用户名: 密码: 验证码:
城市地下结构施工对邻近构筑物影响的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在日益发展的城市化进程中,密集的高层与超高层建筑和发达的地下交通网络已成为城市必不可少的重要组成部分。基坑工程常处于密集的既有建(构)筑物附近,基坑施工受到了更加严格的环境制约。预测基坑施工引起的变形及其对周边环境的影响,对于城市中心地区深基坑的设计与施工具有重要指导意义,为了更好跟有效地保护邻近建筑物的安全,在深基坑工程中,对开挖卸荷力学效应的研究变得更加意义重大。
     在众多对基坑工程变形与稳定研究中起到重要作用的因素中,土体抗剪强度和本构模型是最为关键的,而它们的准确性与土体应力路径有着密切的关系。本文结合广州中心城区深基坑工程实践,采用试验研究、理论分析、数值模拟等方法,对城市地下结构施工对周边环境的影响进行了研究,取得了以下创新性研究成果。
     1.对广州市的地质分区进行调研,给出广州市各岩土环境分区对地下工程适应性的评价,确定了中心城区典型土体为研究对象,结合广州市岗顶酒店基坑工程,采用SLB-1型应力应变控制式三轴剪切渗透试验仪,对基坑开挖影响范围内的淤泥质土、粉质粘土层进行了常规三轴试验和考虑应力路径的k0固结卸荷试验,对土体的抗剪强度指标与应力应变关系的差异在不同固结压力和应力路径条件下进行对比分析了。试验结果表明:前期固结压力对土体强度的影响比较大,k0固结后土体的强度比等压固结的强度高,在土样同属于压缩剪切破坏的情况下,加载条件与卸载条件下土样的破坏强度相差不大。土体孔隙水压力的随轴向应变的变化规律与土体的平均固结压力、土质以及应力路径有关,对于常规三轴试验、k0固结加载试验以及侧向卸载试验,孔隙水压力的随轴向应变的变化趋势可以用指数衰减性的函数曲线来拟合,而轴向卸载试验中孔隙水压力的随轴向应变的变化趋势可以用两段二次抛物线的函数曲线来拟合,总的来说,土体的平均固结压力越大、塑性指数越高孔隙水压力上升得越快,临界孔隙水压力越大。
     2.基于不同应力路径下土体试验的结果,验证了k0固结条件土体在不同应力路径下关系曲线存在很好的线性关系,说明k12K m10固结条件下卸荷状态下的曲线能够用双曲线来拟合,以此为基础,把土体在不同应力路径下非线性弹性模型的切线模量表达式推导出来,给出了土体卸荷非线性弹性本构模型参数的确定方法。通过对(13)—曲线的分析,得到:初始切线模量与应力路径、土质以及平均固结压力有关,土体的平均固结压力越大随之塑性指数越低初始切线模量也越大;轴向卸载的初始切线模量值最大、侧向卸载的初始切线模量次之、轴向加载的初始切线模量最小;轴向加载的初始切线模量与围压的关系可以用幂函数来表示,而侧向卸载、轴向卸载的初始切线模量与围压成线性关系。
     3.基于MIDAS/GTS有限元分析软件,采用土体卸荷非线性弹性本构模型,从基坑开挖施工全过程、基坑开挖的空间作用、盾构隧道等效刚度折算系数大小、隧道所处土层弹性模量大小等来研究基坑开挖对下方盾构隧道变形的影响,并结合岗顶酒店基坑工程实例进行分析。分析表明,随着基坑开挖,下方隧道竖向位移的增量比水平位移的增量要大,总体来说,深基坑开挖引起隧道的变形以竖向变形为主。盾构隧道变形主要受其上方基坑开挖的影响,隧道上方的基坑开挖,对隧道变形的影响程度较小。
     4.通过引入盾构管片的等效纵向刚度、等效横向刚度,来简化盾构管片的计算模型。基于MIDAS/GTS有限元分析软件,采用土体卸荷非线性弹性本构模型,从邻近隧道的空间相对位置、盾构隧道等效刚度折算系数大小、隧道所处土层弹性模量大小等来研究隧道施工对下邻近隧道的影响。分析表明,在盾构隧道下方,沿着盾构隧道方向修建隧道(0°)时,上方盾构的变形也是沿着全长范围的,受新建隧道的影响最大。当盾构隧道和新建隧道夹角45°和90°时,上方盾构隧道管片变形分布具有明显的对称性,沿着盾构隧道向两边延伸,新建隧道对其的影响逐渐减弱。两隧道夹角45°~90°之间,交叠处影响效果很接近;45°时的情况下两隧道交叠范围较大,因此其影响范围也相对较大,所以沿着盾构隧道两个方向上,盾构管片变形减小的速率要小。
     5.结合岗顶酒店基坑工程实例,引入遗传算法对传统的BP神经网络进行改进,通过遗传算法搜索,确定了该样本参数下最优的隐含层节点数及最大循环次数,通过自学习与训练确定了最优的神经网络权值参数,提出了深基坑开挖沉降及水平位移预测的基于遗传BP网络建模方法,实现了降低岩体力学参数的变异性所对模型造成的误差,仅在一定范围内取值计算,其预测结果的精度得到保证,通过实例预测可以看出,四组预测值与实测值中最大的绝对水平位移误差为0.25mm,最大的沉绝对沉降位移误差为0.09mm;最大的相对水平位移误差为1.7%,最大的相对沉降位移误差为1.57%。
With the increase of urban building density, and the development of High-level, high-risebuildings and underground traffic engineering construction, much more deep foundation pitengineering are constructed in urban built-up area. These engineering is often near the densebuildings, which restricts the construction of foundation pit engineering by the environment.It is necessary to predict the deformation and its influence on surrounding environment causedby the construction of foundation pit, which has important guiding significance to the designand construction of deep foundation pit for the city center area. The unloading mechanicseffect research on the deep foundation pit excavation is of great significance for effectivelyprotecting the safety of adjacent building.
     In these factors affecting the stability and deformation of foundation pit whose soil shearstrength parameters and constitutive model is esscential, which is closely related to the stresspath of soil. In this study, experimental research, theoretical analysis and numerical simulationwere applied to study the environment effect during the urban underground structureconstruction in combination with the deep foundation pit engineering of Guangzhou citycenter. The following research work was carried out.
     1. The geological partition of Guangzhou would be studied then get the adaptabilityevaluation of underground engineering according to each partition. The typical soils in thecenter of the city were taken as study objects. The SLB-1type of stress and strain controlledtriaxial shear penetration test instrument was used for testing silty clay and mucky soil in theinfluenced area of the foundation pit by the conventional triaxial compression test andconsolidated triaxial compression test. Then, the different points of soil shear strength indexand stress-strain relationship will be compared in different consolidation pressures and stresspaths. As the results of tests, initial consolidation pressure affected the strength of soil highly.The strength of soil afterk0consolidation was higher than isotropic consolidation. Whenthey broke by compression shear, breaking strengths were almost the same under loading or unloading. The axial strain of the soil pore water pressure changed relating to the average soilconsolidation pressure, soil and stress path. In normal triaxial,k0consolidation and unloadingtests, Pore water pressure with axial strain trends can be fitted by a function ofexponential decay curve. In axial unloading test, axial strain trends of pore water pressure canbe fitted by a function of two quadratic parabolic curves. Generally, pore water pressure andcritical pore water pressure rises rapidly as the large average consolidation pressure and highplasticity index
     2. It can be found from the test result of soil testing base on different stress path, byk0consolidation,—ε1relative cure was good linear relationship. The linearmrelationship of the relative curve of soil unloading stress path(13)—was great.According to that, the equation of nonlinear elastic model tangent modulus expression can bederived and found the method of unloading soil nonlinear elastic constitutive modelparameters. By analyzing(13)—curve, initial tangent modulus related to stress path,soil and average consolidation stress. The higher average consolidation pressure, the lowerplasticity index and the initial tangent module became larger. Axial unloaded initial tangentmodulus was the largest, the lateral unloading initial tangent modulus was medium and axialload minimum initial tangent modulus was smallest. Axial load initial tangent modulus andconfining pressure relationship can be represented by a power function. Lateral unloading,axial unloading initial tangent modulus and confining pressure related as linear relationship.
     3. By the help of the finite element analysis software MIDAS/GTS, the nonlinear elasticconstitutive model of soil unloading was used, from the whole construction process offoundation pit excavation, the space effect of the excavation, the size of the reduction factorof equivalent stiffness of shield tunnel and the soil elastic modulus size of the tunnel to studythe excavation effect on the deformation of the underlying shield tunnel, while theengineering example was analyzed. As can be seen from the result, when the foundation pitwas excavating, the vertical displacement increment of bottom tunnel was bigger than the horizontal displacement increment. Overall, deep foundation pit excavation mainly causes thevertical deformation. Shield tunnel deformation is mostly affected by the upper foundation pitexcavation but less by upper side excavation.
     4. The shield segment equivalent longitudinal stiffness and equivalent lateral stiffnesswas introduced to simplify the calculation model of shield lining segments, Based on thefinite element analysis software MIDAS/GTS, the nonlinear elastic constitutive model ofsoil unloading and unloading test parameters were used to study the impact of adjacent tunnelby the tunnel construction from the nearby space relative position of the tunnel, the size of thereduction factor of equivalent stiffness of shield tunnel and the elastic modulus size of tunnelin the soil. The results show that, the deformation of shield tunnel was impacted dramaticallyby another bottom shield tunnel which was constructing. When the angle of that two tunnelsare45°and90°, the deformation of upper shield segments are obvious symmetry and theinfluence will decrease stretching along each direction of the tunnel. When the angle isbetween45°and90°, the effects on the overlap are almost the same. When the angle equals to45°, the overlap of the tunnels is bigger that the impacted scope is larger so along eachdirection of the tunnel, the deformation declining velocity of shield segment become smaller.
     5. As the foundation pit sample, gangding Hotel, genetic algorithm was used forupgrading traditional BP neural network. By using genetic algorithm, the best number ofhidden layer nodes and the maximum number of cycles can be determined. By studying andtraining the superior neural network weights parameters can be found. Then it can proposedthe modeling method of deep excavation subsidence and horizontal displacement predictionbase on genetic BP neural network. The modeling error of variability of rock mass parameterscan be reduced. Taking factors in a certain range, the accuracy of predicted results can beincreased. As can be checked from the results, between four sets of predicted and testedvalues have0.25mm error of relative horizontal displacement. The largest absolute valueerrors of sedimentary displacement, relative horizontal displacement and relative sedimentarydisplacement are0.09mm,1.7%and1.57%.
引文
[1]桂国庆,涂铿,深基坑工程的研究现状与发展趋势[J],工程力学,增刊,2000,3:406-412
    [2]益德清,虞振羽,蔡泽芳等,深基坑支护工程实例[M],北京:中国建筑工业出版社,1996.
    [3]唐业清,李启民,崔江余,基坑工程事故分析与处理[M],北京:中国建筑工业出版社,1999
    [4]李蓓,软土地区大型超深基坑工程理论的实践与研究,[D],上海:同济大学,2003,6
    [5]颜志雄,卸荷路径下软土力学性状的试验研究及基坑开挖对临近桩基影响的分析,
    [D],天津:天津大学,2006,6
    [6]M.Pastor, O.C.Zienkiewicz, K.H.Leumg, Generalized plasticity and the modelingof soilbehaviour[J],Intenrational Jounral for Numerical and Analytical Methods inGeomechanics,1990,14:151-190
    [7]Hajime Matsuoka, Hiorfunri Koyama, Hiroyuki Yamazaki, A constitutive equation forsands and its application to analyses of rotational stress paths and liquefactionresistance[J], Soils and foundaitons,1985,25(1):27-42.
    [8]Baligh M M, Strain path method[J], ASCE Journal of Geotechnical Engineering,1985,111(9):1108-1136
    [9]A tkinson J H, Lan WHW, Powell JJM, Determination of soil stiffness parameters in stresspath probing tests[J], Proc.l2th Int conf Soil Mech Fdn Engng, Rio de Janeiro,1989,1:7-10
    [10]Lings M L, Nash DFT,,Boyce M D, Obsersed behaviour of a deep excavation in Gaultclay:a preliminary appralsal[J], Proc.lOth Eur Conf Soil Mech Fth Engng Florence,1991,2:467-470
    [11]Silvestri V, Diab R, Stress distributions and paths in clays during pressuremeter tests[J],Canadian Geotehnica Jounral,2001,38(3):542-552
    [12]Lambe,T. W,Stress Path Method[J].Journal of the Soil Mechanics and FoundationDivision [J],ASCE,1967.93(SM6):309-331
    [13]Lade P V, Duncan J.M.,Sterss-path Dependent Behaviour of Cohesionless Soil[J], Proc.ASCE,1976,102(GTI):42-48
    [14] BalasubramaniamA S,Chaudhry A R, Deformation and Strength Characteristics of SoftBangkok Clay,Jounral of the Geotechnical Engineering Divition[J],ASCE,1978,10(GT9):1153-1167
    [15] Lambe,T.W, Stress Path Method Second Edition Journal of the GeotechnicalEngineering Division[J], ASCE, GT6,1979:73-81
    [16]Nagaraj T S,M.K.and Sridharan A,Incremental Loading Device for Stress Path andStrength Testing of Soils Geotechnical Testing Jounral,1981,4(2):35-46
    [17]盛树馨,窦宜,正常固结粘土应力应变关系测定中的几个主要影响因素[M],软土地基学术讨论会论文选集,北京:水利出版社,1980
    [18]曾国熙,潘秋元,胡一峰.软黏土地基基坑开挖性状的研究[J].岩土工程学报,1958,10(3):13-22.
    [19]矫德全,陈愈炯.土的各项异性和卸荷体缩[J].岩土工程学报,1994,16(4):9-15.
    [20]李广信,郭瑞平.土的卸荷体缩与可恢复剪胀[J].岩土工程学报,2000,22(2):158–161.
    [21]李广信,武世锋.土的卸荷体缩的试验研究及其机理探讨[J].岩土工程学报,2002,24(1):47–50.
    [22]常银生.黏性土应力路径的试验研究与分析[D].南京:南京工业大学,2005.
    [23]刘国斌,侯学渊.软土的卸荷模量[J].岩土工程学报,1996,18(6):18–23.
    [24]刘国斌,侯学渊.软土的卸荷应力–应变特性[J].地下工程与隧道,1997(2):16–23.
    [25]张于龙.平面应变条件下膨胀土等主应力比卸荷试验研究[J].工程勘察,1997(2):8–10.
    [26]葛卫春.基坑侧向卸荷应力路径及挡墙侧向变形研究[D].南京:河海大学,2001.
    [27]何世秀,韩高升,庄心善,等.基坑开挖卸荷土体变形的试验研究[J].岩土力学报,2003,24(1):17–20.
    [28]童华炜,邓祎文.土体K0固结–卸荷剪切试验研究[J].工程勘察,2008(5):13–16.
    [29]童华炜.考虑卸荷应力路径的基坑开挖土体变形研究[J].建筑科学,2008,21(7):35–38.
    [30]聂庆科,胡建敏,黄茂生.卸荷条件下粉质黏土变形性状研究[J].工程地质学报,2008,16(3):354–359.
    [31]刘祖德,孔官瑞.平面应变条件下膨胀土的卸荷变形试验研究[J].岩土工程学报,1993,15(2):68–73.
    [32]朱俊高,卢海华,殷宗泽.土体侧向变形性状的真三轴试验研究[J].河海大学学报,1995,23(6):28–33.
    [33]徐志伟,殷宗泽.粉砂侧向变形特性的真三轴试验研究[J].岩石力学与工程学报,2000,19(5):626–629.
    [34]赵鑫.深基坑开挖卸荷土体试验研究及有限元分析[D].武汉:湖北工业大学,2006.
    [35]何怡,董晓梅,庄心善.基坑开挖卸荷土体的本构模型真三轴试验研究[J].建筑科学,2009,25(5):55–59.
    [36]杨学林.浙江沿海软土地基深基坑支护新技术应用和发展[J].岩土工程学报,2012,S1:33-39.
    [37]肖锦江.地铁深基坑监测变形数据对周边环境影响的分析[J].科技资讯,2009,(9):124。
    [38]李宗权.深基坑工程对周边环境的影响及保护措施[J].科技创新与应用,2012,09:160-161
    [39]刘建航,侯学渊,基坑工程手册[M].北京:中国建筑工业出版社,1997。
    [40]邹锐,樊白桦,郑必勇.深基坑开挖周边地面最大沉降预估[J].江苏建筑,2007,(5):43-44。
    [41]刘江,易进栋.深基坑工程周边建筑物沉降变形及控制探讨[J].现代交通技术,2007,4(6):27-29。
    [42]刘建航,侯学渊.基坑工程手册[M].北京:中国建筑工业出版社,1997
    [43]高大钊.深基坑工程(第2版)[M].北京:机械工业出版社,2002
    [44]王卫东,王建华.深基坑支护结构与主体结构相结合的设计:分析与实例[M].北京:中国建筑工业出版社,2007
    [45]赵志络,应惠清.简明深基坑工程设计施工手册[M].北京:中国建筑工业出版社,2000
    [46]龚晓南.深基坑工程设计施工手册[M].北京:中国建筑工业出版社,1998.
    [47]李彦刚.议深基坑边坡支护[J].科技信息,2012,29:334.
    [48]胡志华.针对某基坑边坡坍塌滑移事故分析[J].西部探矿工程,2012,04:7-9.
    [49]张文慧,基坑工程中应力路径对侧向变形的影响及土压力与侧向位移关系的研究,
    [D],河海大学,2003
    [50]张龙腾.地铁车站SMW工法桩支撑系统施工技术[J].铁道标准设计,2009(8):72-75.
    [51]王方旗,元发庆,姚蓄.青岛凯悦中心格栅式MC桩支护及变形分析[J].施工技术,2009,38(9):64-72.
    [52]黄广龙,惠刚,方乾. MC桩组合支护结构工作性状的有限元分析[J].南京工业大学学报(自然科学版),2008,30(l):l-6
    [53]黄广龙,惠刚,方乾.MC桩组合支护结构设计与应用研究[J].岩土力学,2009,30(9):2697-2702
    [54]江强,陈凌宇,王植林等.非对称荷载下深圆井逆作法施工技术[J].施工技术,2009,810:66-69.
    [55]曹红林.明挖基坑内地铁矿山法隧道进洞的设计与施工[J].铁道工程学报,2009,10:106-110.
    [56]张晓冰,钟德杨,江光辉.芜湖世茂滨江花园复杂地质条件基坑支护技术[J].施工技术,2009,38(9):68-69.
    [57]应惠清.深基坑支护结构和施工新技术[J].施工技术,2013,13:1-5.
    [58]杨敏等.基坑挡墙结构的设计1:计算方法与工程应用[J].水文地质与工程地质,1995(5):142-148
    [59]杨敏等.基坑挡墙结构的设计2:计算分析与讨论[J].水文地质与工程地质,1999(6):192-199
    [60]王建华等.空间m法在深基坑支护结构分析中的应用[J].岩土工程学报(增刊),2006,11(l):121-126
    [61]陆新征等.某特深基坑考虑支护结构与土体共同作用的三维有限元分析[J].岩土工程学报.25(4):94-101
    [62]孙海涛,吴限.深基坑工程变形预报中的初步研究[J].岩土力学,1998(12):25-29
    [63]王曙光.复杂周边环境基坑工程变形控制技术[J].岩土工程学报,2013, S1:474-477.
    [64]林鸣,徐伟.深基坑工程信息化施工技术[M].北京:中国建筑工业出版社,2006
    [65]Abedi, H., Porter, T.G., Lien, B.H., and Ramos, J. performance of a flexible earthretaining structure in soft clays-comparison between finite element method and fieldmeasurements. Retaining Structures, C.R.I. Clayton, editor, Institution of CivilEngineers[M], Thomas Telford, London.1993
    [66]Boone, SJ. Correlations of Strength, Deformation, and Index Properties of Toronto’sCohesive Soils. Thesis completed in partial fulfillment of the requirements for Master ofEngineering[M], University of Toronto,1996
    [67]Boone, S.J. Ground Movement Related Building Damage. Journal of GeotechnicalEngineering[J],ASCE,1996,122(11):88-96
    [68]Feld, J. Tolerance of Structures to Settlement. Journal of the Soil Mechanics andFoundations Division[J],ASCE,1965,94(3):77-85
    [69]贾坚,谢小林,罗发扬,翟杰群.控制深基坑变形的支撑轴力伺服系统[J].上海交通大学学报,2009,10:1589-1594
    [70]徐中华.大开口式逆作法深基坑实测变形分析[J].地下空间与工程学报,2009,5(4):750-756
    [71]刘均红,陈弦.黄土地区地铁车站深基坑变形监测与分析[J].城市轨道交通,2009,08:68-71
    [72]付艳斌,贾勤波,李玉春.近邻地铁地下连续墙全过程开挖变形分析[J].建筑技术,2009,40(8):700-703
    [73]工源,刘松玉,谭跃虎,等.南京长江隧道浦口深基坑信息化施工与分析[J].岩土工程学报,2009,31(11):1781-1791
    [74]袁登科,刘国彬.南京地区深基坑测斜警戒值的探讨[J].合肥工业大学学报(自然科学版),2009,32(10):1566-1570.
    [75]徐中华,王卫东,王建华.逆作法深基坑对周边保护建筑影响的实测分析[J].土木工程学报,2009,42(10):88-96
    [76]张宇捷,李俊才-,陈志宁等.软土基坑中被动区加固对周围环境的影响[J].施工技术,2009,38(11):91-93
    [77]徐湘涛,汪家林,赵昌贵.深基坑开挖过程中的稳定性监测分析[J].四川建筑科学研究,2009,35(4):124-127.
    [78]楼楠,卫建东.特殊情况下深基坑围护测斜及变形浅析[J].测绘科学,2009,34(4):42-43
    [79]方熹,梁宁慧,耿大新.SMW工法围护软粘土深基坑开挖蠕变特性分析[J].地下空间与工程学报,2009,5(4):797-802
    [80]孙冰,曾晨,丁德馨等.SMW围护结构的深基坑隆起变形有限元分析[J].防灾减灾工程学报,2008,28(3):319-323
    [81]侯新宇,刘松玉,童立元.被动区深搅桩加固对地铁深基坑变形的影响[J].东南大学学报(自然科学版),2010,40(l):180-184
    [82]谭永朝,唐雅茹,彭加强等.基于数值分析的深基坑围护结构优化设计[J].城市轨道交通研究,2009,8:21-24
    [83]丁新启,乔兰,张华.深基坑钢管复合土钉墙支护的工程应用与力学机理分析[J].建筑技术,2009,40(7):660-662
    [84]付艳斌,杨骏,王铁行.深基坑开挖变形及被动区土体应力分析[J].广西大学学报(自然版),2009,34(3):301-304
    [85]万顺,莫海鸿,陈俊生.深基坑开挖对邻近建筑物影响数值分析[J].合肥工业大学学报(自然科学版),2009,32(10):1530-1533.
    [86]陈洪胜,陈宝,贺种.上海深基坑工程地面沉降危险性分级[J].地下空间与工程学报,2009,5(4):829-833.
    [87]周波.城市中心建筑基坑支护结构设计与施工探讨[J].城市建筑,2013,06:55-67.
    [88]周红波,蔡文杰,蔡来炳.基于WBS-RBS的地铁故障树风险识别与分析[J].岩土力学,2009,30(10):2703-2707
    [89]周红波.基于贝叶斯网络的深基坑风险模糊综合评估方法[J].上海交通大学学报,2009,43(9):1473-1479
    [90]杨太华,郑庆华,基于故障树方法的项目安全风险分析[J].系统管理学报.2009,18(5):511-515
    [91]丛霭森.多层地基的深基坑渗透问题分析[J].岩土力学与工程学报,2009,28(10):2018-2023
    [92]沈爱超,李铀.单一地层任意滑移面的最小势能边坡稳定性分析方法[J].岩土力学,2009,30(9):2463-2466
    [93]陈阵,陶龙光,李涛.支护结构作业的箱基沉降新方法[J].岩土力学,2009,30(10):2978-2984
    [94]CHOI H H, CHO H N, SEO J W. Risk assessment methodology for undergroundconstruction Projects[J]. Journal of Construction Engineering and Management,2004,3:258-272.
    [95]WANG J C, HOU W H, WANG X Z. Analysis of accident and risk sources factors fordeep foundation pit Progress in Safety Science and Technology[J],ASCE,2005,(5):476-481
    [96]Huang Chuansheng, Zhang Jiasheng, Yi Zhidong. Researeh on vehiele overload-inginfluenced to roadbed[J]. The Emerging Frontiers of Trans Portation and Development inChina,2008.Vol3.
    [97]Hashash, Y.M.A. and Whittle, A.J. Ground movement predietion for deep excavations insoft clay. Journal of Geotechnical Engineering[J],ASCE,1996,122(6).
    [98]GEI. Report of Geotechnical Monitoring of Structure Performance. Geotechnicalexploration[J], Ine.,SanDiego.2005
    [99]Hsieh, P-G and Ou, C-Y Shape of ground surface settlement profiles caused byexcavation[J]. Canadian Geotechnical Journal,1999,35
    [100]李亮,于广明,路世豹,褚雪松.基于和声策略的粒子群优化算法在土坡稳定分析中的应用[J].工业建筑,2009,12:65-69,129.
    [101]王宁,黄铭.开挖作用下的深基坑变形神经神经网络监测模型[J].上海交通大学学报,2009,6:990-993
    [102]丁德馨.弹塑性位移反分析的智能化方法及其在地下工程中的应用.[D].上海:同济大学,2000
    [103]丁德馨,张志军,毕忠伟.开采底面沉降预测的自适应性神经模糊推理方法研究[J].中国工程科学,2007,9(1):33-38.
    [104]丁德馨,毕忠伟,王卫华.开采地面沉陷预测的神经网络方法研究[J].南华大学学报(理工版),2002,16(3):l-5
    [105]张志军,丁德馨,饶龙等.基于人工神经网络的岩土工程反演设计方法研究[J].哈尔滨工程大学学报,2006,27(增刊):293-296
    [106]莫勇刚,丁德馨,肖猛.改进的BP神经网络在边坡稳定性评价中的应用[J].矿冶,2006,15(2):9-12
    [107]李水兵,李培现.基于BP神经网络的深基坑变形预测[J].测绘信息与工程,2011,05:41-42+45.
    [108]夏洪浪,汪爱莲.BP网络在基坑工程变形预测中的应用研究[J].地质装备,2005,6(3):31-34
    [109]廖展宇,李英,晏鄂川.非等间隔时序灰色模型的深基坑变形预测研究[J].合肥工业大学学报(自然科学版),2009,32(10):2522-2525
    [110]熊孝波,桂国庆,郑明新,等.基于免疫RBF神经网络的深基坑施工变形预测[J].岩土力学,2008,增刊:598-602.
    [111]熊孝波.深大基础工程施工变形智能预测与控制研究:[D].上海:同济大学,2008
    [112]贾备,邬亮.基于灰色BP神经网络组合模型的基坑变形预测研究[J].隧道建设,2009,29(3):280-283
    [113]Wu Chao-Hui, Ou Chang-Yu, Tung Ningehien. Corner effects in deepexcavations-establishment of a forecast model for Taipei basin T2zone[J]. Journal ofMarine Science and Technology2010,18(l):l-11
    [114]Su Yun, Y. Filho, Josen Oliveira, et al. Integration of construction field data andgeotechnical analyses[J]. Construction Research Congress2005: BroadeningPerspeetives-Proeeedings of the Congress,1129-1136,2005
    [115]韩力群.人工神经网络理论设计及应用(第二版)[M].北京:化学工业出版社,2007
    [116]侯媛彬,杜京义,汪梅.神经网络[M].西安:西安电子科技大学出版社,2007
    [117]周开利,康耀红.神经网络模型及其MATLAB仿真程序设计[M].北京:清华大学出版社,2005
    [118]冯紫良,孙海涛,王书娟.用人工神经网络预测单桩竖向承载力[J].同济大学学报,1999(8):68-73
    [119]麻风海,于晓曦,杨帆.BP神经网络在桩基支护方式中的应用[J].中国地质灾害与防治学报,2002(6):45-49
    [120]华瑞平,刘新宇,习剑.神经网络在深基坑支护变形预测中的应用[J].解放军理工大学学报(自然科学报),2001(10):102-106
    [121]汤勇力,李锡夔.基于极大似然估计的BP算法及其在深基坑开挖参数辨认中的应用[J].计算力学学报,2001(5):161-168
    [122]周瑞忠,邱高翔.基于BP网络的深坑支护位移反分析[J].土木工程学报,2001(12):88-93
    [123]王晓鸿,顾云蜂.基坑工程施工环境控制的神经网络方法研究[J].地质灾害与环境保护,2001(9)97-103
    [124]张云,梁勇然.基于BP神经网络的基坑突涌分析[J].工程勘察,2001(3):35-37
    [125] Worden. K.A et al. Neural networks for fault location.11[C],International ModelAnalysis Conferenee.1993,USA
    [126] Elkordy et al. A structural damage neural network monitor system[J].Microcomputers in CivilEngineering,1994,19(6):71-74
    [127]吴逢春.地铁盾构施工对周边结构影响的时间相关性研究[硕士学位论文][D].南京:东南大学,2006.
    [128]刘招伟,王梦恕,董新平.地铁隧道盾构法施工引起的地表沉降分析[J].岩石力学与工程学报,2003,22(8):1297-1301。
    [129]沈鋩杰,张子新,蒋华钦.盾构法隧道地表变形影响因素多尺度数值模拟[J].地下空间与工程学报,2013,02:263-270.
    [130]孙钧,袁金荣.盾构施工扰动与地层移动及其智能神经网络预测[J].岩土工程学报,2001,23(3):261-267。
    [131]刘建航,侯学渊,盾构法隧道[M].北京:中国铁道出版社,1991
    [132]王荣权.轨道交通地下工程施工对周边环境影响的监测[J].铁道勘察,2008,(2):25-28。
    [133]郑永来,韩文星,童琪华,杨柳峰,潘杰.软土地铁隧道纵向不均匀沉降导致的管片接头环缝开裂研究[J].岩石力学与工程学报,2005,24(24):4552-4558
    [134] Shiba.Y, Kawashima.T. The evaluation of the duct’s longitudinal rigidity intheseismicanalysis of shield tunnel[A]. Proceedings of the Civil Academy[C].1988,319-327.
    [135]姜启元,管攀峰,叶蓉.软土盾构隧道的纵向变形分析[J].地下工程与隧道,1999(4):2-6
    [136]田敬学,张庆贺.盾构法隧道的纵向刚度计算方法[J].中国市政工程,2001(3):35-37
    [137]汪彬彬.基坑开挖对下方盾构隧道变形的影响[D].华南理工大学工学硕士学位论文,2005
    [138]陈仲颐,周景星,王洪瑾.土力学[M].北京:清华大学出版社,1994.
    [139]刘熙媛,窦远明,闫澍旺.模拟基坑开挖过程的三轴试验研究[J].工程勘擦,第五期,2005,10(3):13-22.
    [140]徐远杰,王观琪,李健,等.在ABAQUS中开发实现Duncan-Chang本构模型[J].岩土力学,2004,25(7):1032-1036.
    [141]陈林靖,戴自航,刘志伟.考虑K_0固结的软土基坑工程三维非线性有限元分析[J].岩土力学,第32卷第12期,2011
    [142]刘忠昌.深基坑开挖对邻近地下管线位移影响的数值模拟分析[D].北京工业大学工学硕士学位论文,2005
    [143]毛朝辉,刘国彬.基坑开挖引起下方隧道变形的数值模拟[J].地下工程与隧道,2005(4):24-27
    [144]曾国熙,潘秋元,胡一峰.软粘土地基基坑开挖性状的研究[J].岩土工程学报,1988,10(3):13-22.
    [145]刘国彬.软土卸荷变形特性的试验研究[D].上海:同济大学,1995.
    [146]袁静,龚晓南.基坑开挖过程中软土性状若干问题的分析[A].浙江大学学报(工学版),2001,35(5):11-16
    [147]陈林靖,戴自航,刘志伟.应力路径对软土应力-应变特性影响试验研究[A].岩土力学,2011,10(3):13-22.
    [148]尚纪斌.BP人工神经网络模型在建筑物沉降预测中的应用[J],山西建筑,2011.12
    [149]冯夏庭.智能岩石力学导论[M],北京:科学出版社,2000.
    [150]李敏生,刘斌.BP学习算法的改进与应用[J].北京理工大学学报,1999,19(6):721-724
    [151]左志强,陈永进,慈春令.基于MATLAB下的改进BP算法[J].燕山大学学报,2001,25(z1):101-104
    [152]李守丽,李望超.改进BP网络性能的策略研究—快速的BP算法[C].中国神经网络与信号处理学术会议论文集,北京:电子工业出版社,1999.159-162
    [153]潘涛.BP神经网络模型中活化函数对网络性能影响的研究[J].安徽师范大学报(自然科学版),1998,21(3):218-221.
    [154]刘盛平,韦云隆.改进BP神经网络算法分析[C].第七届联合国际计算机会议论文集(上册),汕头:汕头大学出版社,2000,2(1):197-203
    [155]苑希民,李鸿雁,刘树坤.神经网络和遗传算法在水科学领域的应用[M],中国水利水电出版社.2002
    [156] Nardra K S, Parthasarthy K.Identification and control of dynamical systems usingneural networks[J],IEEE Trans Neural Networks,1990,1(1):4-27
    [157]杨华芬,董德春.改进的遗传神经网络在灰渣粘度预测中的应用及研究[J].重庆工商大学学报(自然科学版).2010,21(3):26-36
    [158]杨涛,李国维,樊琨.基于人工神经网络的公路软基沉降预测模型[J].上海理工大学学报,2003,35(7):15-21
    [159]蒋廷臣,王秀萍.基于神经网络模型的建筑物变形预测[J].重庆工商大学学报(自然科学版).2007,33(3):103-109
    [160]张文博,郭云开.基于BP神经网络的建筑物沉降预测模型研究[J].测绘工程,2013,156-162
    [161]高玮,郑颖人.岩土工程位移预测神经网络建模的几个问题[J].地下空间,2001,26(2):86-90
    [162]张文鸽,吴泽宁等.BP神经网络的改进及其应用[J].河南科学,2003,33(2):36-41
    [163]刘晋钢,李华玲.BP神经网络改进算法应用[J].华北工学院学报,2002,44(5):69-73
    [164]李宏刚,吕辉,李刚.一种BP神经网络的改进方法及其应用[J].中国工程科学,2005,34(4):89-95
    [165]张月琴,刘翔,孙先洋.一种改进的BP神经网络算法与应用[J].计算机技术与发展,2012,26(8):105-109

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700