用户名: 密码: 验证码:
浮选泡沫精矿品位图像识别研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文综述了数字图像技术的发展及应用;简述了国内外浮选泡沫数字图像处理技术的应用及算法研究现状,同时指出其应用的发展前景。
     以面向对象编程方法为基础,采用Visual C++6.0(VC++)为开发工具,在Windows环境下开发了浮选泡沫图像识别系统。整个系统主要由分布查看、点运算、边缘检测、轮廓提取、图像运算、物理参数及识别结果等几大模块组成,采用可扩展及开放的代码。通过继承VC++的基类以及重载相应的虚函数,避开大图像内存分配不足的缺点。
     利用该识别系统分析从湘安钨业公司选厂采集来的浮选泡沫图像及其精矿显微图像,提取这些图像的纹理参数(熵、能量、矩、灰度均值)。采用MATLAB工具,建立图像纹理参数与精矿品位之间的数学模型。通过回归分析得出,图像纹理参数与精矿品位存在一定的线性关系。利用所建立的数学模型对精矿品位高于5%的泡沫图像进行品位检测,得到的预测品位与实测品位的相对误差均不大于1.45%,平均相对误差为0.648%。利用所建立的数学模型对精矿显微图像进行品位检测时发现,精矿显微图像的识别精度比浮选泡沫图像识别的精度高。分析预测品位与实测品位产生误差的原因,并找出精矿显微图像识别比浮选泡沫图像识别效果好的原因。
     通过浮选泡沫、精矿显微图像识别证实,浮选泡沫图像识别系统可以初步实现选厂浮选泡沫精矿品位的在线与离线检测。
The development and application of digital image technology have been summarized in this dissertation. The application and algorithmic research of foreign and domestic digital image processing in flotation operation have been introduced and predicted.
    The Flotation Froth Image Recognition System (FFIRS) has been exploited under Microsoft Windows environment, which is based on the object-oriented programming method and the tool of Visual C++ 6.0 language. The software system mainly consists of distributed check, point operation, orthogonality transform, edge detection, lineament extraction, image operation, physical parameter, recognition result. An extendible and open code is adapted to the system. The limitation of conventional memory for large image is broken through by inheriting base classes of Visual C++ and overriding relevant virtual functions.
    The images of flotation forth and extractive mineral obtained from Tungsten Flotation Factory in XiangAn have been analyzed, and the texture parameters (entropy, energy, moments and average of gray level) have been distilled. We have established mathematic models between the texture parameters in the image and the grade of concentrated mineral in flotation forth with MATLAB language. There exists linear relation between the texture parameters and grade of concentrated mineral by using regression analysis.
    Detecting the flotation froth images of concentrated mineral whose grade is higher than 5 percent by using established mathematic model, the relative error between forecasted grade and original grade is no higher than 1.45 percent and the average relative error is 0.648 percent. Detecting microphotograph of concentrated mineral by using established mathematic model, you will find that the effect of recognition of microphotograph in-concentrated mineral is better than the effect of recognition of flotation froth. The reason why there is an error between forecasted grade and original grade has been analyzed. The reason why the effect of recognition of microphotograph in concentrated mineral is better than the effect of recognition of flotation froth has been found.
    
    
    FFIRS can elementarily detect grade of concentrated mineral online or outline. It has been proved by using image recognition of flotation froth and image recognition of microphotograph in concentrated mineral.
引文
[1] 夏良正.数字图像处理.南京:东南大学出版社,1999.3~4,198~224
    [2] 王耀南,李树涛,毛建旭.计算机图像处理与识别技术.北京:高等教育出版社2001.1~5
    [3] 王绍霖.数字图像处理.长沙:国防科技大学出版社,1987.1~15
    [4] 张远鹏,董海,周文灵.计算机图像处理技术基础.北京:北京大学出版社,1996. 1~30
    [5] [瑞典]N.艾布拉母森.全息图的摄制与估算.北京:科学出版社,1988.1~10
    [6] 王积分,张新荣.计算机图像识别.北京:中国铁道出版社,1988.82~98,126~152
    [7] 李月景.图像识别技术及其应用。北京:机械工业出版社,1985.166~169
    [8] Azriel Rosenfeld and Avinash C. Kak. Digital Picture Processing. Second Edition Volume 1, New York.. Academic Press, 1982. 53~55, 237~244
    [9] Azriel Rosenfeld and Avinash C. Kak. Digital Picture Processing. Second Edition Volume 2, New York: Academic Press, 1982. 98~102
    [10] 崔屹.数字图像处理技术与应用.北京:电子工业出版社,1997.93~100,121~148
    [11] 陆宗骐,孙灵.微机计算机图像基础。上海:华东理工大学出版社,1997.20~22,34~39,80~107
    [12] 田捷,沙飞,张新生。实用图像分析与处理技术.北京:电子工业出版社,1995.3~6,124~128
    [13] 吴维聪.计算机图像处理.上海:上海科学技术出版社,1989.55~63,93~98
    [14] 宁书年.遥感图像处理与应用.北京:地震出版社,1995.25~28
    [15] Zhang Xiao-fei, Liu Cheng-Kang, Yuan Xiag-Hui. Infrared real-timethermal system based on DSP. SPAT, 2001, 7(2): 70~75
    [16] Jie Tian, Huiguang He. 3-D Industrial-CT Image Analysis and Process System Base on PC. Proceedings of Second International Conference on Computer Aided Industrial Design and Conceptual Design, 1999, 3(4): 79~84
    [17] Myron Flickner. Query by image and video content:The QBIC System. IEEE Computer Magzine, 1995, 2(3) :23~30
    [18] Shinji Ozawa.Image processing for intelligent transport systems. IEICE Transaction Information&System, 1999, 82(3): 629~636
    [19] Chang-Su Kim, Rin-Chul Kim and Sang-Uk Lee. Fractal coding of video sequence using circular prediction mapping and noncontradiction interframe mapping, IEEE Trans. On Image Processin, 1998, 7(4):601~604
    
    
    [20][美]R.C.冈萨雷斯,P温茨著,李叔梁等译.数字图像处理.北京:科学出版社出版,1981.126~134
    [21]王润生.图像理解.长沙:国防科技大学出版社,1995.39~45
    [22]Aftab A.Mufti. Elementary Computer Graphics. Reston Publishing Company, 1983. 201~210
    [23]李新友.计算机图像综合技术(CAD/CAM工程师必读).北京:机械工业出版社,1997.7~12
    [24]Ekstrand S.Fiorella M, Ripple w J. Analysis of conifer use forest regeneration using landsite thematic mapper data. Photo cram metric Engineering & Remote sensing, 1993, 59(9): 1383~1388
    [25]Daugman J G. High confidence visual recognition of persons by a test of statistical independence. IEEE Trans Pattern Anal and Machine Intell, 1993, 15 (11): 1148~1161
    [26]孙仲康,沈振康.数字图像处理及其应用.北京:国防工业出版社,1985.166~173
    [27](苏)雅罗斯拉斯基著 施有秋译.数字图像处理.北京: 电子工业出版社,1990.26~34
    [28]Behrouzi P. & McGuirk J. Particle image velocimetry for intake ingestion in short takeoff and landing aircraft. Journal of Aircraft, 2000, 37(6): 994~1000
    [29]Yeung A.F.K. & Lee B.H.K.. Particle image velocimetry study of wing-tip vortices. Journal of Aircraft, 1999, 36(2): 482~484
    [30]Park W.K, etal. Measuring maximum late wood density by image analysis at the cellular level. Wood and fiber Science, 1993, 25(4):326~332
    [31]田涛,吴君.图像处理在铸造工业中的应用.测控技术,1999,18(8):42~45
    [32][美]赵亦林著,谭国真译.车辆定位与导航系统.北京:电子工业出版社,1999.6~12
    [33]张石,郑春清,张宏勋.用图像识别法在线判断烧结矿FeO含量等级的研究.钢铁,1998,33(5):1~4
    [34]N.O.E. Vischer, P.G. Hils, R.I. Ghauharali, G.J. Brakenhoff, N. Nanninga and C.L. Woldringh. Image eytometrie method for quantifying the relative amount of DNA in bacterial nucleoids using Escherichia coli. Journal of Microscopy, 1999, 196(1): 61~68
    [35]陈冠群,方盛国.DNA指纹图微机图像处理的初步研究.四川师范大学学报(自然科学版),1994,17(3):80~84
    [36]胡匡祜,苏万芳,李翊华,黄文菊.运动红细胞形变结构的图像自动定量分析的研究.生物物理学报,1994,10(3):387~392
    [37]安红宇,江丕栋,傅世.利用数字图像技术观察蛋白质的结晶过程.生物物理学
    
    报,1996, 12(2):371~376
    [38]李平阳,王江成,谭润初,李永龙,贺奇才,黄耀熊.对地贫红细胞的显微激光散射和图像分析.生物化学与生物物理进展,1999(3):25~28
    [39][美]A.罗森菲尔德,陈彩廷等译.数字图像分析.北京:科学出版社,1987.100~164,234~250
    [40]Van Latum L. Computed topographic imaging of a dense media cyclone. Applied Research in the minerals Industry, 1992. 65~73
    [41]Louis O, Kaufman L and Osteaux M. Quantitative ultrasound of the calcareous with parametric imaging. Correlation with bone mineral density at different sites and with anthropometric data in menopausal women. European Journal of Radiology, 2000, 35(1): 65~69
    [42]张艳,费耀平,伍晓平,廖志宁,常小荣.一种对胃窦B超图像进行自动分割的方法.计算机应用研究,2000,(1):71~73
    [43]刘盛东,李承华.煤层内断层在双巷声波CT重建图像中的表现.煤炭学报,2000,(3): 230~233
    [44]Marchant J A, Onyango C M, Street M J. High speed sporting of potatoes using computer vision. ASAE, 1988, 88:3540
    [45]Howarth. Secrecy inspection of fresh market carrots by machine vision. ASAE, 1992, 18:106~111
    [46]Heinemann P. Grading of mushrooms using a machine vision system. ASAE, 1994, 37:1671~1677
    [47]Heyne L. Unklesbay computerized image analysis and protein quality of simulated pizza crusts. Food sci tech, 1985, 18: 168~173
    [48]Sapirstein H D. Instrumental measurement of bread crumb by digital image Analysis. Cereal Chem, 1994, 71(4):383~391
    [49]Zayas I Y. Image analysis for texture pattern recognition of hard and soft wheat brand. Cereal Food Worlk, 1996, 34:751
    [50]Chris Brock, Branscn. Technology Report. 1996. 100~120
    [51]Travis A J. A computer based system for the recognition for seed shape, seed sci, tech, 1985, 13:813~820
    [52]Zayas I Y. Discrimination between arthur and arkan wheats by image analysis. Cereal Chem, 1985, 62 (1):478~480
    [53]Neuman M R. Wheat grain color analysis by digital image processing, ceral sci, 1989, 10: 183~188
    [54]Mcdonald T P, Chen Y R. Separating connected muscle tissues in image of beef
    
    carcass ribeyes. ASSE 1992, 33(6): 2059~2065
    [55]吴社华,陈宝树.GIANTS微机数字图像分析系统及其在地学中的应用.铀矿地质,1952,(2):110~113
    [56]索建军.TM图像在新疆找矿预测中的应用探讨.新疆工学院学报,1997,(2):90~92
    [57]李卉,李莲花.利用比值图像提取与金矿相关的信息.鞍山钢铁学院学报,1997,(4): 90~92
    [58]蔡则健.郯庐断裂带中南段金、金刚石找矿的TM数据图像信息提取与找矿预测.江苏地质,1996,(1):24~27
    [59]陈建平,王成善,黄卫.雅鲁藏布江缝合带演化过程的遥感图像统计分析.地球物理学报,1998,(1):108~114
    [60]蓝青叁.显微图像识别及其在粒度分析中的应用.[硕士学位论文].长沙:中南大学,2002
    [61]Petruk,W, Pinard, R.G, Finch, J. Relationship between observed mineral liberations in screened fractions and in composite samples. Minerals & Metallurgical Processing, 1986, 3(1):60~62
    [62]Sutherland David N. Image analysis for off-line characterization of mineral particles and prediction of processing properties. Particle & Particle Systems characterization: Measurement and Description of Particle Properties and Behavior in Powders and other Disperse Systems, 1993, 10(5): 271~274
    [63]邱道伊,张咏梅,王龙辉.基于图像识别在线推断烧结矿产量的研究.郑州工业大学学报,2000,21(1):46~48
    [64]M.Agus, G.Bonifazi and EMassacci. Image texture analysis based procedure to characterize and recognize coal minerals Minerals Engineering, 1994, 7 (9): 1127~1147
    [65]王凡.煤泥浮选柱泡沫的图像处理与识别.[博士学位论文].北京:中国矿业大学,2001
    [66]谢广元.选矿学.江苏徐州:中国矿业大学出版社,2001.388~389
    [67]Moolman, D.WAldrich, Van Deventer, J.S.J. & Stange. Digital image analysis as a tool for on-line monitoring of forth in flotation plants. Minerals Engineering, 1994, 7(9): 1149~1164
    [68]N.Kiryati, A.Bruckstein. Gray-Levels can improve the performance of binary image digitizers. IEEE The computer society conference on computer vision and pattern recognition, 1988, 2:562~567
    [69]G. Bonifazi, P. Massacci and A. Meloni. Prediction of Complex Sulfide Flotation
    
    Performances by a combined 3D fractal and colour analysis of the froths. Minerals Engineering, 2000, 13(7): 1127~1147
    [70]王麓雅,唐文胜,刘相滨.浮选中泡沫图像的分割算法.湖南师范大学学报,2002,25(2):23~26
    [71]N.Sadr-Kazemi, J.J. Cilliers. An image processing algorithm for measurement of flotation froth bubble size and shape distributions. Minerals Engineering, 1997, 10(10): 1075~1083
    [72]曾荣.浮选泡沫图像边缘检测方法的研究.中国矿业大学学报,2002,31(5):421~425
    [73]LU Mai-xi, WANG Fan, LIU Xiao-Ming. Analysis of Texture of Froth Image in Coal Floatation. Journal of China University of Mining & Technology, 2001, 11(2): 100~103
    [74]路迈西,王勇,王凡,刘文礼.利用阈值分割技术提取煤泥浮选泡沫图像的物理特征.煤炭科学技术,2002,30(8):34~37
    [75]刘文礼,路迈西,王勇,王凡.煤泥浮选泡沫数字图像处理研究(之一).中国矿业大学学报,2002,31(2):120~123
    [76]刘文礼,路迈西,王勇,王凡.煤泥浮选泡沫数字图像处理研究(之二).中国矿业大学学报,2002,31(3):233~236
    [77]曾荣,沃国经.图像处理技术在镍选矿厂中的应用.矿冶,2002,11(1):37~41
    [78]C.Aldrich and D.Femg. The effect of frothers on bubble size distributions in flotation pulp phases and surface froths. Minerals Engineering, 2000, 13 (10) : 1049~1057
    [79]Cipriano A, Guarini M, Vidal R, et al. A real time visual sensor for supervision flotation cells. Minerals Engineering, 1998, 11 (6): 489~499
    [80]M.瓜里尼,左焕莹译.图像处理技术用于评估矿物浮选过程的质量.国外金属矿选矿1999,36(12):38~41
    [81]A.西普利安诺,毛益平 译.采用数字图像处理的浮选专家管理系统.国外金属矿选矿,1998,35(10):44~47
    [82]J.S.J.范德文特,D.W.墨尔曼.具有泡沫特征的神经计算机视觉在线显像浮选过程.国外金属矿选矿,1999,36(7):14~19
    [83]Moolman D.W., etal. The classification of froth structures in copper flotation plant by means of a neural net . Inter .J. of Miner Process, 1995, 43(3/4): 193~208
    [84]J.M. Hargrave, N.J. Miles and S.T. Hall. The use of gray level measurement in predicting coal flotation performance. Minerals Engineering, 1996, 9(6): 667~674
    [85]J.M. Hargrave and S.T. Hall. Diagnosis of concentrate grade and mass flow rate in tin flotation from color and surface texture analysis. Minerals Engineering, 1997, 10(6):
    
    613~621
    [86]E.Barros, M.M. Machado Leite, A.A.T Cavalheiro (Portugal). The use of ore microscopy data for flotation process control by means of a liberation model a case study. The CanadianMiningandMetallurgicalBulletin, 2000, 93(1039): 55~59
    [87]E. Ventura-Medina and J.J. Cilliers. Calculation of the specific surface area in flotation. Minerals Engineering, 2000, 13(3): 265~275
    [88]陈子鸣,茹青.使用多媒体技术研究浮选泡沫现象的初步探索.矿冶工程,第17卷增刊3,1997.247~248
    [89]李珍香,罗宏宇.浮选泡沫的计算机图像处理与识别方法.煤炭技术,1999,18(6):17~19
    [90]李珍香,罗宏宇.一种基于PC机的煤泥浮选自动识别系统.电脑开发与应用,2000,13(2):29~30
    [91]刘富强,钱建生,王新红,宋金铃.基于图像处理与识别技术的煤矿矸石自动分选.煤炭学报,2000,25(5):534~537
    [92]刘文礼,陈子彤,路迈西.煤泥浮选泡沫的数字图像处理.燃料化学学报,2002,30(3): 198~203
    [93]王晓晨,张奕奎,郑士芹.泡沫图像特征与浮选精煤指标关系的研究.淮南工业学院学报,2001,21(1):41~43
    [94]曾荣,沃国经.图像处理技术在浮选过程中的应用.有色金属,2001,53(4):70~72
    [95]张奕奎,陈凌,王飞.基于图像识别的浮选控制系统.工矿自动化,2002,(1):14~16
    [96]何斌,马天予,王运坚,朱红莲.Visual C++数字图像处理.北京:人民邮件出版社,2001.12~13
    [97]尹蒂,李松仁。选矿数学模型.长沙:中南工业大学出版社,1993.2~6

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700