用户名: 密码: 验证码:
大连湾海域氨氮、磷酸盐及藻类生长的数值模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以大连湾海域为主要研究区域,以大连湾的主要污染物氨氮和磷酸盐为主要研究对象,基于对历史资料与监测数据的分析,用数值模拟技术,建立了适用于模拟大连湾主要污染物氨氮-磷酸盐及预测藻类生长的季节性三维水运动-水质模型。模型再现了大连湾水文要素和主要污染物-氨氮和磷酸盐在大连湾水体中的分布变化规律,定性分析了营养盐(主要指氨氮和磷酸盐)结构对藻类生产的影响,预测了浮游植物的空间分布特性和季节变化机理、污染物负荷的排放量和排放位置的变化对大连湾水体的影响,并基于Tecplot图形工具对大连湾水质模拟结果数据进行了可视化,为大连湾的水质规划和管理提供科学依据。
     模拟结果表明,由于排污口区水交换能力弱,污染物被排放之后不能及时被稀释,而积累形成污染。在湾顶部,扩散过程是影响氨氮、磷酸盐及藻类碳浓度的主要因素;在湾中部,硝化过程是影响氨氮浓度的主要因素,浮游植物的死亡率是影响磷酸盐浓度的主要因素,磷酸盐的含量是藻类生长的限制性因素。陆源负荷是氨氮的主要来源,底层腐殖质的分解补充是湾中部及湾口区磷酸盐的主要来源。
     营养盐负荷对大连湾水质的影响主要集中在湾顶部的排污口区,随着污染物负荷的增加水体中相应的污染物浓度迅速增加,营养盐浓度对藻类生产的影响越来越小。
     总负荷的变化对藻类生产的影响与磷酸盐负荷对藻类的影响类似,大于氨氮负荷对藻类的影响,且在大连湾的湾顶部,年平均N/P比率大大高于16。氨氮浓度和磷酸盐浓度的变化对藻类生长的影响定性分析结果也说明在湾顶部,磷酸盐是限制性营养盐。由于湾中高的无机氮的输入,N/P的值越来越高,在这种情况下,一旦有高的磷输入时,就有可能引发某些种的水华的发生。可以通过控制磷的排放来控制大连湾水体中藻类的生长。
     不同的排放位置对大连湾水体影响的差异反映了海域局部自净能力的差异。如果排污点源位于水交换能力大的湾口附近的陆源边界,则进入该海域的污染物质在海洋环境动力作用下会很快地被输送扩散,而不会在点源附近积累。
The dominating pollutants in the Dalian bay, such as ammonium nitrogen and phosphate, were the focus of attention in this paper. Based on the analysis of historical records and measured data, the three-dimensional hydrodynamics and water quality model have been established with numerical simulation technique. The distribution and variation of the hydrologic features and the main pollutants in the Dalian bay were repeated in the model. Qualitative analysis was applied on the influence of nutrient (as ammonium nitrogen and phosphate mainly) structure on alga production. The spatial distribution and seasonal variation of phytoplankton were simulated. The influence of the wastewater loads and the discharge stations on the water quality was predicted. The visualization of the water quality model was developed with Tecplot tools. It could be adopted in the coastal management of Dalian Bay.The simulation results implied that for the poor flow capacity of water in the existing outlet, the discharged pollutants are not diluted in time but accumulated and result in sea water pollution. In Bay tip diffusion is the main factor affecting the concentration of ammonia nitrogen, phosphate and alga carbon. In Bay mid, the nitrification consumption and the phytoplankton mortality decides the concentration of ammonia nitrogen and phosphate and the phosphate limits the alga production. Land loads supply the ammonia nitrogen primarily in Bay and the sea bed humus supplies the phosphate primarily in Bay mid and Bay mouth.The region of nutrient load influence on water quality is chiefly located in outlet area in Bay tip. The concentration of pollutant increases along with the load rapidly and the effect of the nutrient on alga production becomes weak gradually.The total land loads and the phosphate play the similar role on the algal production; they are stronger than ammonia nitrogen on the algal production. In the Bay tip the year average N/P value was higher than 16. The influence of ammonia nitrogen and phosphate on alga production indicated that phosphate is the limiting nutrient in algal production in Bay tip. Due to high nitrogen input, the N/P value will be very high; in case the high phosphorus input added, some kind algae blooming will be initiated. The alga production could be controlled through reducing the phosphate load.The different influence of various outlet positions on the water quality reflects water's self-purification in different region. If the outlet position was changed into the bay mouth with the
    rich flow capacity, the pollution will be diffused and transported promptly by marine environmental dynamic effect but not accumulated around the point sources.
引文
[1] 焦念志等.海湾生态过程与持续发展.科学出版社,2001,9
    [2] 王惠卿,杜广玉.大连市近岸海域赤潮状况、预防及防治对策.中国环境监测,2000,16(6):42-45
    [3] 詹士平,近海海域三维水动力学与水质模拟及其可视化研究:(大连理工大学博士学位论文).大连:大连理工大学,2003
    [4] Ritz W. Uber Eine Neue Methods zur Losung Gewisser Variations-probleme der Mathematis chen Phyisk. J. R. eine Angew Math, 1909, 135(1): 1-7
    [5] GalerkinB G. Rods and Platers, Series occurring in various questions concerning the elastic equilibrium of rods and plates (in Russian). Vestn Inghenevov, 1915, 19(9): 897-908
    [6] Leendertse J J. Water quality model for well-mixed estuary and coastal seas. Vol.1 Principles of computation. Santa Monica, Calif. RM-6230-RC, 1970
    [7] Butler H S. Astorm surge model study, Vol. 11, A finite element storm surge analysis and its application to a bay-cean system. Virginia Inst. Marina Science. Gloucester Point Va., Sepc. Rep., 1987
    [8] Yanenko N N. The Method of fractional steps. Springer-Verleg, Berlin & New York, 1971
    [9] Marchuk G I. Methods of numerical mathematics. Translated by Jiri Ruzzicka, Springer, 1975
    [10] Gendey R T, Lick W. Wind-driven current in lake erie. J. Geophys. Res., 1972
    [11] Heaps N S. On the numerical solution of the three dimensional hydrodynamic equations for tides and storm surges. Men. Soc. R. Sci.Liege, 1972.12(1): 143-180
    [12] Davies A M, Owen A. Three dimensional numerical sea modes using the Galerkin method with a polyomialbasic set. Appl. Math. Modelling, 1979, 43(3): 421-428
    [13] Tee K T. The structure of three-dimensional tide-generating currents Part Ⅰ, Oscillating current, J. Physical Oceanogra, 1979, 85(9): 930-944
    [14] Leendertse J J. A new approach to three-dimensional free-surface flow modeling. Rand Report R-3712-NETH/RC, 1989
    [15] Kawahara M, Kobayashi M, Makata K. Multiple level finite element analysis and its applications to tidal current flow in Tokyo Bay. Appl. Math. Modelling, 1983, 7(1): 197-211
    [16] Davies A M. On the formulating a three dimensional hydrodynamic sea model with an arbitrary variation of vertical eddy viscosity. Computer Math. In Appl. Mech. And Eng., 1980, 22(2): 187-211
    [17] Davies A M. On computing the three-dimensional flow in a stratified sea using Galerkin method. Aool. Math. Modelling, 1980, 4(2): 245-256
    [18] Davies A M. On computing the three-dimensional flow in a stratified sea using Galerkin method. Aool. Math. Modelling, 1982, 6(3): 347-361
    [19] Davies A M. Foumulation of a linear three-dimensional hydrodynamic sea model using a Galerkin Eiggen function method. Int. J. Numer. Meth. Fluid, 1983, 3(1): 33-60
    [20] Tee K T. The structure of three-dimensional tide-generating currents. Part Ⅱ, Residual Currents, J. Phsical Oceanogra., 1979, 10(4): 2035-2057
    [21] Tee K T. The structure of three-dimensional tide-generating currents. Experimental verification of a theoretical model. Estutine, Coastal and Shelf Science, 1982, 14(1):27-48
    [22] 沈育疆.东中国海三维半日潮流的数值计算.海洋湖沼通报,1984,(1):1-10
    [23] 叶安乐.台湾海峡及其附近海域三维半日潮的数值研究.海洋与湖沼,1985,16(6):13-18
    [24] Koutitas C, O'connor B. Modeling three-dimensional wind-induced flows. J. of Hydraulics Division, 1980, 106(HYII): 1843-1865
    [25] 魏守权.河口海域非线性Glerkin谱模型.青岛海洋大学学报,1989,19(4):105-118
    [26] 韩国其.风生环流的准三维数值模型.河海大学学报,1989,17(4):1-8
    [27] Streeter H W, Phelps E B. A study of the pollution and natural purification of the Ohio river. Public Health Bulletin No. 146, Washington D.C., 1925
    [28] Camps T R. Water and its impurities. Reingold, New York, 1963.
    [29] Dobbins W E. BOD and oxygen relationship in streams. Proc. ASCE, J. of the San. Eng. Div., 1964, 90(SA1): 53-78.
    [30] O' Connor D J. The temporal and spatial distribution of dissolved oxygen in streams. Water Research, 1967, 3(1): 65-79.
    [31] Loucks D P, Lynn W R. Probabilistic models for predictin stream quality water. Resources Research, 1966, 2(3): 583-605
    [32] Thoman R V. Time series analysis of water quality data. J. San.Eng. Div., ASCE, 1967, 93(1): 1-23
    [33] Thayer R P, Krutchoff R G. Stochastic model for BOD and DO in streams. J. San. Eng. Div., ASCE, 1967, 93(3): 189-195
    [34] Roemer L A, Giguere P R, Evenson D E. Computer program documentation for stream quality model QUAL-Ⅱ. Water Resources Engineers and South East Michigan Council of Governments, Detroit, 1977.
    [35] Mackay D. Environ. Sci. Technol., 1979,13(3):1218-1223.
    [36] Mackay D. and S. Paterson. Environ. Sci. Technol., 1981, 15(6):1006-1014
    [37] Mackay D, Paterson S. Environ. Sci. Technol.,1979, 13(4):654-660
    [38] 叶守权.水库水环境模拟预测与评价.北京:中国水利水电出版社,1998.
    [39] 雒文生,宋星原.用耦合模型进行水质随机模拟研究.水利学报,1995,(3):12-20
    [40] 雒文生,周志军.水库垂直二维湍流与水温水质耦合模型研究.水电能源科学,15(3):14-17
    [41] Daniel L. Tufford, Hank N. McKellar Spatial and temporal hydrodynamic and water quality modeling analysis of a large reservoir on the South Carolina (USA) coastal plain Ecological Modelling, 114, 1999, 137-173.
    [42] Kara.stan A., Martin J.-M., Rixen M., Beckers J.M.. Space and time distributions of phosphate in the Mediterranean Sea. Deep-Sea Research Ⅰ 49, 2002, 67-82
    [43] Fanning, K.A.. In.uence of atmospheric pollution on nutrient limitation in the ocean. Nature, 1989, 339, 460-463.
    [44] 赵亮,魏皓.渤海氮磷营养盐循环和收支研究.环境科学,2002,23(1):78-81
    [45] Yuko Oshima, Michio J. Kishi, Takashige Sugimoto Evaluation of the nutrient budget in a seagrass bed Ecological Modelling. 1999, (115): 19-33.
    [46] Smith, C.L., Tett, P.B.. A depth-resolving numerical model of physically forced microbiology at the European shelf edge. Journal of Marine Systems, 2000 (26): 1-36.
    [47] Wang, P. F. J. Martinb and G. Morrisonc. Water quality and eutrophication in Tampa Bay, Florida Estuarine, Coastal and Shelf Science, 1999 (49): 1-20.
    [48] Baretta-Bekker, J.G. (Ed.). European Regional Seas Ecosystem Model-Ⅰ (special issue). Netherlands Journal of Sea Research, 1995, 33 (3/4).
    [49] Fasham, M. J. R., Ducklow, H. W. and McKelvie, S. M.. A nitrogen-based model of plankton dynamics in the oceanic mixed layer, J. Mar. Res., 1990, 48(3): 591-639.
    [50] Moll A. Regional distribution of primary production in the North Sea simulated by a three-dimensional model[J]. Journal of Marine Systems, 1998, 16(1-2): 151-170.
    [51] 魏皓,赵亮.渤海初级生产年循环的三维数值模拟.海洋学报,2003,S2.
    [52] Lenhart, H., Radach, G., Ruardij, P. The effects of river input on the ecosystem dynamics in the continental coastal zone of the North Sea using ERSEM[J]. Neth J Sea Res, 1997 (38): 249-274.
    [53] Skogen M D, Modeling the primary production in the North Sea using a coupled threedimensional physical-chemical-biological ocean model[J]. Esruarine, coastal and shelf science, 1995 (41): 545-565.
    [54] Krom, M.D., Kress, N., Brenner, S. Phosphorus limitation of primary productivity in the Eastern Mediterranean Sea. Limnology and Oceanography, 1991 (3): 424-432.
    [55] Wang, P. F., Martinb J. and Morrisonc G. Water Quality and Eutrophication in Tampa Bay, Florida Estuarine, Coastal and Shelf Science, 1999 (49): 1-20.
    [56] Zarbock, H. W., Janicki, A. & Janicki, S. S. Estimates of Total Nitrogen, Total Phosphorous, and Total Suspended Solids Loadings to Tampa Bay, Florida Technical Appendix. Final Report to the Tampa Bay National Estuary Program, St. Petersburg, FL., 1996.
    [57] Allen, J.I., Howland, R.M.H., Bloomer, N., Uncles, R.J.. Simulating the spring phytoplankton bloom in the Humber plume. Marine Pollution Bulletin, 1998, 37, 295-305.
    [58] Ruardij, P., Van Haren, H., Ridderinkhof, H.. The impact of thermal stratification on phytoplankton and nutrient dynamics in shelf seas: a model study. Journal of Sea Research, 1997, 38, 311-331.
    [59] Wang, P. F. J. Martinb and G. Morrisonc Water Quality and Eutrophication in Tampa Bay, Florida Estuarine, Coastal and Shelf Science, 1999, 49, 1-20.
    [60] Sjoeberg S, Wilmot W. Systems analysis of a spring phytoplankton bloom in the Baltic[C]. Contr Askoe Lab., 1977, 20.
    [61] Redach G.. Simulations of phytoplankton dynamics and their interactions with other system components during FLES'76[A]. In: Suendermann J, Lenz W ed. North Sea Dynamics[C]. Berlin Heidelberg: Spring-Verlag., 1983, 584-610.
    [62] Radach G, Moll A. Estimation of the variability of production by simulating annual cycles of phytoplankton in the central North Sea. [J]. Prog Oceanog., 1993, 31: 339-419.
    [63] Cerco., F. C., Cole., T.. Three-dimensional Eutrophication model of Chesapeake Bay[J]. J. Envir. Engin., 1993, 119 (6): 1006-1025.
    [64] Cerco., F. C., Simulation of Long-term Trends in Chespeake Bay Eutrophication[J]. J. Envir. Engin., 1995, 121(4): 298-310.
    [65] 万振文,袁业立,朱明远等 长江口海域赤潮生态动力学模型及赤潮控制因子研究,海洋与湖沼,2000,31(1):93-100.
    [66] Yanagi T, Montani K. Ecological modeling as a tool for coastal zone management in Dokai Bay, Japan[C]. J Mar Sys., 1997, 13: 123-136.
    [67] Mahajan, A.U., Chalapatirao, C.V. and Gadkari, S.K. Mathematical modeling-a tool for coastal water quality management Wat.Sci.Tech., 1999, 40(2): 151-157.
    [68] H.Liltved and B.Landfald. Effect of high intensity light on ultraviolet-irradiated and non-irradiated fish pathogenic bacteria[J]. Water research, 2000, 34(2): 481-486.
    [69] Muhammad Shafqat Ejaz. Modeling for optimal management of agricultural and domestic waste water loading to steams[J]. Water resources research, 1995, 31 (4) 1087-1095.
    [70] Donald H.Bum. Water-quality management through combined simulationoptimization[J]. Journal of environmental engineering, 1989, 115(5): 1011-1024.
    [71] Sasikumar., K., Mujumdar., P.P., Fuzzy optimization model for water quality management of a river system[J]. Journal of water resources planning and management, 1998, 124(2): 79-88.
    [72] Daniel J.Fisher. The relative acute toxity of continuous and intermittent exposures of chlorine and bromine to aquatic organisms in the presence and absence of ammonia[J]. Water research, 1999, 33(3):760~768.
    [73] Jill A.Kostel, Hong Wang, Ann L.ST.Amand and Kimberly A.Gray. Use of a novel laboratory steam system to study the ecological impact of PCB exposure in a periphytic biolayer. Water research, 1999, 33(18): 3735-3748.
    [74] David A.Pillard, Jeffrey S.Cornell, Doree L.Dufresne and Mark T.Hernandez. Toxicity of benzotriazole and benzotdazole derivatives to three aquatic species [J]. Water research, 2001, 35(2): 557-560.
    [75] Fisher, Daniel J., The relative acute toxity of continuous and intermittent exposures of chlorine and bromine to aquatic organisms in the presence and absence of ammonia[J]. Water Research, 1999, 33(3): 760-768.
    [76] Pillard, David A., Cornell, Jeffrey S., Dufresne, Doree L. and Hernandez, Mark T., Toxicity of bertzotriazole and benzotriazole derivatives to three aquatic species[J]. Water Research, 2001, 35(2): 557-560.
    [77] Kostel, Jill A., Hong Wang, Ann L.ST.Amand and Kimberly A.Gray. Use of a novel laboratory steam system to study the ecological impact of PCB exposure in a periphytic biolayer. Water Research, 1999, 33(18): 3735-3748.
    [78] kamura, H.O., I.Aoyama, D.Liu, R.J.Maguire, G.J.Pacepavicius and Y.L.Lau. Fate and ecotoxicity of the new anti-fouling compound Irgarol 1051 in the aquatic environmental water[J]. Water Research, 2000, 34(14): 3523-3530.
    [79] Giddings, J.M., Salvito D. and Putt.,A.E.. A cute toxicity of 4-amino musk-xylene to daphnia magna in laboratory water and natural water[J]. Water Research, 2000, 3404):3686-3689.
    [80] Korami Dembele, Eric Haubruge and Charles Gaspar. Concentration effects of selected insecticides on brain acetylcholinesterase in the common carp [J]. Ecotoxicol. Environ.Safety, 2000, 45(1): 49-56.
    [81] Fall., C.. Generalized model of Pentachlorophenol distribution in a mended soil-water system [J]. Water Environmental Research, 2001, 73(1): 110-117.
    [82] Andrews K.Takyi, Barbara J. Lenece. Surface water quality management using a multiple-realization chance constrained method[J]. Water Resources Research, 1999, 35(5): 1657-1669.
    [83] Michael D S, Reducing uncertainty in site characterization using Bayes Moyes Monte Carlo methods. Journal of environmental engineering, 2000, 126(10): 893-902.
    [84] Yin Y Y, Fuzzy relation analysis for multicriteria water resources management. Journal of water resources planning and management, 1999, 125(1): 41-47.
    [85] Sasikrumar, K., Mujumdar, P.P.. Fuzzy optimization model for water quality management of a river system[J]. Journal of water resources planning and management, 1998, 124(2): 79-88.
    [86] 阎平凡,张长水.人工神经网络与模拟进化计算[M].北京:清华大学出版社,2000.
    [87] Neelakantan, T.R., Pundarikanthan, N.V.. Neural network-based simulationoptimization model for reservoir operation [J]. Journal of water resources planning and management, 2000, 126(2): 57-64.
    [88] Marina Campolo. Forecasting river flow rote during low-flow period using neural network [J]. Water Resources Research, 1999, 35(11): 3547-3552.
    [89] Bin Zhang. Prediction of water runoff using Bayesian concepts and modular neural networks [J]. Water Resources Research, 2000, 36(3): 753-762.
    [90] Chandramouli, V., Raman., H.. Multireservior modeling with dynamic programming and neural nerworks[J]. Journal of water resources planning and management, 2001, 127(2):89-98.
    [91] Sharad Kumar Jain. Development of integrated sediment rating curves using ANNs [J]. Journal of hydraulic engineering, 2001, 127(1): 30-37.
    [92] Alaa H.Aly, Richard C.Peralta. Optimal design of aquifer systems under uncertainty using a neural net work and a genetic algorithm[J]. Water Resources Research, 1999, 35(8): 2523-2531.
    [93] Vladan Babovic. Neural network as routing for error updating of numerical models [J]. Journal of hydraulic engineering, 2001, 127(3): 181-193.
    [94] Qing Zhang, Stephen J.Stanley. Real-time water treatment process control with artificial neural network [J]. Journal of Environmental Engineering, 1999, 125(2): 153-160.
    [95] Sang Hyun Sohn. Prediction of ozone formation based on neural network[J]. Journal of Environmental Engineering, 2000, 126(8): 688-696.
    [96] 彭盛华.GIS技术在水资源和水环境领域中的应用.水科学进展,2001.12(2):51-57.
    [97] 曾思育,傅国伟.地理信息系统技术及其在环境过程领域中的应用.遥感信息,1997,(4):128-130.
    [98] Michael W S. Geographic information Systems. Water Environment Reddearch, 1997, 69(4): 419-422.
    [99] Lee M T, Terstriep M L. Application of GIS for water quality modeling in agricultural and urban watershed. Hydr. Engrg. Proc., 1991 Nat. Conf., ASCE, New York, N.Y.,1991.
    [100] He C S, Riggs J F, Kang Y T. Integration of geographic information system and a computer model to evaluates of agricultural runoff on water quality. Water Resources Bulletin, 1993, (6): 556-569.
    [101] Daprato G W. MS Thesis. Florida Atalantic University, 1995.
    [102] 魏文献,于建营.地理信息系统在水文学和水资源管理中的应用.水科学进展,1997,(3):296-300.
    [103] 孙启宏.利用动态分段技术进行河流-经水质扩散模拟研究.中国地理信息系统协会第三届年会论文集,1997.
    [104] Leung Y. An environmental decision support system for tidal flow and water quality analysis in the Pearl River Delta. Proceedings of International Conference on Modeling Geographical and Environmental Systems with Geographical Inf rmation System, Hong Kong:Department of Geography, the Chinese University of Hong Kong, 1998, 223-228.
    [105] 江毓武,洪华生,张珞平.地理信息系统在厦门海域水质模型中的应用.厦门大学学报(自然科学版),1999,38(1):90-95.
    [106] Goonetilleke A.. The role of geographical information systems in urban hydrological modeling, Lectures, school of civil engineering[J].Queensland university of technology,1999.
    [107] William Dixon, Gordon K.Smyth, Barry Chiswell. Optimized selection of river sampling sites[J]. Water research, 1999, 33(4): 971-978.
    [108] Hydraulics Research Ltd. Hydraulic and Water Quality Studies in Victoria Harbour, Calibration of Seasonal Water Movement and Water Quality Models, Model Report Part Ⅱ, Volume 4, Report No EX1690, 1988.
    [109] HR Wallingford. Strategic Sewage Disposal Scheme, Hong Kong, Seasonal Water Movement Model, Training and User Manual. Report No. EX 2609, 1992.
    [110] Daniel, L.T., Hank, N. M.. Spatial and temporal hydrodynamic and water quality modeling analysis of a large reservoir on the South Carolina (USA) coastal plain. Eclogical Modelling, 1999, 114, 137-173.
    [111] Geoffrey S. S., Hamilton, D. P.. Prediction of water quality in lakes and reservoirs; Part Ⅱ-Model calibration, sensitivity analysis and application. Ecological modeling, 1997, 111-1123.
    [112] James, R. T., Bierman, J. V. J.. A preliminary modeling analysis of water quality in lake Okeechobee, FLORIDA: calibration results. Wat. Res., 1995, 29Z(12): 2755-2766.
    [113] Muhammetoglu A, Soyupak S. A three-dimensional water quality-macrophyte interaction model for shallow lakes[J]. Ecol. Modelling, 2000,133,161-180.
    [114] Naoum S., Tsanis I.K., Fullarton M. A GIS pre-processor for pollutant transport modeling. Environmental Modelling and Software, 2005, 20, 55-68.
    [115] Wang Weixin, Deng Dahua, Reasearch on visualization of arbitrary hexahedron elements data [J]. Journal of Computer Aided Design and Computer Graphics, 2000, 12(8): 605-608.
    [116] HR Wallingford. Training and User Manual of Seasonal Water Quality Model [R]. Hong Kong: Environmental Protection Department. 1992.
    [117] Wu Jun-Sheng.Visualization techniques and their realization in the finite element analysis and computation.Computer Aided Engineering, 1995, (1): 47-51.
    [118] 陈长胜.海洋生态系统动力学与模型.高等教育出版社,2003.
    [119] Donnelly, A.P. and Herbert, R.A. Transfer Pathways and Flux of Organic Matter and Related Elements in Water and Sediments of the Northem Adriatic Sea and Their Importance in the Eastem Mediterranean Sea. Price, N.B., Ed., 1996, 189-197.
    [120] Yoon, W.B. and Benner, R. Denitrification and oxygen consumption in sediments of two south Texas estuaries. Mar. Ecol. Prog. Ser. 1992, 90: 157-167.
    [121] Tuominen, L., Heinanen, A., Kuparinen, J. and Nielsen, L.P. Spatial and temporal variability of denitrification in the sediments of the Northern Baltic Proper. Mar. Ecol. Prog. Ser. 1998, 172: 13-24.
    [122] Nowicki, B.L., Requintina, E., van Keuren, D. and Kelly, J.R. Nitrogen losses through sediment denitrification in Boston Harbour and Massachusetts Bay. Estuaries. 1997, 20: 626-39.
    [123] Jorgensen, K.S. and Sorensen, J. Two annual maxima of nitrate reduction and denitrification in estuarine sediment (Norsminde Fjord, Denmark). Mar. Ecol. Prog. Ser. 1988, 94: 267-74.
    [124] Hansen, L.S. and Blackburn, T.H. Effect of algal bloom deposition on sediment respiration rates and fuxes. Mar. Biol. 1992, 112: 147-52.
    [125] Jensen, H.M., Lomstein, E. and Sorensen, J. Benthic NHa4 and NO3 3 fux following sedimentation of a spring phytoplankton bloom in Aarhus Bight, Denmark. Mar. Ecol.Prog. Ser. 1990, 61: 87-6.
    [126] Jenkins, M.C. and Kemp, W.M. The coupling of nitrification and denitrification in two estuarine sediments. Limnol. Oceanogr. 1984, 29: 609-19.
    [127] Hansen, J.I., Henriksen, K. and Blackburn, T.H. Seasonal distribution of nitrifying bacteria and rates of nitrification in coastal marine sediments. Microb. Ecol. 1981, 7: 297-04.
    [128] Ned well, D.B., Trimmer, M.. Nitrogen fluxes through the upperestuary of the Great Ouse, England: the role of the bottom sediment. Marine Ecoloty Progress series. 1996, 142: 273-286.
    [129] Donnelly, A.P. and Herbert, R.A. Transfer Pathways and Flux of Organic Matter and Related Elements in Water and Sediments of the Northem Adriatic Sea and Their Importance in the Eastern Mediterranean Sea. Price, N.B., Ed., 1996, 189-197.
    [130] 张正斌,陈镇东,刘莲生等 海洋化学原理与应用 海洋出版社,1999.
    [131] Sloth, N-P., Blackburn, H., Hansen, L.S., Risgaard-Petersen, N. and Lomstein, B.A.. Nitrogen cycling in sediment with di°erent organic loading. Mar. Ecol. Prog. Ser.. 1995, 116, 163-170.
    [132] Erik K ristensen. Benthic Fauna and Biogeochemical Progress in Marine Sediment Microbio Activities and Fluxes[A] in: Nitrogen Cycling in Coastal Marine Environments.1988, 276-291.
    [133] Karafistan, A., Martin, J.-M.,. Rixen, M.et al. Space and time distributions of phosphate in the Mediterranean Sea. Deep-Sea Research Ⅰ,. 2002, 49: 67-82.
    [134] Revelante, N., Gilmartin, M.. The relative increase of larger phytoplankton in a subsurface chlorophyll maximum of the northern Adriatic Sea. J. Plankton Res., 1995, 17(7):1535-1562..
    [135] Vilicic, D., Vucak, Z., Skrivanic, A., Grzetic, Z.. Phytoplankton blooms in the oligotrophic open South Adriatic waters. Mar. Chem., 1989, 28: 89-107.
    [136] Allen., J.,I., A modeling study of ecosystem dynamics and nutrient cycling in the Humber plume, UK. Journal of Sea Research., 1997, 333-359.
    [137] Kyeong Park, Albert Y. Kuo and Bruce J. Neilson. A Numerical Model Study of Hypoxia in the Tidal Rappahannock River of Chesapeake Bay. Estuarine, Coastal and Shelf Science, 1996, 42: 563-581.
    [138] Shen Y M, Zheng Y H, Komatsu T, Kohashi N. A three-dimensional numerical model of hydrodynamics and water quality in Hakata Bay. Ocean Engineering, 2002, 29: 461-473.
    [139] Wang, P. F., Martinb, J. and Morrisonc G.. Water Quality and Eutrophication in Tampa Bay, Florida Estuarine, Coastal and Shelf Science, 1999, 49: 1-20.
    [140] Yanagi T, Montani K. Ecological modeling as a tool for coastal zone management in Dokai Bay, Japan[C]. J Mar Sys, 1997, 13: 123-136.
    [141] Broecker, W. S., Peng, T.H.. Tracers in the sea. Eldigio., 1982.
    [142] Skogen, Morten D., Henrik Sφiland, Einar Svendsen. Effects of changing nutrient loads to the North Sea, Journal of Marine Systems, 2004, 46: 23-38

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700