang L, Zhang H, Zhou Z, Qiu L, Gai Y, et al. Two novel secreted ferritinsinvolved in immune defense of Chinese mitten crab Eriocheir sinensis. Fish ShellfishImmunol,2010,28:604~12
    [163] He C, Yu H, Liu W, Su H, Shan Z, Bao X, et al. A goose-type lysozyme gene in Japanesescallop (Mizuhopecten yessoensis): cDNA cloning, mRNA expression and promoter sequenceanalysis. Comp Biochem Physiol B Biochem Mol Biol,2012,162:34~43
    [164] Zhang W, Wu X, Li D, Sun J, Zhang Y, Yang X. Epizootiological study on mass mortalitiesof the cultured scallops Argopecten irradians. Acta Oceanologica Sinica,2005,27:137~44
    [in Chinese with English abstract]
    [165] Zhang F, Yang H. Analysis of the causes of mass mortality of farming Chlamys farreri insummer in coastal areas of Shandong, China. Mar Sci,1999,44~7[in Chinese with Englishabstract]
    [166] Fisher J, Devraj K, Ingram J, Slagle-Webb B, Madhankumar AB, Liu X, et al. Ferritin: anovel mechanism for delivery of iron to the brain and other organs. American Journal ofPhysiology-Cell Physiology,2007,293:C641~C9
    [167] Wu C, Zhang W, Mai K, Xu W, Wang X, Ma H, et al. Transcriptional up-regulation of anovel ferritin homolog in abalone Haliotis discus hannai Ino by dietary iron. Comp BiochemPhysiol C Toxicol Pharmacol,2010,152:424~32
    [168] Xie M, Hermann A, Richter K, Engel E, Kerschbaum HH. Nitric oxide up-regulates ferritinmRNA level in snail neurons. Eur J Neurosci,2001,13:1479~86
    [169] Chatterjee S, Pal JK. Role of5'-and3'-untranslated regions of mRNAs in human diseases.Biology of the Cell,2009,101:251~62
    [170] Brown CY, Lagnado CA, Goodall GJ. A cytokine mRNA-destabilizing element that isstructurally and functionally distinct from A+U-rich elements. PNAS,1996,93:13721~5
    [171] Shaw G, Kamen R. A conserved AU sequence from the3' untranslated region of GM-CSFmRNA mediates selective mRNA degradation. Cell,1986,46:659~67
    [172] Georgieva T, Dunkov BC, Dimov S, Ralchev K, Law JH. Drosophila melanogaster ferritin:cDNA encoding a light chain homologue, temporal and tissue specific expression of bothsubunit types. Insect Biochem Mol Biol,2002,32:295~302
    [173] Von Darl M, Harrison PM, Bottke W. cDNA cloning and deduced amino acid sequence oftwo ferritins: soma ferritin and yolk ferritin, from the snail Lymnaea stagnah L. Eur. J.Biochem.,1994,222:353~66
    [174] He X, Zhang Y, Wu X, Xiao S, Yu Z. Cloning and characterization of two ferritin subunitgenes from bay scallop, Argopecten irradians (Lamarck1819). Molecular Biology Reports,2011,38:2125~32
    [175] Huan P, Wang H, Liu B. Comparative proteomic analysis of challenged Zhikong scallop(Chlamys farreri): a new insight into the anti-Vibrio immune response of marine bivalves.Fish Shellfish Immunol,2011,31:1186~92
    [176] Li C, Li H, Su X, Li T. Identification and characterization of a clam ferritin fromSinonovacula constricta. Fish Shellfish Immunol,2011,30:1147~51
    [177] Zheng W, Hua Y, Sun L. Identification and analysis of a Scophthalmus maximus ferritin thatis regulated at transcription level by oxidative stress and bacterial infection. ComparativeBiochemistry and Physiology Part B: Biochemistry and Molecular Biology,2010,156:222~8
    [178] Gabbiani G, Tuchweber B. The role of iron in the mechanism of experimental calcification.Journal of Histochemistry&Cytochemistry,1963,11:799~803
    [179] Schulz KG, Zondervan I, Gerringa LJA, Timmermans KR, Veldhuis MJW, Riebesell U.Effect of trace metal availability on coccolithophorid calcification. Nature,2004,430:673~6
    [180] Anghileri LJ, Maincent P, Cordova-Martinez A. On the mechanism of soft tissuecalcification induced by complexed iron. Experimental and Toxicologic Pathology,1993,45:365~8
    [181] Zhang Y, Meng Q, Jiang T, Wang H, Xie L, Zhang R. A novel ferritin subunit involved inshell formation from the pearl oyster (Pinctada fucata). Comparative Biochemistry andPhysiology Part B: Biochemistry and Molecular Biology,2003,135:43~54
    [182] Weiss IM, Sch nitzer V, Eichner N, Sumper M. The chitin synthase involved in marinebivalve mollusk shell formation contains a myosin domain. FEBS Letters,2006,580:1846~52
    [183] Fang D, Xu G, Hu Y, Pan C, Xie L, Zhang R. Identification of genes directly involved inshell formation and their functions in pearl oyster, Pinctada fucata. PLoS ONE,2011,6:e21860
    [184] Wang X, Liu B, Xiang J. Cloning, characterization and expression of ferritin subunit fromclam Meretrix meretrix in different larval stages. Comparative Biochemistry and PhysiologyPart B: Biochemistry and Molecular Biology,2009,154:12~6
    [185] Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities ofprotein utilizing the principle of protein-dye binding. Analytical biochemistry,1976,72:248~54
    [186] Levi S, Luzzago A, Cesareni G, Cozzi A, Franceschinelli F, Albertini A, et al. Mechanism offerritin iron uptake: activity of the H-chain and deletion mapping of the ferrooxidase site. Astudy of iron uptake and ferrooxidase activity of human liver, recombinant H-chain ferritins,and of two H-chain deletion mutants. Journal of Biological Chemistry,1988,263:18086~92
    [187]任增亮,堵国成,陈坚,吴敬。大肠杆菌高校表达重组蛋白策略。中国生物工程杂志,2007,27:103~9
    [188]邝爱丽,陈圆圆,彭志峰,郑鹿平,付仁一,徐雪,郭伦涛,王川庆。包涵体的形成原因及处理方法。上海兽牧兽医通讯,2009,1:62~3
    [189] Theil EC. The iron responsive element (IRE) family of mRNA regulators. Regulation ofiron transport and uptake compared in animals, plants, and microorganisms. Metal ions inbiological systems,1998,35:403~34
    [190] Vasil ML, Ochsner UA. The response of Pseudomonas aeruginosa to iron: genetics,biochemistry and virulence. Mol Microbiol,1999,34:399~413
    [191] Zhou J, Wang W, Ma G, Wang A, He W, Wang P, et al. Gene expression of ferritin in tissueof the Pacific white shrimp, Litopenaeus vannamei after exposure to pH stress. AquacultureResearch,2008,275:356~60
    [192] Gong N, Ma Z, Li Q, Li Q, Yan Z, Xie L, Zhang R. Characterization of calcium depositionand shell Matrix protein secretion in primary mantle tissue culture from the marine pearloyster Pinctada fucata. Mar Biotechnol,2008,10:457~65
    [193] Yu Z, Xie L, Lee S, Zhang R. A novel carbonic anhydrase from the mantle of the pearloyster (Pinctada fucata). Comp Biochem Physiol B Biochem Mol Biol,2006,143:190~4
    [194] García-Casal MN, Layrisse M, Solano L, Barón MA, Arguello F, Llovera D, Ramírez J,Leets I, Tropper E. Vitamin A and b-Carotene Can Improve Nonheme Iron Absorption fromRice, Wheat and Corn by Humans; Iron availability in the presence of β-carotene in differentmixtures. J Nutr,1998,128:646~50

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700