用户名: 密码: 验证码:
UV-B辐射增强和藻间相互作用对中肋骨条藻种群动态的影响研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
因臭氧层衰减而导致的UV-B(280nm-320nm)辐射增强是目前颇受关注的全球性的重大环境问题之一。UV-B辐射增强不仅能够对海洋生物构成伤害,而且还会对整个海洋生态系统产生明显的影响。而赤潮是全球性的海洋生态灾害,近年来,我国近岸海域赤潮发生的频率、波及范围和危害程度呈上升趋势。赤潮对海洋生态环境、渔业资源和海水养殖业直接或间接造成了不可估量的负面影响,成为当前污染生态学研究的热点之一。
     本文以我国常见赤潮微藻-中肋骨条藻(Skeletonema costatum)为实验对象,采用实验生态学的方法研究了UV-B辐射增强对其种群消长动态的影响,探讨了中肋骨条藻与一种海洋饵料微藻—青岛大扁藻(Platymonas helgolandicavar)之间的竞争作用,并对其藻间竞争的机制及其对UV-B辐射增强的响应进行了初步探讨。研究结果如下:
     1不同起始接种密度对中肋骨条藻实验种群动态的影响
     采用单养的方式研究了不同起始接种密度对中肋骨条藻种群动态的影响。结果表明:单养条件下,中肋骨条藻的不同起始接种密度明显影响其种群动态变化,随着起始密度的增加,中肋骨条藻生长进入指数生长期和静止期的时间以及达到种群最大密度的时间缩短,所达到的种群最大密度降低。
     2 UV-B辐射增强对中肋骨条藻实验种群动态的影响
     运用生态毒理学的方法研究了UV-B辐射增强对中肋骨条藻实验种群动态的影响。低于1.2J/m2的UV-B辐射处理对中肋骨条藻的种群增长有刺激作用,大于1.8J/m2时,随UV-B辐射剂量的增加,中肋骨条藻的种群增长的抑制作用逐渐增强;UV-B辐射增强对不同起始接种密度的中肋骨条藻种群增长的影响表现出一定的差异性,随中肋骨条藻起始密度的增加,UV-B辐射对中肋骨条藻的抑制作用呈现先减后增的规律。
     3青岛大扁藻对中肋骨条藻实验种群动态的影响
     与青岛大扁藻共培养的结果表明,青岛大扁藻对中肋骨条藻种群的增长有抑制作用,青岛大扁藻的起始接种密度影响中肋骨条藻种群动态的变化,随着共培养体系中青岛大扁藻接种密度的增加,其对中肋骨条藻种群增长的抑制作用逐渐加强,表现在进入指数生长期的时间提前,使其指数期和静止期缩短,种群所能达到的密度峰值降低。
     4 UV-B辐射增强与青岛大扁藻联合作用对中肋骨条藻实验种群动态的影响
     运用生态毒理学的方法研究了共培养条件下UV-B辐射增强与青岛大扁藻共同作用对中肋骨条藻实验种群动态的影响。研究结果显示,UV-B辐射处理与青岛大扁藻共同作用加重了对中肋骨条藻种群增长的抑制作用,且随青岛大扁藻起始接种密度增加,抑制作用增强。
     5青岛大扁藻与中肋骨条藻竞争机制及其对UV-B辐射的响应
     运用生态毒理学方法和统计学方法研究了青岛大扁藻与中肋骨条藻的竞争机制以及对UV-B辐射增强的响应变化。资源性竞争和干扰性竞争同时存在于中肋骨条藻与青岛大扁藻共培养体系中。青岛大扁藻通过干扰性竞争抑制中肋骨条藻的生长,中肋骨条藻对青岛大扁藻的作用则为资源性竞争。UV-B辐射处理改变了中肋骨条藻与青岛大扁藻的竞争机制。UV-B辐射处理后,中肋骨条藻与青岛大扁藻之间的竞争关系为资源性竞争。
Red tide was a global marine ecological calamity too. In recent years,there has been an increase in frequency, affected area and extent of injury of red tide outbreaks in coastal waters of our country. Due to the worsened cultural environment and increased nutrient enrichment , red tides occurred more frequency and great harm ,nutrient enrichment and harmful red tides in coastal waters had become one of the most important fields among worldwide-concerned, newly-emerging significant marine environmental problems,which were associated with global changes and in bad need of being studied and solved. Zooplankton grazing played an important role in the development of red tides, marine zooplankton selective grazing can significantly affect the phytoplankton community dynamics and control the rhythm, scale and fate of marine primary productivity. Enhanced UV-B (280nm-320nm) radiation resulting from ozone depletion is one of global environmental problems. Not only marine organisms But also marine ecosystem can be affected by enhanced UV-B radiation. UV-B radiation can significantly damage marine microalgae. The main targets are protein,DNA and photosynthetic pigments,and so on.
     A common red tide- Skeletonema costatum was selected to serve as experimental materials, and its growth were estimated under controlled laboratory conditions when stressed by P. helgolandicavar and enhanced UV-B radiation. The results could supply experimental base to answer the effect of enhanced UV-B radiation and interspecies on red tides, hence enhance our ability to understand and mitigate red t ides. Results showed:
     1 Effects of initial cell densities of S.costatum on population growth of S.costatum
     The solitary culture methods were used to examine the effects of initial cell densities of S.costatum on population growth of S.costatum. The results showed that: The different initial cell densities of S.costatum have the apparent effects on its population growth. With promotion of the initial cell density,the time of entering exponential phase and stationary phase could be shortened,and the maximum population density could be decreased under solitary cultivated conditions;
     2 Effects of initial cell densities of S.costatum and different species of microalgae on population growth of S.costatum
     The co-culture methods were used to examine the effects of P. helgolandicavar on population growth of S.costatum. The results showed that: The different effects were presented on population growth of S.costatum when stressed by P. helgolandicavar. The different initial cell densities of P. helgolandicavar also affected population growth of S.costatum, the inhibitation effect on S.costatum was increased gradually with increasing of initial cell densities of P. helgolandicavar in co-cultured system; the inhibitation effects were showed with curtate exponential phase and stationary phase, and decreased the maximum population density of S.costatum.
     3 Effect of enhanced UV-B radiation on population growth of S.costatum under solitary cultivated and co-cultivated conditions
     The ecotoxicological method was used to determine the effect of enhanced UV-B radiation on population growth of S.costatum under solitary cultivated. The results were showed as follows: UV-B radiation could stimulate the growth of S.costatum when the dose was lower than 1.2J/m2 while UV-B radiation also exhibited inhibitation effect to the growth of S.costatum when the dose was higher than 1.8J/m2, and inhibitation effect was enhanced with the increasing of UV-B radiation dose; The effect of enhanced UV-B radiation on S.costatum was changed under different initial cell density of S.costatum under solitary cultivated conditions, the inhibitation effect of enhanced UV-B radiation on S.costatum was presented an increasing first and then decreasing gradually with increasing of initial cell densities of S.costatum;
     4 Effect of enhanced UV-B radiation on population growth of S.costatum under solitary cultivated and co-cultivated conditions
     The ecotoxicological method was used to determine the effect of enhanced UV-B radiation on population growth of S.costatum under co-cultivated conditions with P. helgolandicavar. The results were showed that Population growth of S.costatum was changed by enhanced UV-B radiation under co-cultivated condition with P. helgolandicavar, the population cell density of S.costatum was decreased significantly in cultured system of P.helgolandicavar, and the inhibitation effect of enhanced UV-B radiation on S.costatum was increased gradually with increasing of initial cell densities of P.helgolandicavar in co-cultural system.
     5 Competition mechanisms between P. helgolandicavar and S.costatum and response to UV-B radiation
     The ecotoxicological and statistics method was selected to examine interaction mechanisms between P. helgolandicavar and S.costatum and response of the interaction mechanics to UV-B radiation. Results indicated that interference competition and exploitation competition were coexistent in co-cultural system. P. helgolandicavar exhibited inhibitive effect to S.costatum through interference competition, S.costatum while presented an exploitation competition to P. helgolandicavar. The interaction mechanisms between P. helgolandicavar and S.costatum were changed by UV-B radiation stressed. A complete exploitation competition was showed between P. helgolandicavar and S.costatum after treated by UV-B radiation.
引文
[1].周名江,朱明远,张经.中国赤潮的发生趋势和研究进展[J].生命科学. 2001, 13(2): 54-59.
    [2]. Proulx D., de la Noue J. Harvesting daphnia magna grown on urban tertiarily-treated effluents[J]. Water Research. 1985, 19(10): 1319-1324.
    [3]. Lee Young Sik. Factors affecting outbreaks of high-density Cochlodinium polykrikoides red tides in the coastal seawaters around Yeosu and Tongyeong, Korea[J]. Marine Pollution Bulletin. 2006, 52(10): 1249-1259.
    [4].齐雨藻.中国沿海赤潮.北京:科学出版社; 2003.
    [5]. Bouarab L., Dauta A., Loudiki M. Heterotrophic and mixotrophic growth of Micractinium pusillum Fresenius in the presence of acetate and glucose:effect of light and acetate gradient concentration[J]. Water Research. 2004, 38(11): 2706-2712.
    [6].Sournia A. Red-tide and toxic marine phytoplankton of the world ocean: an inguitry into biodiversity. Lavoisier: Intercept Ltd; 1995:103-113.
    [7].梁松.珠江口及其邻近海域赤潮的研究.广州:中山大学出版社; 1999.
    [8]. Hu Chuanmin, Muller-Karger Frank E., Taylor Charles等. Red tide detection and tracing using MODIS fluorescence data: A regional example in SW Florida coastal waters[J]. Remote Sensing of Environment. 2005, 97(3): 311-321.
    [9]. Kennedy J., Whalen S. Seasonality and controls of phytoplankton productivity in the middle Cape Fear River, USA[J]. Hydrobiologia. 2008, 598(1): 203-217.
    [10]. Kim Daekyung, Oda Tatsuya, Muramatsu Tsuyoshi. Possible factors responsible for the toxicity of Cochlodinium polykrikoides, a red tide phytoplankton[J]. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology. 2002, 132(4): 415-423.
    [11]. Kim Ho-Sub, Hwang Soon-Jin, Shin Jae-Ki. Effects of limiting nutrients and N:P ratios on the phytoplankton growth in a shallow hypertrophic reservoir[J]. Hydrobiologia. 2007, 581(1): 255-267.
    [12]. Lee Yong-Woo, Kim Guebuem. Linking groundwater-borne nutrients and dinoflagellate red-tide outbreaks in the southern sea of Korea using a Ra tracer[J]. Estuarine, Coastal and Shelf Science. 2007, 71(1-2): 309-317.
    [13]. McCarthy Mark, Lavrentyev Peter, Yang Longyuan. Nitrogen dynamics and microbial food web structure during a summer cyanobacterial bloom in a subtropical, shallow, well-mixed,eutrophic lake (Lake Taihu, China)[J]. Hydrobiologia. 2007, 581(1): 195-207.
    [14]. Nagasoe Sou, Kim Dae-Il, Shimasaki Yohei. Effects of temperature, salinity and irradiance on the growth of the red tide dinoflagellate Gyrodinium instriatum Freudenthal et Lee[J]. Harmful Algae. 2006, 5(1): 20-25.
    [15]. Rocha Jorge M. S., Garcia Juan E. C., Henriques Marta H. F. Growth aspects of the marine microalga Nannochloropsis gaditana[J]. Biomolecular Engineering. 2003, 20(4-6): 237-242.
    [16]. Thatje Sven, Heilmayer Olaf, Laudien Jürgen. Climate variability and El Ni?o Southern Oscillation: implications for natural coastal resources and management[J]. Helgoland Marine Research. 2008, 62(0): 5-14.
    [17]. Townsend David W., Bennett Stephanie L., Thomas Maura A. Diel vertical distributions of the red tide dinoflagellate Alexandrium fundyense in the Gulf of Maine[J]. Deep Sea Research Part II: Topical Studies in Oceanography. 2005, 52(19-21): 2593-2602.
    [18]. Lietti E., Marin M., Matozzo V.. Uptake and Elimination of 4-Nonylphenol by the Clam Tapes philippinarum[J]. Archives of Environmental Contamination and Toxicology. 2007, 53(4): 571-578.
    [19]. Santiago-Vázquez Lory, Newberger Nealie, Kerr Russell. Cryopreservation of the dinoflagellate symbiont of the octocoral Pseudopterogorgia elisabethae[J]. Marine Biology. 2007, 152(3): 549-556.
    [20].唐学玺,蔡恒江,张培玉. UV-B辐射增强对亚历山大藻和赤潮异弯藻种群竞争的影响[J].环境科学学报. 2005, 25(03): 340-345.
    [21]. Sato Yoji, Oda Tatsuya, Muramatsu Tsuyoshi等. Photosensitizing hemolytic toxin in Heterocapsa circularisquama, a newly identified harmful red tide dinoflagellate[J]. Aquatic Toxicology. 2002, 56(3): 191-196.
    [22]. Sarma S. S. S., Mangas-Ramirez Ernesto, Nandini S. Effect of ammonia toxicity on the competition among three species of cladocerans (Crustacea: Cladocera)[J]. Ecotoxicology and Environmental Safety. 2003, 55(2): 227-235.
    [23]. Pisman T. I., Galayda Ya V., Loginova N. S. Population dynamics of an algal-bacterial cenosis in closed ecological system[J]. Advances in Space Research. 2005, 35(9): 1579-1583.
    [24]. Tatián Marcos, Sahade Ricardo, Mercuri Guillermo等. Feeding ecology of benthic filter-feeders at Potter Cove, an Antarctic coastal ecosystem[J]. Polar Biology. 2008, 31(4):509-517.
    [25]. De Nicola E., Meri? S., Della Rocca C.等. Wastewater Toxicity of Tannin- Versus Chromium-Based Leather Tanneries in Marrakesh, Morocco[J]. Archives of Environmental Contamination and Toxicology. 2007, 53(3): 321-328.
    [26].王丽平,颜天,谭志军,等.有害赤潮藻对浮游动物影响的研究进展[J].应用生态学报. 2003, 14(7): 1191-1196.
    [27]. Hasegawa Natsuki, Hori Masakazu, Mukai Hiroshi. Seasonal changes in eelgrass functions: current velocity reduction, prevention of sediment resuspension, and control of sediment–water column nutrient flux in relation to eelgrass dynamics[J]. Hydrobiologia. 2008, 596(1): 387-399.
    [28]. Hidalgo Fernando, Firstater Fausto, Fanjul Eugenia等. Grazing effects of the periwinkle Echinolittorina peruviana at a central Peruvian high rocky intertidal[J]. Helgoland Marine Research. 2008, 62(0): 73-83.
    [29].徐金森,郑天凌,郭清华,连玉武.两种海洋细菌对赤潮藻的细胞生物量的影响研究[J]. 2002, (12).
    [30].孙军,刘东艳,王宗灵,朱明远.浮游动物摄食在赤潮生消过程中的作用[J].生态学报2004, 24(7): 1514-1522.
    [31]. Sarma S. S. S., Trujillo-Hernández Hugo Enrique, Nandini S. Population growth of herbivorous rotifers and their predator ( Asplanchna ) on urban wastewaters[J]. Aquatic Ecology. 2003, 37(3): 243-250.
    [32]. Samocha T. M., Uziel N., Browdy C. L. The effect of feeding two prey organisms, nauplii of Artemia and rotifers, Brachionus plicatilis (Muller), upon survival and growth of larval marine shrimp, Penaeus semisulcatus (de Haan)[J]. Aquaculture. 1989, 77(1): 11-19.
    [33]. Preston Benjamin L., Snell Terry W., Dusenbery David B. The effects of sublethal pentachlorophenol exposure on predation risk in freshwater rotifer species[J]. Aquatic Toxicology. 1999, 47(2): 93-105.
    [34].蓝虹,许昆灿,张世民,刘志勇,苏荣.厦门西海域一次中肋骨条藻赤潮与水文气象的关系[J]海洋预报. 2004, (04):93-99
    [35].霍文毅,俞志明,邹景忠,宋秀贤,郝建华.胶州湾中肋骨条藻赤潮与环境因子的关系[J].海洋与湖沼2001, (03):311-318
    [36]. Liu Dongyan, Sun Jun, Zou Jingzhong. Phytoplankton succession during a red tide of Skeletonema costatum in Jiaozhou Bay of China[J]. Marine Pollution Bulletin. 2005, 50(1): 91-94.
    [37].苏惠美,雷淇祥,廖一久.温度、光照度及盐度对骨藻生长率之影响.[J]. J F ish Soc Taiwan,. 1990, 17(3): 213-222.
    [38].雷淇祥,苏惠美.草虾苗以不同饵料生物喂饲时之生长及生存率.[J].台湾水产学会刊,. 1985, 12(2): 54-69.
    [39].曹淑莉,何葆卿. 8种海洋饵料微藻蛋白质含量及氨基酸组成比例的比较研究.[J].海洋学报. 1993, 15(4): 98-103.
    [40].刘东艳,孙军,陈宗涛,魏天迪.不同氮磷比对中肋骨条藻生长特性的影响[J]海洋湖沼通报. 2002, (02):39-44
    [41].蔡恒江,唐学玺,张培玉,杨震.不同起始密度对3种赤潮微藻种群增长的影响[J]jai氧环境科学. 2005, (03).37-39
    [42].潘克厚,王金凤,朱葆华.海洋微藻间竞争研究进展[J].海洋科学. 2007, 31(5): 58-62.
    [43]. Maranger R Birds D F. Iron acquisition by photosynthetic marine phytoplankton from ingested bacteria[J]. Nature. 1998, 396: 248-251.
    [44]. Stoecker D K Coats D W. . Mixotrophy in the dinoflagellate,Prorocentrum minimum[J]. Marine Ecology Progress Series. 1997, 152: 1-12.
    [45].潘克厚姜广信.有害藻华(HAB)的发生、生态学影响和对策[J].中国海洋大学学报. 2004, 34(5): 783-784.
    [46].唐学玺杨震王悠李永祺.紫外辐射诱发三角褐指藻自由基伤害的研究[J].海洋通报. 1999, 18(04): 93-96.
    [47]. Uchida T Toda S, Matsuyama Y, et al. . Interactions between the red tide dinoflagellates Heterocapsa circularisquama and Gymnodinium ikimotoi in laboratory[J]. J Exp Mar Biol Ecol. 1999, 241: 285-299.
    [48].唐学玺,黄键,王艳玲,王蒙,王丽丽. UV-B辐射和蒽对三角褐指藻DNA伤害的相互作用[J].生态学报. 2002, 22(03): 375-378.
    [49]. Lesser Michael P., Barry Thomas M. Survivorship, development, and DNA damage in echinoderm embryos and larvae exposed to ultraviolet radiation (290-400 nm)[J]. Journal of Experimental Marine Biology and Ecology. 2003, 292(1): 75-91.
    [50]. Sommaruga Ruben. The role of solar UV radiation in the ecology of alpine lakes[J]. Journal of Photochemistry and Photobiology B: Biology. 2001, 62(1-2): 35-42.
    [51]. Swanson Andrew K., Druehl Louis D. Induction, exudation and the UV protective role of kelp phlorotannins[J]. Aquatic Botany. 2002, 73(3): 241-253.
    [52]. Liang Ying, Beardall John, Heraud Philip. Effects of nitrogen source and UV radiation on the growth, chlorophyll fluorescence and fatty acid composition of Phaeodactylum tricornutum and Chaetoceros muelleri (Bacillariophyceae)[J]. Journal of Photochemistry and Photobiology B: Biology. 2006, 82(3): 161-172.
    [53]. Wangberg Sten-Ake, Persson Agneta, Karlson Bengy. Effects of UV-B radiation on synthesis of mycosporine-like amino acid and growth in Heterocapsa triquetra (Dinophyceae)[J]. Journal of Photochemistry and Photobiology B: Biology. 1997, 37(1-2): 141-146.
    [54]. Hader Donat- P., Lebert Michael, Helbling E. Walter. Effects of solar radiation on the Patagonian macroalga Enteromorpha linza (L.) J. Agardh -- Chlorophyceae[J]. Journal of Photochemistry and Photobiology B: Biology. 2001, 62(1-2): 43-54.
    [55]. Hader D. P., Kumar H. D., Smith R. C.. Effects on aquatic ecosystems[J]. Journal of Photochemistry and Photobiology B: Biology. 1998, 46(1-3): 53-68.
    [56]. Grobe Carl W., Murphy Terence M. Artificial ultraviolet-B radiation and cell expansion in the intertidal alga Ulva expansa (Setch.) S. and G. (Chlorophyta)[J]. Journal of Experimental Marine Biology and Ecology. 1997, 217(2): 209-223.
    [57]. Holzinger Andreas, Lutz Cornelius. Algae and UV irradiation: Effects on ultrastructure and related metabolic functions[J]. Micron. 2006, 37(3): 190-207.
    [58]. Matsunaga Katsuhiko, Nishioka Jun, Kuma Kensh. Riverine input of bioavailable iron supporting phytoplankton growth in Kesennuma Bay (Japan)[J]. Water Research. 1998, 32(11): 3436-3442.
    [59]. Skerratt Jennifer H., Davidson Andrew D., Nichols Peter D.. Effect of uv-b on lipid content of three antarctic marine phytoplankton[J]. Phytochemistry. 1998, 49(4): 999-1007.
    [60]. Drolet David, Himmelman John H., Rochette Remy. Effect of light and substratum complexity on microhabitat selection and activity of the ophiuroid Ophiopholis aculeata[J]. Journal of Experimental Marine Biology and Ecology. 2004, 313(1): 139-154.
    [61]. Xiong Fusheng, Kopecky Jiri, Nedbal Ladislav. The occurrence of UV-B absorbingmycosporine-like amino acids in freshwater and terrestrial microalgae (Chlorophyta)[J]. Aquatic Botany. 1999, 63(1): 37-49.
    [62]. G.A. Ekelund Nils. Interactions between photosynthesis and `light-enhanced dark respiration' (LEDR) in the flagellate Euglena gracilis after irradiation with ultraviolet radiation[J]. Journal of Photochemistry and Photobiology B: Biology. 2000, 55(1): 63-69.
    [63]. Sharma Prabhat Kumar, Anand Preetha, Sankhalkar Sangeeta等. Photochemical and biochemical changes in wheat seedlings exposed to supplementary ultraviolet-B radiation[J]. Plant Science. 1998, 132(1): 21-30.
    [64]. Klisch Manfred, Hader Donat- P. Mycosporine-like amino acids in the marine dinoflagellate Gyrodinium dorsum: induction by ultraviolet irradiation[J]. Journal of Photochemistry and Photobiology B: Biology. 2000, 55(2-3): 178-182.
    [65]. Klisch Manfred, Sinha Rajeshwar P., Richter Peter R.. Mycosporine-like amino acids (MAAs) protect against UV-B-induced damage in Gyrodinium dorsum Kofoid[J]. Journal of Plant Physiology. 2001, 158(11): 1449-1454.
    [66]. Masi Antonio, Melis Anastasios. Morphological and molecular changes in the unicellular green alga Dunaliella salina grown under supplemental UV-B radiation: cell characteristics and Photosystem II damage and repair properties[J]. Biochimica et Biophysica Acta (BBA) - Bioenergetics. 1997, 1321(2): 183-193.
    [67]. Sommaruga Ruben, Whitehead Kenia, Shick J. Malcolm. Mycosporine-like Amino Acids in the Zooxanthella-Ciliate Symbiosis Maristentor dinoferus[J]. Protist. 2006, 157(2): 185-191.
    [68]. Kumar Ashok, Tyagi Madhu B., Jha Prabhat N. Evidences showing ultraviolet-B radiation-induced damage of DNA in cyanobacteria and its detection by PCR assay[J]. Biochemical and Biophysical Research Communications. 2004, 318(4): 1025-1030.
    [69]. Hsu Todd, Ho Jhon-Chun, Chao Chih-Chung. Purification of a UV-damaged-DNA binding activity from cell-free extracts of unicellular alga Chlorella pyrenoidosa[J]. Plant Science. 1998, 138(2): 137-147.
    [70]. George Alison L., Murray Alistair W., Montiel Pedro O. Tolerance of Antarctic cyanobacterial mats to enhanced UV radiation[J]. FEMS Microbiology Ecology. 2001, 37(1): 91-101.
    [71]. Niizeki Norifumi, Daikoku Toshiko, Hirata Takash. Mechanism of biosynthesis oftrimethylamine oxide from choline in the teleost tilapia, Oreochromis niloticus, under freshwater conditions[J]. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology. 2002, 131(3): 371-386.
    [72]. Toole D. A., Slezak D., Kiene R. P.. Effects of solar radiation on dimethylsulfide cycling in the western Atlantic Ocean[J]. Deep Sea Research Part I: Oceanographic Research Papers. 2006, 53(1): 136-153.
    [73]. Hader Donat- P., Sinha Rajeshwar P. Solar ultraviolet radiation-induced DNA damage in aquatic organisms: potential environmental impact[J]. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis. 2005, 571(1-2): 221-233.
    [74].林小苹,黄长江,杜虹.粤东柘林湾中肋骨条藻与环境因子的灰关联分析及其计算机实现[J]海洋技术. 2004, (04).58-61
    [75].彭喜春,刘洁生,杨维东.赤潮藻毒素生物合成研究进展[J]热带亚热带植物学报. 2006, (01).81-86
    [76]. Tomas Carmelo R., Smayda Theodore J. Red tide blooms of Cochlodinium polykrikoides in a coastal cove[J]. Harmful Algae. 2008, 7(3): 308-317.
    [77].李金涛,赵卫红,杨登峰,王江涛.长江口海水盐度和悬浮体对中肋骨条藻生长的影响[J].海洋科学2005, (01).34-37
    [78]. Conlan K., White K. N., Hawkins S. J. The hydrography and ecology of a re-developed brackish-water dock[J]. Estuarine, Coastal and Shelf Science. 1992, 35(5): 435-452.
    [79]. Trainer Vera L., Baden Daniel G. High affinity binding of red tide neurotoxins to marine mammal brain[J]. Aquatic Toxicology. 1999, 46(2): 139-148.
    [80]. Araoz Romulo, Hader Donat- P. Ultraviolet radiation induces both degradation and synthesis of phycobilisomes in Nostoc sp.: a spectroscopic and biochemical approach[J]. FEMS Microbiology Ecology. 1997, 23(4): 301-313.
    [81]. Garde Kristine, Gustavson Kim. The impact of UV-B radiation on alkaline phosphatase activity in phosphorus-depleted marine ecosystems[J]. Journal of Experimental Marine Biology and Ecology. 1999, 238(1): 93-105.
    [82].王悠,杨震,唐学玺,刘泳,李永祺. 7种海洋微藻对UV-B辐射的敏感性差异分析[J].环境科学学报. 2002, 22(02): 225-230.
    [83].李金涛,赵卫红,杨登峰,王江涛.室内培养研究硝酸盐对中肋骨条藻生长的影响[J]海洋科学集刊(46). 2004, (00).
    [84].韩笑天,王娴,郑立,俞志明,宋秀贤,刘洁生,邹景忠.不同地理株中肋骨条藻生长特性及RAPD多态性[J]生态学报. 2004, (11).2602-2607
    [85].于娟,唐学玺,田继远.蒽与UV-B辐射共同作用对2种海洋微藻的毒性效应[J].中国水产科学. 2002, 9(02): 157-160.
    [86].田继远,唐学玺,于娟,王晨,刘文明.蒽胁迫对2种海洋微藻的毒性效应[J].青岛海洋大学学报. 2002, 36(06): 919-925.
    [87].王悠,唐学玺,李永祺,刘泳.低浓度蒽对两种海洋微藻生长的兴奋效应[J]应用生态学报. 2002, (03).342-347
    [88].于娟,唐学玺,李永祺.紫外线-B辐射对海洋微藻的生长效应[J].海洋科学. 2002, 26(02): 5-8.
    [89]. Nguyen-Viet H., Gilbert D., Mitchell E.. Effects of Experimental Lead Pollution on the Microbial Communities Associated with Sphagnum fallax (Bryophyta)[J]. Microbial Ecology. 2007, 54(2): 232-241.
    [90].张培玉,唐学玺,董双林等.塔玛亚历山大藻(Alexandriumtamarense)和中肋骨条藻(Skeletonemacostatum)种间竞争及UV-B辐射胁迫对其影响[J]海洋与湖沼. 2007, (02): 187-192
    [91].蔡恒江,唐学玺,张培玉,杨震.不同起始密度对3种赤潮微藻种间竞争的影响[J]生态学报. 2005, (06).1331-1336
    [92]. Camacho Fernando, Molina Emilio, Martinez Ma Eugenia. Continuous culture of the marine microalga Tetraselmis sp. -- productivity analysis[J]. Aquaculture. 1990, 90(1): 75-84.
    [93]. Chung M., Hu R., Wong M.. Comparative toxicity of hydrophobic contaminants to microalgae and higher plants[J]. Ecotoxicology. 2007, 16(5): 393-402.
    [94]. de la Pe?a M. Cell growth and nutritive value of the tropical benthic diatom, Amphora sp., at varying levels of nutrients and light intensity, and different culture locations[J]. Journal of Applied Phycology. 2007, 19(6): 647-655.
    [95]. Ding Yu, Miao Jin-Lai, Wang Quan-Fu. Purification and characterization of a psychrophilic glutathione reductase from Antarctic ice microalgae Chlamydomonas sp. Strain ICE-L[J]. Polar Biology. 2007, 31(1): 23-30.
    [96]. Fabregas Jaime, Abalde Julio, Herrero Concepcion. Growth of the marine microalgaTetraselmis suecica in batch cultures with different salinities and nutrient concentrations[J]. Aquaculture. 1984, 42(3-4): 207-215.
    [97]. Pillay D., Branch G., Forbes A. Experimental evidence for the effects of the thalassinidean sandprawn Callianassa kraussi on macrobenthic communities[J]. Marine Biology. 2007, 152(3): 611-618.
    [98]. Marcoval M. Alejandra, Villafane Virginia E., Helbling E. Walter. Interactive effects of ultraviolet radiation and nutrient addition on growth and photosynthesis performance of four species of marine phytoplankton[J]. Journal of Photochemistry and Photobiology B: Biology. In Press, Corrected Proof: 65.
    [99]. Conde-Alvarez Rafael M., Perez-Rodriguez Eduardo, Altamirano Maria. Photosynthetic performance and pigment content in the aquatic liverwort Riella helicophylla under natural solar irradiance and solar irradiance without ultraviolet light[J]. Aquatic Botany. 2002, 73(1): 47-61.
    [100]. Germ Mateja, Mazej Zdenka, Gaberscik Alenka. The influence of enhanced UV-B radiation on Batrachium trichophyllum and Potamogeton alpinus -- aquatic macrophytes with amphibious character[J]. Journal of Photochemistry and Photobiology B: Biology. 2002, 66(1): 37-46.
    [101]. Macias Guadalupe, Marco Adolfo, Blaustein Andrew R. Combined exposure to ambient UVB radiation and nitrite negatively affects survival of amphibian early life stages[J]. Science of The Total Environment. 2007, 385(1-3): 55-65.
    [102]. Miller-Morey Jeanine S., Van Dolah Frances M. Differential responses of stress proteins, antioxidant enzymes, and photosynthetic efficiency to physiological stresses in the Florida red tide dinoflagellate, Karenia brevis[J]. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology. 2004, 138(4): 493-505.
    [103].于娟,唐学玺,田继远,张培玉,蔡恒江. UV-B辐射对3种海洋微藻的种间竞争性平衡的影响[J].中国海洋大学学报. 2005, 35(01): 108-112.
    [104]. Scalici Massimiliano, Gherardi Francesca. Structure and dynamics of an invasive population of the red swamp crayfish ( Procambarus clarkii ) in a Mediterranean wetland[J]. Hydrobiologia. 2007, 583(1): 309-319.
    [105]. Sullivan James M., Swift Elijah, Donaghay Percy L.. Small-scale turbulence affects thedivision rate and morphology of two red-tide dinoflagellates[J]. Harmful Algae. 2003, 2(3): 183-199.
    [106]. Aberle N., Malzahn A. Interspecific and nutrient-dependent variations in stable isotope fractionation: experimental studies simulating pelagic multitrophic systems[J]. Oecologia. 2007, 154(2): 291-303.
    [107]. Sommer T. R., Morrissy N. M., Potts W. T. Growth and pigmentation of marron (Cherax tenuimanus) fed a reference ration supplemented with the microalga Dunaliella salina[J]. Aquaculture. 1991, 99(3-4): 285-295.
    [108]. Roeselers G., van Loosdrecht M., Muyzer G. Heterotrophic Pioneers Facilitate Phototrophic Biofilm Development[J]. Microbial Ecology. 2007, 54(3): 578-585.
    [109].颜天,周名江,曾呈奎.有毒赤潮藻种Pfiesteria piscicida的研究进展综述[J]海洋与湖沼. 2000, (01).110-116
    [110]. Xiong Fusheng. Evidence that UV-B tolerance of the photosynthetic apparatus in microalgae is related to the D1-turnover mediated repair cycle in vivo[J]. Journal of Plant Physiology. 2001, 158(3): 285-294.
    [111]. Wernersson Ann-Sofie, Dave Goran. Effects of different protective agents on the phototoxicity of fluoranthene to Daphnia magna[J]. Comparative Biochemistry and Physiology Part C: Pharmacology, Toxicology and Endocrinology. 1998, 120(3): 373-381.
    [112].周秋麟,尹卫平,陈宝红.紫外线B对海洋生态系统的影响[J].台湾海峡. 2004, 23(1): 107-115.
    [113]. Karsten Ulf,Sawall, Thomas,West, John,Wiencke, Christian. Ultraviolet sunscreen compounds in epiphytic red algae from mangroves[J]. Hydrobiologia. 2000, 432(1): 159-171.
    [114]. Davidson A. T. The impact of UVB radiation on marine plankton[J]. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis. 1998, 422(1): 119-129.
    [115].杨和福,Kirst.大气层臭氧损耗与紫外辐射对海洋浮游植物的影响[J].极地研究. 2000, 12(1): 40-61.
    [116]. Zepp R. G., Callaghan T. V., Erickson D. J. Effects of enhanced solar ultraviolet radiation on biogeochemical cycles[J]. Journal of Photochemistry and Photobiology B: Biology. 1998, 46(1-3): 69-82.
    [117]. NV Kieber DJ and Blough. Fluorescence detection of carbon centered radicals in aqueouessolution[J]. Free Rad ResComms. 1990, 10: 109-117.
    [118]. Sharrer Mark J., Summerfelt Steven T. Ozonation followed by ultraviolet irradiation provides effective bacteria inactivation in a freshwater recirculating system[J]. Aquacultural Engineering. 2007, 37(2): 180-191.
    [119]. Niizeki Norifumi, Daikoku, Toshiko,Hirata, Takashi,El-Shourbagy, Ibrahaim,Song, Xingan,Sakaguchi, Morihiko. Mechanism of biosynthesis of trimethylamine oxide from choline in the teleost tilapia, Oreochromis niloticus, under freshwater conditions[J]. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology. 2002, 131(3): 371-386.
    [120]. SundaWG Huntsman SA , Harvey GR Photoreduction of manganeses oxides in seawater and its geochem ical and biological implications[J]. N ature. 1983, 301: 234-236.
    [121]. West L. Jeanine A.Li, Karen,Greenberg, Bruce M.Mierle, Greg,Smith, Ralph E. H. Combined effects of copper and ultraviolet radiation on a microscopic green alga in natural soft lake waters of varying dissolved organic carbon content[J]. Aquatic Toxicology. 2003, 64(1): 39-52.
    [122].Sunda WG Huntsman SA ,Effect of Solar U ltraviolet Radiation on Bigeochem ical dynam ics in aquantic environments. In: Blough NV ZR, ed. Effect of sunlight and anthropogenic alterations in atmospheric solar attenuation on manganese redox cycles in surface seawater: Woods Hole Oceanographic Institution; 1990:104- 107.
    [123]. Carlucci JF Silbernagel SB andM cN ally PM Influence of temperature and solar radiation on persistence of B12,thiam ine, and biotin in sea water[J]. J Phycol. 1990, 5: 302-305.
    [124].DG Sw ift. Vitam ines and phytop lankton grow th, In: the Physiological Ecology of Phytop lankton[M]. In: Morris, ed. California: University California Press; 1980:329-369.
    [125].Rozema Jelte, Teramura, Alan,Caldwell, Martyn,Yiqi, Luo,Harold, A. Mooney. Atmospheric CO2 Enrichment and Enhanced Solar Ultraviolet-B Radiation: Gene to Ecosystem Responses. In: Carbon Dioxide and Environmental Stress. San Diego: Academic Press; 1999:169-191.
    [126].Rahn Thom. Factors Influencing the Stable Isotopic Content of Atmospheric N2O. In: Stable Isotopes and Biosphere Atmosphere Interactions. San Diego: Academic Press; 2005:268-287.
    [127].Harm.W. Biological effects of ultraviolet radiation. N ew York: Cambridge U niversity; 1980.
    [128]. Fogg GE Photosynthesis and formation of fats in a diatom[J]. Ann Bot London. 1956, 20: 265- 285.
    [129]. Doehler G and Biermann T. Impact of UV-B radiation on the lip ids and fatty acids composition of synchronized D itylum brightwellii (West) Grunow [J]. Zeitschrifuer nature for schung section c biosciences. 1994, 49(9-10): 607-614.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700