用户名: 密码: 验证码:
COX同工酶-10aa-PGIS转基因治疗神经损伤型勃起功能障碍机制的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一章绪论
     勃起功能障碍(Erectile Dysfunction, ED)是前列腺癌根治术(Radical prostatectomy, RP)后最为常见的并发症之一,术中不可避免的损伤勃起神经造成神经失用是其最主要的发病机制,神经失用使得本世纪最伟大的发现之一,男科学最具革命性的药物-5型磷酸二脂酶抑制剂(Phosphodiesterase-5inhibitors, PDE5Is)对前列腺癌根治术后勃起功能障碍(Radical prostatectomy erectile dysfunction, RPED)的疗效疲软乏力。人们迫切希望寻找新的治疗手段。前列腺环素(Prostacyclin, PGI2)和PDE-5i均为强效的平滑肌松弛剂和血管保护剂,但是因为PGI2过短的半衰期(<2min)限制了它的临床应用。Ke-He Ruan等于2006年研发了的COX2-10aa-PGIS重组蛋白,这种蛋白同时具有COX-2和PGIS两种酶活性,并发挥3种有效的催化作用。这种特殊的结构能够把底物花生四烯酸(arachidonic acid, AA)直接高效转化成PGI2,从而使PGI2高表达。PGI2通过PGI2-IP-cAMP-PKT信号通路发挥平滑肌松弛剂和血管保护剂的作用,而这种信号通路似乎能能越过神经失用的障碍直接松弛血管平滑肌和扩张血管。这使得COX2-10aa-PGIS具有治疗RPED的潜在可能性。在第一个实验中,我们应用重组腺病毒(Adeno-virus)作为COX2-10aa-PGIS的载体,从基因层面治疗RPED,并探讨其潜在的机理。最近,Ke-He Ruan等在COX2-10aa-PGIS的基础上进一步优化结构,研发了COX1-10aa-PGIS。与前者相比,COX1-10aa-PGIS能更加稳定持久的高表达PGI2。目前的研究表明:脂质干细胞(Adipose Derived stem cells, ADSCs)具有自我更新,损伤修复,多向分化潜能和旁分泌作用。ADSCs是ED治疗的优秀候选者。由于腺病毒存在可能的生物威胁,在第二个实验中,我们进一步应用ADSCs作为COX1-10aa-PGIS基因治疗的载体,来治疗RPED,观察其疗效并探讨其可能性的分子机制。本论文正文分为两个部分陈述。
     第二章Ad-COX2-10aa-PGIS基因治疗神经损伤性的勃起功能障碍及其机制的研究
     目的
     本实验的目的是探索Ad-COX2-10aa-PGIS基因治疗在神经损伤性勃起功能障碍中的疗效和机制
     方法
     我们用成年SD大鼠双侧海绵体神经损伤模型来模拟根治性前列腺癌切除术后勃起功能障碍(RPED)。32只SD大鼠随机被分为4组:组1、空白手术组(Sham surgery);组2、双侧海绵体神经挤压损伤(Bilateral cavernosal nerve crush, BCNC);组3、BCNC+空白腺病毒(Null control recombinant adenovirus, NCRA)阴茎海绵体注射;组4、BCNC+复制缺陷型重组腺病毒携带COX2-10aa-PGIS基因(Replication efficiency recombinant adenovirus carry COX2-10aa-PGIS gene, Ad-COX2-10aa-PGIS)阴茎海绵体注射。28天后,电刺激海绵体神经测海绵体内压(Intracavernosal pressure, ICP)同时记录平均动脉压(Mean arterial pressure, MAP)。所有大鼠的阴茎组织按要求处理并保存为下一步实验用。(1)免疫组化:endothelial nitric oxide synthase(eNOS), α-smooth muscle actin (ASMA) and transforming growth factor beta-1(TGF β1);(2) Western Blot for COX2-10aa-PGI;(3) Masson's Trichrome stain:平滑肌/胶原比值(smooth muscle/collagen ratios); and (4) Terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay for apoptosis.
     结果
     1. COX2-10aa-PGIS基因治疗在神经损伤大鼠模型中能保存勃起功能;
     2. COX2-10aa-PGIS基因治疗能增加eNOS和ASMA表达水平;
     3. COX2-10aa-PGIS基因治疗能保护平滑肌/胶原比值:
     4. COX2-10aa-PGIS基因治疗能降低TGF β1的表达水平;
     5. COX2-10aa-PGIS基因治疗能减少细胞凋亡。
     小结
     我们的实验证明阴茎海绵体注射Ad-COX2-10aa-PGIS基因治疗有助于神经损伤型ED大鼠的勃起功能的康复。其机制是抗纤维化和抗细胞凋亡,从而阻止海绵体静脉漏的发生,最终保护勃起功能。
     第三章脂质干细胞携带COX1-10aa-PGIS基因治疗双侧海绵体神经损伤引起的勃起功能障碍及其机制
     目的
     使用脂质干细胞(ADSCs)作为COX1-10aa-PGIS基因载体来治疗双侧海绵体损伤性勃起功能障碍,并探讨其潜在的机制。
     方法
     1.从同种异体SD大鼠生殖腺周围脂肪中提取ADSCs,在DMEM/F12中传代;
     2.建立COX1-10aa-PGIS转染的ADSCs的稳定细胞系;
     3. Western blot鉴定COX1-10aa-PGIS在ADSCs表达,LC-MS/MS测定其酶活性;
     4.动物实验:建立成年SD大鼠双侧海绵体损伤模型来模拟前列腺癌根治术后勃起功能障碍。将SD大鼠随机被分成四组,Sham组:空白手术组;BCNC组:双侧海绵体神经挤压损伤;BCNC+ADSCs组:双侧海绵体神经挤压损伤并接受空白ADSCs阴茎海绵体注射治疗;BCNC+ADSCs with COX2-10aa-PGIS组:双侧海绵体神经挤压损伤,并接受转染COX2-10aa-PGIS基因的ADSCs阴茎海绵体注射治疗。28天后,在电刺激海绵体神经下测海绵体内压(ICP),同时监测平均动脉压(MAP)。收集所有大鼠的阴茎组织和尿液,按要求处理并保存为下一步实验用。1、免疫组化:Neural nitric oxide synthase(nNOS), α-smooth muscle actin (ASMA)和Vascular endothelial growth factor (VEGF);2、Western blot for ASMA, Transf forming growth factor β1(TGF β1)和Hypoxia-inducible factor-1α(HIF-1α);3、Liquid Chromatography-Mass Spectrometry (LC-MS/MS) for6-keto-PGFla;4、TUNEL for apoptosis.
     结果
     1.成功分离出ADSCs,并传代;
     2.成功建立稳定表达COX1-10aa-PGIS蛋白的ADSCs with COX1-10aa-PGIS细胞系;
     3. ADSCs with COX1-10aa-PGIS能在细胞中高表达PGI2;
     4. ADSCs with COX1-10aa-PGIS阴茎海绵体注射后,COX1-10aa-PGIS能在海绵体组织中表达,并产生高水平的PGI2;
     5. ADSCs with COX1-10aa-PGIS基因治疗组能有效改善双侧海绵体神经损伤大鼠的勃起功能;
     6. ADSCs with COX1-10aa-PGIS上调阴茎海绵体中nNOS, ASMA和VEGF表达水平;
     7.ADSCs with COX1-10aa-PGIS下调阴茎海绵体中TGF β1和H工F-1á表达水平;
     8. ADSCs with COX1-10aa-PGIS能抑制神经损伤后阴茎海绵体内的细胞凋亡。
     小结
     我们的试验结果证明COX1-10aa-PGIS基因能成功的转入ADSCs,建立稳定高表达PGI2的ADSCs with COX1-10aa-PGIS的细胞系。ADSCs with COX1-10aa-PGIS应用于大鼠神经损伤性ED模型能促进勃起功能的康复。其机制为ADSCs的组织修复和旁分泌作用以及COX1-10aa-PGIS的抗缺氧、抗纤维化、抗凋亡的作用。
     全文结论:
     我们的研究表明:
     1. Ad-COX2-10aa-PGIS基因治疗能促进神经损伤性ED的勃起功能的恢复,其机制是通过抗纤维化和抗凋亡来保护神经损伤后的勃起组织。
     2. COX1-10aa-PGIS基因能成功的转染ADSCs并建立稳定高表达PGI2的细胞系,ADSCs with COX1-10aa-PGIS治疗可改善神经损伤型ED大鼠模型的勃起功能。其机制为ADSCs的损伤修复和旁分泌作用以及COX1-1Oaa-PGIS的抗缺氧、抗纤维化、抗凋亡的作用。
Chapter One:Introduction
     Post radical prostatectomy erectile dysfunction is a very common complication which is almost unavoidable and without effective rescue method. Erectile function impaired immediately following RP is thought due to the damage to the cavernous nerves, which is known as neuropraxia. The most popular medication of PDE5-Is may not be effective in the early stage after RP due to the lack of cavernous nerve impulse to release nitric oxide to increase cGMP. Therefore, there is an acute need for exploration of novel rehabilitation approaches. Both PGI2and PDE-5i are well known potent smooth muscle relaxant and vasodilators. Benefiting by PGI2-IP-cAMP-PKT signal pathway, PGI2therapy may directly dilate the artery and sinusoid trabeculae, and overcome the cavernous nerve injury barrier. However, it's short time half-life (<2min) limits its clinical application. In2006, Ruan et al reported an innovative engineering of a recombinant protein COX2-10aa-PGIS with triple catalytic activities directly converting AA into PGI2. This special protein structure could induce PGI2high express. It looks COX2-10aa-PGIS could be the promising candidate for RPED treatment. We tried to use adenovirus with COX1-10aa-PGIS gene (Ad-COX2-10aa-PGIS) to BCNC ED. The effect was observed and the underlying mechanisms were explored. Recently, Ruan et al optimized the structure of the recombinant protein named as COX1-10aa-PGIS. Adenovirus showed some limitation to clinical use. ADSCs are arising as a new therapy for ED, The aim of our second study was to applying the Adipose Derived Stem Cells (ADSCs) with COX1-10aa-PGIS gene to BCNC Rat ED model and observing the effect, then exploring the underlying mechanisms. The main body of this paper is divided into two parts and narrated as following.
     Chapter Two:COX2-10aa-PGIS Gene Therapy Improving Erectile Function in Rats after Cavernous Nerve Injury
     Objective
     The purpose of this study was to explore the effect and mechanism of COX2-10aa-PGIS gene therapy in penile rehabilitation.
     Methods
     Bilateral cavernous nerve crush (BCNC) in adult Sprague-Dawley(SD) rats was used to mimic radical prostatectomy induced ED. SD rats were randomly assigned into four groups:1. sham surgery;2. BCNC;3. BCNC+null control recombinant adenovirus(NCRA) intracavernous injection; and4. BCNC+Ad-COX2-10aa-PGIS intracavernous injection.28days later, intracavernosal pressure (ICP) was recorded under cavernous nerve stimulation; in the meantime the blood pressure was monitored. At the end of the measurement, the penis was harvested and processed for (1) immunohistochemistry analysis for:endothelial nitric oxide synthase(eNOS), a-smooth muscle actin (ASMA) and transforming growth factor beta-1(TGFβ1);(2) Western Blot for COX2-10aa-PGI;(3) Masson's Trichrome stain for smooth muscle/collagen ratios; and (4) terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay for apoptosis.
     Results
     1. COX2-10aa-PGIS gene therapy preserved erectile function in the BCNC rat model;
     2. COX2-10aa-PGIS gene therapy increased eNOS and ASMA expression and decreased TGF(β1;
     3. COX2-10aa-PGIS gene therapy reduced cell apoptosis after cavernous nerve injury;
     4. COX2-10aa-PGIS gene therapy preserved smooth muscle/collagen ratios.
     Conclusion
     Our data demonstrated that COX2-10aa-PGIS protected erectile function after cavernous nerve injury through anti-fibrosis and anti-apoptotic mechanism.
     Chapter Three:Adipose Derived Stem Cells with Coxl-10aa-PGIS Gene Improve Erectile Function in Rats with Bilateral Cavernous Nerve Crush
     Objective:Use Adipose Derived Stem Cells as the carrier of COX1-10aa-PGIS gene to improve the penile rehabilitation after bilateral cavernous nerve crush (BCNC) in the rat ED model.
     Methods
     Adipose Derived Stem Cells (ADSCs) were isolated from perigonadal fat of Sprague-Dawley (SD) rats and cultured in DMEM/F12medium. The COX1-10aa-PGIS gene was transferred into ADSCs. ADSCs with COX1-10aa-PGIS stable cell line was filtered by G418and identified by Western Blot and LC-MSMS. BCNC in adult SD rats was used to replicate radical prostatectomy induced ED. SD rats were randomly assigned into four groups:1. sham surgery;2. BCNC;3. BCNC+ADSCs intracavernous injection;4、BCNC+ADSCs with COX1-10aa-PGIS gene intracavernous injection;28days later, intracavernous pressure (ICP) was recorded under cavernous nerve stimulation; meanwhile the blood pressure was monitored. At the end of the measurement, the penis and urine was harvested and processed as required for1、Immunohistochemistry for Neural nitric oxide synthase(nNOS),a-smooth muscle actin (ASMA) and Vascular endothelial growth factor (VEGF) expression level;2、Western blot for ASMA, Transf forming growth factor β1(TGFβ1) and Hypoxia-inducible factor-1a(HIF-1a);3、Liquid Chromatography-Mass Spectrometry (LC-MS/MS) for6-keto-PGF1a;4、TUNEL for apoptosis.
     Results
     1. The ADSCs was successfully isolated and passaged.
     2. ADSCs with COX1-10aa-PGIS gene stable cell line were successfully established.
     3. The ADSCs stable cell line with COX1-10aa-PGIS gene which can high express PGI2was identified by LC-MS/MS, G418and Western blot.
     4. ADSCs with COX1-10aa-PGIS gene therapy improved erectile function in rats after BCNC injury.
     5. ADSCs with COX1-10aa-PGIS up-regulated nNOS, ASMA and VEGF expression level in Corpus cavernosum
     6. ADSCs with COX1-10aa-PGIS down-regulated TGFβ1and HIF-1a expression level in Corpus cavernosum
     7. ADSCs with COX1-10aa-PGIS inhibit cell apoptosis after cavernous nerve injury
     Conclusion
     Our data also suggested that COX1-10aa-PGIS gene can be successfully transferred into ADSCs for gene therapy for the treatment of ED after cavernous nerve injury in an animal model. ADSC with COX1-10aa-PGIS gene might be a potential candidate in post radical prostatectomy penile rehabilitation. The underlying mechanisms of ADSCs with COX1-10aa-PGIS protected erectile function after cavernous nerve injury may through anti-hypoxia, anti-fibrosis and anti-apoptotic, and paracrine secretion and wound healing by ADSCs.
     Conclusion of the whole paper
     1. Our data demonstrated that COX2-10AA-PGIS protected erectile function after cavernous nerve injury through anti-fibrosis and anti-apoptotic mechanism.
     2. Our data also suggested that COX1-10aa-PGIS gene can be successfully transferred into ADSCs for gene therapy for the treatment of ED after cavernous nerve injury in an animal model. ADSC with COX1-10aa-PGIS gene might be a potential candidate in post radical prostatectomy penile rehabilitation. The underlying mechanisms of ADSCs with COX1-10aa-PGIS protected erectile function after cavernous nerve injury may through anti-hypoxia, anti-fibrosis and anti-apoptotic, and paracrine secretion and wound healing by ADSCs.
引文
1. Lue T, B.G., Evaluation and nonsurgical management of erectile dysfunction and premature ejaculation.. Campbell's Urology,9th ed,750-87, Chapter 22. Philadelphia PA:WB Saunders.,2006.
    2. JB., M., The worldwide prevalence and epidemiology of respective PDEs, could achieve greater enhance-erectile dysfunction. Int J Impot Res,2(Suppl 4), S6-11.,2000.
    3. Freman MM, D.P., Experimentalapproaches for the development of phamacological therapies for erectile dysfunction Sexual pharmacology,1993.3:p.87-113.
    4. Feldman, H.A., et al., Impotence and its medical and psychosocial correlates:results of the Massachusetts Male Aging Study. J Urol,1994.151(1):p.54-61.
    5. Monga, M. and M. Rajasekaran, Erectile dysfunction:current concepts and future directions. Arch Androl,2003.49(1):p.7-17.
    6. Garban, H., et al., Effect of aging on nitric oxide-mediated penile erection in rats. Am J Physiol,1995.268(1 Pt 2):p. H467-75.
    7. Bredt, D.S., Endogenous nitric oxide synthesis:biological functions and pathophysiology. Free Radic Res,1999.31(6):p.577-96.
    8. Dhir, R.R., et al., Combination therapy for erectile dysfunction:an update review. Asian J Androl,2011.13(3):p.382-90.
    9. Sommer, F. and U. Engelmann, Future options for combination therapy in the management of erectile dysfunction in older men. Drugs Aging,2004.21(9):p.555-64.
    10. Jemal, A., et al., Cancer statistics,2010. CA Cancer J Clin,2010.60(5):p.277-300.
    11. Walsh, P.C., et al., Patient-reported urinary continence and sexual function after anatomic radical prostatectomy. Urology,2000.55(1):p.58-61.
    12. Wang, R., Penile rehabilitation after radical prostatectomy:where do we stand and where are we going? J Sex Med,2007.4(4 Pt 2):p.1085-97.
    13. Litwin, M.S., et al., Quality-of-life outcomes in men treated for localized prostate cancer. JAMA,1995.273(2):p.129-35.
    '14. Levine, L.A., J.M. Greenfield, and C.R. Estrada, Erectile dysfunction following surgical correction of Peyronie's disease and a pilot study of the use of sildenafil citrate rehabilitation for postoperative erectile dysfunction. J Sex Med,2005.2(2):p.241-7.
    15. Stanford, J.L., et al., Urinary and sexual function after radical prostatectomy for clinically localized prostate cancer:the Prostate Cancer Outcomes Study. JAMA,2000.283(3):p. 354-60.
    16. Montorsi, F., et al., Current and future strategies for preventing and managing erectile dysfunction following radical prostatectomy. Eur Urol,2004.45(2):p.123-33.
    17. Burnett, A.L., et al., Erectile function outcome reporting after clinically localized prostate cancer treatment. J Urol,2007.178(2):p.597-601.
    18. Walsh, P.C., Patient-reported urinary continence and sexual function after anatomic radical prostatectomy. J urol,2000.164(1):p.242.
    19. Burnett, A.L., Rationale for cavernous nerve restorative therapy to preserve erectile function after radical prostatectomy. Urology,2003.61(3):p.491-7.
    20. Moreland, R.B., et al., Cyclic AMP modulates TGF-beta 1-induced fibrillar collagen synthesis in cultured human corpus cavernosum smooth muscle cells. Int J Impot Res,1998. 10(3):p.159-63.
    21. Leungwattanakij, S., et al., Cavernous neurotomy causes hypoxia and fibrosis in rat corpus cavernosum. J Androl,2003.24(2):p.239-45.
    .22. Granchi, S., et al., Expression and regulation of endothelin-1 and its receptors in human penile smooth muscle cells. Mol Hum Reprod,2002.8(12):p.1053-64.
    23. Moreland, R.B., et al., PGEl suppresses the induction of collagen synthesis by transforming growth factor-beta 1 in human corpus cavernosum smooth muscle. J Urol,1995.153(3 Pt 1): p.826-34.
    24. Saenz de Tejada, I., et al., Trabecular smooth muscle modulates the capacitor function of the penis. Studies on a rabbit model. Am J Physiol,1991.260(5 Pt 2):p. H1590-5.
    25. Gontero, P. and R. Kirby, Proerectile pharmacological prophylaxis following nerve-sparing radical prostatectomy (NSRP). Prostate Cancer Prostatic Dis,2004.7(3):p.223-6.
    26. Mulhall, J.P. and R.J. Graydon, The hemodynamics of erectile dysfunction following nerve-sparing radical retropubic prostatectomy. Int J Impot Res,1996.8(2):p.91-4.
    27. Mulhall, J.P., et al., Erectile dysfunction after radical prostatectomy:hemodynamic profiles and their correlation with the recovery of erectile function. J Urol,2002.167(3):p.1371-5.
    28. Lim KB, D.L., Brock G., Chronic PDES inhibitor altered cavernosal protein expression-use in identifying protein biomarker for erectile recovery post trauma? J Sex Med,2006.3(suppl 5) (383):p. (Abstract OR-006).
    29. User, H.M., et al., Penile weight and cell subtype specific changes in a post-radical prostatectomy model of erectile dysfunction. J Urol,2003.169(3):p.1175-9.
    30. McVary KT, P.C., Wood D, McKenna KE., Apoptotic pathways are employed in neuropathic and diabetic models of erectile dysfunction. J Urol,2006.175(suppl)(387):p. Abstract 1203.
    31. Nossaman, B.D., S. Gur, and P.J. Kadowitz, Gene and stem cell therapy in the treatment of erectile dysfunction and pulmonary hypertension; potential treatments for the common problem of endothelial dysfunction. Curr Gene Ther,2007.7(2):p.131-53.
    32. Melman, A. and K.P. Davies, Gene therapy in the management of erectile dysfunction (ED): past, present, and future. ScientificWorldJournal,2009.9:p.846-54.
    33. Garban, H., et al., Cloning of rat and human inducible penile nitric oxide synthase. Application for gene therapy of erectile dysfunction. Biol Reprod,1997.56(4):p.954-63.
    34. Shears, L.L.,2nd, et al., Efficient inhibition of intimal hyperplasia by adenovirus-mediated inducible nitric oxide synthase gene transfer to rats and pigs in vivo. J Am Coll Surg,1998. 187(3):p.295-306.
    35. Tzeng, E., et al., Adenovirus-mediated inducible nitric oxide synthase gene transfer inhibits hepatocyte apoptosis. Surgery,1998.124(2):p.278-83.
    36. Tirney, S., et al., Nitric oxide synthase gene therapy for erectile dysfunction:comparison of plasmid, adenovirus, and adenovirus-transduced myoblast vectors. Mol Urol,2001.5(1):p. 37-43.
    37. Chancellor, M.B., et al., Nitric oxide synthase gene transfer for erectile dysfunction in a rat model. BJU Int,2003.91(7):p.691-6.
    38. Davila, H.H., et al., Gene transfer of inducible nitric oxide synthase complementary DNA regresses the fibrotic plaque in an animal model of Peyronie's disease. Biol Reprod,2004. 71(5):p.1568-77.
    39. Gonzalez-Cadavid, N.F. and J. Rajfer, Molecular pathophysiology and gene therapy of aging-related erectile dysfunction. Exp Gerontol,2004.39(11-12):p.1705-12.
    40. Magee, T.R., et al., Gene therapy of erectile dysfunction in the rat with penile neuronal nitric oxide synthase. Biol Reprod,2002.67(1):p.20-8.
    41. Champion, H.C., et al., Gene transfer of endothelial nitric oxide synthase to the penis augments erectile responses in the aged rat. Proc Natl Acad Sci U S A,1999.96(20):p. 11648-52.
    42. Bivalacqua, T.J., et al., Gene therapy techniques for the delivery of endothelial nitric oxide synthase to the corpora cavernosa for erectile dysfunction. Methods Mol Biol,2004.279:p. 173-85.
    43. Bivalacqua, T.J., et al., Gene transfer of endothelial nitric oxide synthase partially restores nitric oxide synthesis and erectile function in streptozotocin diabetic rats. J Urol,2003. 169(5):p.1911-7.
    44. Bivalacqua, T.J., et al., Effect of combination endothelial nitric oxide synthase gene therapy and sildenafil on erectile function in diabetic rats. Int J Impot Res,2004.16(1):p.21-9.
    45. Lin, G., et al., Improving erectile function by silencing phosphodiesterase-5. J Urol,2005. 174(3):p.1142-8.
    46. Werner, M.E., et al., Erectile dysfunction in mice lacking the large-conductance calcium-activated potassium (BK) channel. J Physiol,2005.567(Pt 2):p.545-56.
    47. Christ, G.J., et al., Intracorporal injection of hSlo cDNA in rats produces physiologically relevant alterations in penile function. Am J Physiol,1998.275(2 Pt 2):p. H600-8.
    48. Christ, G.J., et al., Intracorporal injection of hSlo cDNA restores erectile capacity in STZ-diabetic F-344rats in vivo. Am J Physiol Heart Circ Physiol,2004.287(4):p. H1544-53.
    49. Melman, A. and G.J. Christ, The hemodynamics of erection and the pharmacotherapies of erectile dysfunction. Heart Dis,2002.4(4):p.252-64.
    50. Melman, A., et al., The first human trial for gene transfer therapy for the treatment of erectile dysfunction:preliminary results. Eur Urol,2005.48(2):p.314-8.
    51. De Young, L., et al., Arteriogenic erectile dysfunction alters protein expression within the cavernosal tissue in an animal model. J Sex Med,2005.2(2):p.199-206.
    52. Xie, D., et al., Cholesterol feeding reduces vascular endothelial growth factor signaling in rabbit corporal tissues. J Sex Med,2005.2(5):p.634-40.
    53. Ryu, J.K., et al., Downregulation of angiogenic factors and their downstream target molecules affects the deterioration of erectile function in a rat model of hypercholesterolemia. Urology,2006.67(6):p.1329-34.
    54. Rogers, R.S., et al, Intracavernosal vascular endothelial growth factor (VEGF) injection and adeno-associated virus-mediated VEGF gene therapy prevent and reverse venogenic erectile dysfunction in rats. Int J Impot Res,2003.15(1):p.26-37.
    55. Gholami, S.S., et al., The effect of vascular endothelial growth factor and adeno-associated virus mediated brain derived neurotrophic factor on neurogenic and vasculogenic erectile dysfunction induced by hyperlipidemia. J Urol,2003.169(4):p.1577-81.
    56. Musicki, B., et al., Phosphorylated endothelial nitric oxide synthase mediates vascular endothelial growth factor-induced penile erection. Biol Reprod,2004.70(2):p.282-9.
    57. Ryu, J.K., et al., Combined angiopoietin-I and vascular endothelial growth factor gene transfer restores cavernous angiogenesis and erectile function in a rat model of hypercholesterolemia. Mol Ther,2006.13(4):p.705-15.
    58. Liu, Q., et al., Local gene transduction of cyclooxygenase-1 increases blood flow in injured atherosclerotic rabbit arteries. Circulation,2005.111(14):p.1833-40.
    59. Bennett, N.E., et al., Improvement in erectile dysfunction after neurotrophic factor gene therapy in diabetic rats. J Urol,2005.173(5):p.1820-4.
    60. Pu, X.Y., et al., Improvement in erectile dysfunction after insulin-like growth factor-1 gene therapy in diabetic rats. Asian J Androl,2007.9(1):p.83-91.
    61. Cormio, L., et al., Vasoactive intestinal polypeptide (VIP) is not an androgen-dependent neuromediator of penile erection. Int J Impot Res,2005.17(1):p.23-6.
    62. Champion, H.C., et al., Comparison of responses to adrenomedullin and calcitonin gene-related peptide in the feline erection model. J Androl,1997.18(5):p.513-21.
    63. Bivalacqua, T.J., et al., Gene transfer of prepro-calcitonin gene-related peptide restores erectile function in the aged rat. Biol Reprod,2001.65(5):p.1371-7.
    64. Shen, Z.J., et al., Gene transfer of vasoactive intestinal polypeptide into the penis improves erectile response in the diabetic rat. BJU Int,2005.95(6):p.890-4.
    65. Dai, Y., et al., Topical application of a Rho-kinase inhibitor in rats causes penile erection. Int J Impot Res,2004.16(3):p.294-8.
    66. Chitaley, K., et al., Adeno-associated viral gene transfer of dominant negative RhoA enhances erectile function in rats. Biochem Biophys Res Commun,2002.298(3):p.427-32.
    67. Bivalacqua, T.J., et al., RhoA/Rho-kinase suppresses endothelial nitric oxide synthase in the penis:a mechanism for diabetes-associated erectile dysfunction. Proc Natl Acad Sci U S A, 2004.101(24):p.9121-6.
    68. Drexler, H. and B. Hornig, Endothelial dysfunction in human disease. J Mol Cell Cardiol, 1999.31(1):p.51-60.
    69. Jeremy, J.Y., et al., Platelets, oxidant stress and erectile dysfunction:an hypothesis. Cardiovasc Res,2000.46(1):p.50-4.
    70. Bivalacqua, T.J., et al., Gene transfer of extracellular SOD to the penis reduces O2-* and improves erectile function in aged rats. Am J Physiol Heart Circ Physiol,2003.284(4):p. H1408-21.
    71. Khan, M.A., R.J. Morgan, and D.P. Mikhailidis, The molecular basis of penile erection. Curr Med Res Opin,2000.16 Suppl 1:p. s21-30.
    72. Khan, M.A., et al., The effect ofsuperoxide dismutase on nitric oxide-mediated and electrical field-stimulated diabetic rabbit cavernosal smooth muscle relaxation. BJU Int,2001.87(1):p. 98-103.
    73. Bivalacqua, T.J., et al., Superoxide anion production in the rat penis impairs erectile function in diabetes:influence of in vivo extracellular superoxide dismutase gene therapy. J Sex Med, 2005.2(2):p.187-97; discussion 197-8.
    74. Deng, W., et al., Adenoviral gene transfer of eNOS:high-level expression in ex vivo expanded marrow stromal cells. Am J Physiol Cell Physiol,2003.285(5):p. C1322-9.
    75. Bivalacqua, T.J., et al., Mesenchymal stem cells alone or ex vivo gene modified with endothelial nitric oxide synthase reverse age-associated erectile dysfunction. Am J Physiol Heart Circ Physiol,2007.292(3):p. H1278-90.
    76. Gou, X., et al., Transplantation of endothelial progenitor cells transfected with VEGF165 to restore erectile function in diabetic rats. Asian J Androl,2011.13(2):p.332-8.
    77. Qiu, X., et al., Combined Strategy of Mesenchymal Stem Cells Injection with VEGF Gene Therapy for the Treatment of Diabetes Associated Erectile Dysfunction. J Androl,2011.
    78. Morrison, S.J., N.M. Shah, and D.J. Anderson, Regulatory mechanisms in stem cell biology. Cell,1997.88(3):p.287-98.
    79. Lin, C.S., et al., Recent advances in andrology-related stem cell research. Asian J Androl, 2008.10(2):p.171-5.
    80. Strong, T.D., et al., Endothelium-specific gene and stem cell-based therapy for erectile dysfunction. Asian J Androl,2008.10(1):p.14-22.
    81. Kendirci, M., J. Bejma, and W.J. Hellstrom, Update on erectile dysfunction in prostate cancer patients. Curr Opin Urol,2006.16(3):p.186-95.
    82. Aversa, A., et al., Chronic sildenafil in men with diabetes and erectile dysfunction. Expert Opin Drug Metab Toxicol,2007.3(3):p.451-64.
    83. Zhang, H., et al., Stem cells:novel players in the treatment of erectile dysfunction. Asian J Androl,2011.
    84. Abdel Aziz, M.T., et al., Effect of mesenchymal stem cell penile transplantation on erectile signaling of aged rats. Andrologia,2010.42(3):p.187-92.
    85. Song, Y.S., et al., Potential differentiation of human mesenchymal stem cell transplanted in rat corpus cavernosum toward endothelial or smooth muscle cells. Int J Impot Res,2007. 19(4):p.378-85.
    86. Kendirci, M., et al., Transplantation of nonhematopoietic adult bone marrow stem/progenitor cells isolated by p75 nerve growth factor receptor into the penis rescues erectile function in a rat model of cavernous nerve injury. J Urol,2010.184(4):p.1560-6.
    87. Qiu, X., et al., Intracavernous transplantation of bone marrow-derived mesenchymal stem cells restores erectile function of streptozocin-induced diabetic rats. J Sex Med,2011.8(2):p. 427-36.
    88. Nolazco, G., et al., Effect of muscle-derived stem cells on the restoration of corpora cavernosa smooth muscle and erectile function in the aged rat. BJU Int,2008.101(9):p. 1156-64.
    89. Ji, C., et al., Construction of tissue-engineered corpus cavernosum with muscle-derived stem cells and transplantation in vivo. BJU Int,2011.107(10):p.1638-46.
    90. Ning, H., et al., Neuron-like differentiation of adipose tissue-derived stromal cells and vascular smooth muscle cells. Differentiation,2006.74(9-10):p.510-8.
    91. Bella, A.L., G.; Phonsombat, S.; Lin, CS.; Garcia, M.; Brant, WO.; Lue, TF., Non-cell line induced autologous adult adipose tissue derived stem cells enhance recovery of erectile function in the rat following bilateral cavernous nerve crush injury. Sexual Medicine Society of North America Meeting,2008.68 p.
    92. Ning, H., et al., Fibroblast growth factor 2 promotes endothelial differentiation of adipose tissue-derived stem cells. J Sex Med,2009.6(4):p.967-79.
    93. Albersen, M., et al., Injections of adipose tissue-derived stem cells and stem cell lysate improve recovery of erectile function in a rat model of cavernous nerve injury. J Sex Med, 2010.7(10):p.3331-40.
    94. Garcia, M.M., et al., Treatment of erectile dysfunction in the obese type 2 diabetic ZDF rat with adipose tissue-derived stem cells. J Sex Med,2010.7(1 Pt 1):p.89-98.
    95. Lin, G., et al., Cavernous nerve repair with allogenic adipose matrix and autologous adipose-derived stem cells. Urology,2011.77(6):p.1509 e1-8.
    96. Zhang, H., et al., Adipose tissue-derived stem cells secrete CXCL5 cytokine with neurotrophic effects on cavernous nerve regeneration. J Sex Med,2011.8(2):p.437-46.
    97. Kang, S.W., et al., Porous poly(lactic-co-glycolic acid) microsphere as cell culture substrate and cell transplantation vehicle for adipose tissue engineering. Tissue Eng Part C Methods, 2008.14(1):p.25-34.
    98. Bochinski, D., et al., The effect of neural embryonic stem cell therapy in a rat model of cavernosal nerve injury. BJU Int,2004.94(6):p.904-9.
    99. Song, Y.S., et al., Human neural crest stem cells transplanted in rat penile corpus cavernosum to repair erectile dysfunction. BJU Int,2008.102(2):p.220-4; discussion 224.
    100. Song, Y., et al., Transdifferentiation of rat fetal brain stem cells into penile smooth muscle cells. BJU Int,2009.104(2):p.257-62.
    101. Bahk, J.Y., et al., Treatment of diabetic impotence with umbilical cord blood stem cell intracavernosal transplant:preliminary report of 7 cases. Exp Clin Transplant,2010.8(2):p. 150-60.
    102. Garcia-Olmo, D., M. Garcia-Arranz, and D. Herreros, Expanded adipose-derived stem cells for the treatment of complex perianal fistula including Crohn's disease. Expert Opin Biol Ther,2008.8(9):p.1417-23.
    103. Lin, G., et al., Potential of adipose-derived stem cells for treatment of erectile dysfunction. J Sex Med,2009.6 Suppl 3:p.320-7.
    104. Ruan, K.H., H. Deng, and S.P. So, Engineering of a protein with cyclooxygenase and prostacyclin synthase activities that converts arachidonic acid to prostacyclin. Biochemistry, 2006.45(47):p.14003-11.
    105. Bunting, S., et al., Arterial walls generate from prostaglandin endoperoxides a substance (prostaglandin X) which relaxes strips of mesenteric and coeliac ateries and inhibits platelet aggregation. Prostaglandins,1976.12(6):p.897-913.
    106. Weksler, B.B., C.W. Ley, and E.A. Jaffe, Stimulation of endothelial cell prostacyclin production by thrombin, trypsin, and the ionophore A 23187. J Clin Invest,1978.62(5):p. 923-30.
    107. Ingerman-Wojenski, C., et al., Bovine endothelial cells in culture produce thromboxane as well as prostacyclin. J Clin Invest,1981.67(5):p.1292-6.
    108. Jakobsson, P.J., et al., Identification of human prostaglandin E synthase:a microsomal, glutathione-dependent, inducible enzyme, constituting a potential novel drug target. Proc Natl Acad Sci USA,1999.96(13):p.7220-5.
    109. Moncada, S., et al., Differential formation of prostacyclin (PGX or PGI2) by layers of the arterial wall. An explanation for the anti-thrombotic properties of vascular endothelium. Thromb Res,1977.11(3):p.323-44.
    110. Murata, T., et al., Altered pain perception and inflammatory response in mice lacking prostacyclin receptor. Nature,1997.388(6643):p.678-82.
    111. Hyman, A.L., et al., Unusual pulmonary vasodilator activity of 13,14-dehydroprostacyclin methyl ester:comparison with endoperoxides and other prostanoids. Proc Natl Acad Sci U S A,1977.74(12):p.5711-5.
    112. Hyman, A.L. and P.J. Kadowitz, Pulmonary vasodilator activity of prostacyclin (PGI2) in the cat. Circ Res,1979.45(3):p.404-9.
    113. Kadowitz, P.J., et al., Pulmonary and systemic vasodilator effects of the newly discovered prostaglandin, PGI2. J Appl Physiol,1978.45(3):p.408-13.
    114. Badesch, D.B., et al., Prostanoid therapy for pulmonary arterial hypertension. J Am Coll Cardiol,2004.43(12 Suppl S):p.56S-61S.
    115. Tuder, R.M., et al., Prostacyclin synthase expression is decreased in lungs from patients with severe pulmonary hypertension. Am J Respir Crit Care Med,1999.159(6):p.1925-32.
    116. De Backer, T.L., J.P. Smedema, and S.G. Carlier, Current management of primary pulmonary hypertension. BioDrugs,2001.15(12):p.801-17.
    117. Nagaya, N., Drug therapy of primary pulmonary hypertension. Am J Cardiovasc Drugs,2004. 4(2):p.75-85.
    118. Siobal, M., Aerosolized prostacycins. Respir Care,2004.49(6):p.640-52.
    119. Haj, R.M., J.E. Cinco, and C.D. Mazer, Treatment of pulmonary hypertension with selective pulmonary vasodilators. Curr Opin Anaesthesiol,2006.19(1):p.88-95.
    120. Barst, R.J., et al., A comparison of continuous intravenous epoprostenol (prostacyclin) with conventional therapy for primary pulmonary hypertension. The Primary Pulmonary Hypertension Study Group. N Engl J Med,1996.334(5):p.296-302.
    121. Cawello, W., et al., Metabolism and pharmacokinetics of prostaglandin E1 administered by intravenous infusion in human subjects. Eur J Clin Pharmacol,1994.46(3):p.275-7.
    122. Shiri, R., et al., Effect of nonsteroidal anti-inflammatory drug use on the incidence of erectile dysfunction. J Urol,2006.175(5):p.1812-5; discussion 1815-6.
    123. Ruan, K.H., et al., An active triple-catalytic hybrid enzyme engineered by linking cyclo-oxygenase isoform-1 to prostacyclin synthase that can constantly biosynthesize prostacyclin, the vascular protector. FEBS J,2008.275(23):p.5820-9.
    124. Evans, D.H. and M.P. Gunderson, A prostaglandin, not NO, mediates endothelium-dependent dilation in ventral aorta of shark (Squalus acanthias). Am J Physiol,1998.274(4 Pt 2):p. R1050-7.
    125. Mulhall, J.P., Penile rehabilitation following radical prostatectomy. Curr Opin Urol,2008. 18(6):p.613-20.
    126. Mulhall, J.P., et al., The functional and structural consequences of cavernous nerve injury are ameliorated by sildenafil citrate. J Sex Med,2008.5(5):p.1126-36.
    127. Ozden, E., et al., Effect of sildenafil citrate on penile weight and physiology of cavernous smooth muscle in a post-radical prostatectomy model of erectile dysfunction in rats. Urology, 2011.77(3):p.761 el-7.
    128. Padma-Nathan, H., et al., Randomized, double-blind placebo-controlled study of postoperative nightly sildenafil citrate for the prevention of erectile dysfunction after bilateral nerve-sparing radical prostatectomy. Int J Impot Res,2008.20(5):p.479-86.
    129. Goldstein I., Early penile rehabilitation following radical prostatectomy:Overview and rationale. Contemp Urol,2006.18(1 suppl):(3-6.)。
    130. Zachary, I. and G. Gliki, Signaling transduction mechanisms mediating biological actions of the vascular endothelial growth factor family. Cardiovasc Res,2001.49(3):p.568-81.
    131. Rezvani, H.R., et al., HIF-Ialpha in epidermis:oxygen sensing, cutaneous angiogenesis, cancer, and non-cancer disorders. J Invest Dermatol,2011.131(9):p.1793-805.
    132. Jemal A, S.R., Xu J, Ward E., Cancer statistics,2010. CA Cancer J Clin,2010.60(5):p. 277-300.
    133. Needleman, P., et al., Arachidonic acid metabolism. Annu Rev Biochem,1986.55:p.69-102.
    .134. Ruan, K.-H., Hybrid protein that converts arachidonic acid into prostacyclin. Patent application number:20100015120,2010 ():p.
    135. Mullerad, M., et al., Functional sequelae of cavernous nerve injury in the rat:is there model dependency. J Sex Med,2006.3(1):p.77-83.
    136. Muller, A., et al., The impact of shock wave therapy at varied energy and dose levels on functional and structural changes in erectile tissue. Eur Urol,2008.53(3):p.635-42.
    137. Fraiman, M.C., H. Lepor, and A.R. McCullough, Changes in Penile Morphometrics in Men with Erectile Dysfunction after Nerve-Sparing Radical Retropubic Prostatectomy. Mol Urol, 1999.3(2):p.109-115.
    138. McVary KT, P.C., Wood D, McKenna KE., Apoptotic pathways are employed in neuropathic and diabetic models of erectile dysfunction. J Urol 2006; 175(suppl):387 (Abstract 1203). J Urol 2006.175(suppl)387(Abstract 1203).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700